Machine Learning and Computer Vision Group

 $Institute \ of \ Science \ and \ Technology$

Deep Learning with TensorFlow http://cvml.ist.ac.at/courses/DLWT_W18

Lecture 6: AlexNet

Deep Learning with Tensorflow

AlexNet with Vyacheslav Li

December 17, 2018

Outline

- Historical introduction
- Architecture of AlexNet
- Key characteristics of AlexNet
- After AlexNet breakthrough

Outline

- Historical introduction
- Architecture of AlexNet
- Key characteristics of AlexNet
- After AlexNet breakthrough

ImageNet Classification with Deep Convolutional Neural Networks (2012)

Alex Krizhevsky

Ilya Sutskever

Geoffry Hinton

According to Google Scholar it has 32,680 citations

~ 15 million labeled high resolution images~ 22,000 categories

- 1000 images in each of 1000 categories
- **1.2 million** training images
- 50,000 validation images
- 150,000 testing images

Revolution of Depth

IMAGENET Image Classification Top-5 Error(%)

A bit of a history

- 1943: McCulloch & Pitts show that neurons can be combined to construct a Turing machine (using ANDs, ORs, & NOTs).
- 1985: The backpropagation algorithm by Geoffrey Hinton et al revitalizes the field
- 1998: CNNs with Backpropagation for document analysis by Yan LeCun
- 2012 : **AlexNet** by Alex Krizhevesky in 2012

Outline

- Historical introduction
- Architecture of AlexNet
- Key characteristics of AlexNet
- After AlexNet breakthrough

Architecture of AlexNet

62.3 million parameters and needs **1.1 billion** computation units in a forward pass

Architecture of AlexNet

Outline

- Historical introduction
- Architecture of AlexNet
- Key characteristics of AlexNet
- After AlexNet breakthrough

ReLU

The ReLU activation was first used in AlexNet

 $y = \max(0, x)$

Why ReLU faster?

Local Response Normalization

$$b_{x,y}^{i} = a_{x,y}^{i} / \left(k + \alpha \sum_{j=\max(0,i-n/2)}^{\min(N-1,i+n/2)} (a_{x,y}^{j})^{2} \right)^{\beta}$$

Response normalization reduced top-1 and top-5 error rates by **1.4%** and **1.2%**, respectively.

Max pooling

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

Overlapping Max pooling

S < **Z** instead of traditional S=Z (S: stride, Z: size of filter matrix) This scheme reduces the top-1 and top-5 error rates by 0.4% and 0.3%, respectively

12	20	30	0
8	12	2	0
34	70	37	4
112	100	25	12

20	30	30
70	70	37
112	100	37

Data Augmentation

256

1024

Data Augmentation

Data Augmentation

Increased the number of training data by factor of **2048!**

Data Augmentation

Data Augmentation

Principal Components Analysis was performed on the set of RGB pixel values. Varying intensities helped to reduce error by over **1** %

$$I_{xy} = [I_{xy}^{R}, I_{xy}^{G}, I_{xy}^{B}]^{T}$$

 $[\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3][\alpha_1\lambda_1, \alpha_2\lambda_2, \alpha_3\lambda_3]^T$

Drop out 0.5 of neurons during training

Used GPU to increase training speed

Double GPU reduced top-1 and top-5 error rates by 1.7% and 1.2%, respectively

Outline

- Historical introduction
- Architecture of AlexNet
- Key characteristics of AlexNet
- After AlexNet breakthrough

Results

Growing Use of Deep Learning at Google

Number of directories containing model description files

Results

References

- <u>https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.</u>
 <u>pdf</u>
- <u>https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html</u>
- <u>https://qz.com/1307091/the-inside-story-of-how-ai-got-good-enough-to-dominate-silicon-valley/</u>
- <u>https://medium.com/@smallfishbigsea/a-walk-through-of-alexnet-6cbd137a5637</u>
- <u>https://www.learnopencv.com/understanding-alexnet/</u>