#### Machine Learning and Computer Vision Group



Institute of Science and Technology

#### **Deep Learning with Tensorflow**

http://cvml.ist.ac.at/courses/DLWT\_W17/

# AlexNet

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification with deep convolutional neural networks", Advances in neural information processing systems, 2012

Djordje Slijepcevic

# Introduction

- Convolutional Neural Network (CNN)
- Winner of ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012
  - first successful CNN application for such a big dataset
  - top-5 test error rate of 15.3% (+10.9% compared to 2<sup>nd</sup>)
- Relatively simple layout (compared to modern architectures)
  - 5 conv. layers
  - 3 fully connected layers
  - max-pooling layers
  - dropout layers

#### Dataset

- ImageNet:
  - 15+ million labeled high-resolution images
  - 22000 categories
- ILSVRC uses a subset of ImageNet:
  - ~ 1000 images per category
  - 1000 categories
  - 1.2 million training images | 50000 validation images | 150000 testing images
- AlexNet:
  - images were down-sampled and cropped to 256×256 pixels
  - subtraction of the mean activity over the training set from each pixel

#### Task



[A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, 2012]

#### Dataset



#### Architecture



[A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, 2012]

- Traditionally, saturating nonlinearities:
  - hyperbolic tangent function:  $f(x) = \tanh(x) = 2 * \frac{1}{1+e^{-2x}} 1$
  - sigmoid function:  $f(x) = \frac{1}{1+e^{-x}}$
  - ightarrow slow to train
- Non-saturating nonlinearity:
  - Rectified Linear Unit (ReLU):  $f(x) = \max(0, x)$
  - $\rightarrow$  quick to train



- Traditionally, saturating nonlinearities:
  - Saturated neurons facilitate vanishing of gradients
  - exp function is a bit compute expensive
  - ightarrow slow to train
- Non-saturating nonlinearity:
  - Does not saturate (in the + region)
  - Very computationally efficient
  - ightarrow quick to train





- Dataset: CIFAR-10
- Experiment: CNN (4 layers) + ReLUs (solid line) vs.
   CNN (4 layers) + tanh (dashed line)

#### $\rightarrow$ ReLUs six times faster



# Training on Multiple GPUs

- Half of the neurons of an certain layer are on each GPU
- GPUs communicate only in certain layers
- Improvement (as compared with a net with half as many kernels in each convolutional layer trained on one GPU):
  - top-1 error rate by 1.7%
  - top-5 error rate by 1.2%

# Training on Multiple GPUs



# Local Response Normalization

- ReLUs do not require input normalization to prevent them from saturating
- However, Local Response Normalization aids generalization

Activity of a neuron by applying  
kernel i at position (x,y)  

$$b_{x,y}^{i} = a_{x,y}^{i} / \left( k + \alpha \sum_{j=\max\left(0,i-\frac{n}{2}\right)}^{\min\left(N-1,i+\frac{n}{2}\right)} \left(a_{x,y}^{j}\right)^{2} \right)^{\beta}$$

$$k = 2$$

$$n = 5$$

$$\alpha = 10^{-4}$$

$$\beta = 0.75$$

- Improvement:
  - top-1 error rate by 1.4%
  - top-5 error rate by 1.2%

sum runs over n "adjacent" kernel maps at the same spatial position

#### Local Response Normalization



# **Overlapping Pooling**

- Pooling layers summarize the outputs of neighboring neurons in the same kernel map.
- Overlapping pooling  $\rightarrow$  s < z
- Improvement using MaxPooling:
  - top-1 error rate by 0.4%
  - top-5 error rates by 0.3%



# **Overlapping Pooling**



#### **Overall Architecture**



# Reducing Overfitting - Data Augmentation

- 1<sup>st</sup> : image translations and horizontal reflections
  - random 224x224 patches + horizontal reflections from the 256x256 images
  - Testing: five 224x224 patches + horizontal reflections → averaging the predictions over the ten patches
- 2<sup>nd</sup> : change the intensity of RGB channels
  - PCA on the set of RGB pixel values throughout the ImageNet training set
  - To each RGB image pixel  $I_{xy} = [I_{xy}^R, I_{xy}^G, I_{xy}^B]$  following is added



# Reducing Overfitting - Dropout



- Output of each hidden neuron is set to zero with probability 0.5
- Learning more robust features
- Doubles the number of iterations required to converge
- Applied in the first two fully connected layers

[N. Srivastava et al., Dropout: A Simple Way to Prevent Neural Networks from Overfitting, 2014]

## Reducing Overfitting - Dropout



Dropout

# Stochastic Gradient Descent

- Training process
  - Minimizing the cross-entropy loss function:

$$L(w) = \sum_{i=1}^{N} \sum_{c=1}^{1000} -y_{ic} \log f_c(x_i) + \epsilon ||w||_2^2$$
  
predicted probability of class c for image x  
indicator that example i has label c

# Stochastic Gradient Descent

- SGD with a batch size of 128
- Learning rate initialized at 0.01; divided by 10 if validation error rate stopped improving



• ~ 90 cycles  $\rightarrow$  five to six days on two NVIDIA GTX 580 3GB GPUs