
Machine Learning and
Computer Vision Group

Deep Learning with TensorFlow
http://cvml.ist.ac.at/courses/DLWT_W18

Lecture 10:
Deep Q-Learning

Q-Learning - Deep Learning with TensorFlow (DLWT)
’18

Mathias Lechner

IST Austria

mathias.lechner@ist.ac.at

January 20, 2019

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 1 / 23

Overview

1 Reinforcement Learning
Definitions
Different approaches

2 Q-Learning
With tables
Deep-Q-Networks (DQN)

3 Advanced methods

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 2 / 23

Types of Machine Learning

Supervised Learning:

Given: Labeled samples (x1, y1), (x2, y2), . . . (xn, yn)

Task: Find f : x 7→ ŷ , that has minimal loss L(y , ŷ)

Reinforcement Learning:

Given: Interactive environment

Task: Find interacting policy, that maximizes reward

What’s an ”Interactive environment”?

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 3 / 23

Types of Machine Learning

Supervised Learning:

Given: Labeled samples (x1, y1), (x2, y2), . . . (xn, yn)

Task: Find f : x 7→ ŷ , that has minimal loss L(y , ŷ)

Reinforcement Learning:

Given: Interactive environment

Task: Find interacting policy, that maximizes reward

What’s an ”Interactive environment”?

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 3 / 23

Types of Machine Learning

Supervised Learning:

Given: Labeled samples (x1, y1), (x2, y2), . . . (xn, yn)

Task: Find f : x 7→ ŷ , that has minimal loss L(y , ŷ)

Reinforcement Learning:

Given: Interactive environment

Task: Find interacting policy, that maximizes reward

What’s an ”Interactive environment”?

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 3 / 23

Markov-Decision-Process (MDP)

MDP = (S ,A,P,R)

- Set of states S
- Set of actions A
- Initial state distribution P0 = P[s0]
- Transition probability
P(s, a, s ′) = P[s ′|s, a]

- Reward function R : S → R

Policy π : S → A

s0
a0→r0, s1

a1→r1, s2
a2→r2, s3

r0 = 0
r1 = 0
r2 = −1

o x

x o x

o

You lost!

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 4 / 23

Markov-Decision-Process (MDP)

MDP = (S ,A,P,R)

- Set of states S
- Set of actions A
- Initial state distribution P0 = P[s0]
- Transition probability
P(s, a, s ′) = P[s ′|s, a]

- Reward function R : S → R
Policy π : S → A

s0
a0→r0, s1

a1→r1, s2
a2→r2, s3

r0 = 0
r1 = 0
r2 = −1

o x

x o x

o

You lost!

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 4 / 23

Markov-Decision-Process (MDP)

MDP = (S ,A,P,R)

- Set of states S
- Set of actions A
- Initial state distribution P0 = P[s0]
- Transition probability
P(s, a, s ′) = P[s ′|s, a]

- Reward function R : S → R
Policy π : S → A

s0
a0→r0, s1

a1→r1, s2
a2→r2, s3

r0 = 0
r1 = 0
r2 = −1

o x

x o x

o

You lost!

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 4 / 23

Markov-Decision-Process (MDP)

MDP = (S ,A,P,R)

- Set of states S
- Set of actions A
- Initial state distribution P0 = P[s0]
- Transition probability
P(s, a, s ′) = P[s ′|s, a]

- Reward function R : S → R
Policy π : S → A

s0

a0→r0, s1
a1→r1, s2

a2→r2, s3
r0 = 0
r1 = 0
r2 = −1

o x

x o x

o

You lost!

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 4 / 23

Markov-Decision-Process (MDP)

MDP = (S ,A,P,R)

- Set of states S
- Set of actions A
- Initial state distribution P0 = P[s0]
- Transition probability
P(s, a, s ′) = P[s ′|s, a]

- Reward function R : S → R
Policy π : S → A

s0
a0→

r0, s1
a1→r1, s2

a2→r2, s3
r0 = 0
r1 = 0
r2 = −1

o x

x

o x

o

You lost!

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 4 / 23

Markov-Decision-Process (MDP)

MDP = (S ,A,P,R)

- Set of states S
- Set of actions A
- Initial state distribution P0 = P[s0]
- Transition probability
P(s, a, s ′) = P[s ′|s, a]

- Reward function R : S → R
Policy π : S → A

s0
a0→r0, s1

a1→r1, s2
a2→r2, s3

r0 = 0

r1 = 0
r2 = −1

o x

x

o x

o

You lost!

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 4 / 23

Markov-Decision-Process (MDP)

MDP = (S ,A,P,R)

- Set of states S
- Set of actions A
- Initial state distribution P0 = P[s0]
- Transition probability
P(s, a, s ′) = P[s ′|s, a]

- Reward function R : S → R
Policy π : S → A

s0
a0→r0, s1

a1→

r1, s2
a2→r2, s3

r0 = 0

r1 = 0
r2 = −1

o x

x

o

x

o

You lost!

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 4 / 23

Markov-Decision-Process (MDP)

MDP = (S ,A,P,R)

- Set of states S
- Set of actions A
- Initial state distribution P0 = P[s0]
- Transition probability
P(s, a, s ′) = P[s ′|s, a]

- Reward function R : S → R
Policy π : S → A

s0
a0→r0, s1

a1→r1, s2

a2→r2, s3

r0 = 0
r1 = 0

r2 = −1

o x

x o x

o

You lost!

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 4 / 23

Markov-Decision-Process (MDP)

MDP = (S ,A,P,R)

- Set of states S
- Set of actions A
- Initial state distribution P0 = P[s0]
- Transition probability
P(s, a, s ′) = P[s ′|s, a]

- Reward function R : S → R
Policy π : S → A

s0
a0→r0, s1

a1→r1, s2
a2→

r2, s3

r0 = 0
r1 = 0

r2 = −1

o

x

x o x

o

You lost!

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 4 / 23

Markov-Decision-Process (MDP)

MDP = (S ,A,P,R)

- Set of states S
- Set of actions A
- Initial state distribution P0 = P[s0]
- Transition probability
P(s, a, s ′) = P[s ′|s, a]

- Reward function R : S → R
Policy π : S → A

s0
a0→r0, s1

a1→r1, s2
a2→r2, s3

r0 = 0
r1 = 0
r2 = −1

o x

x o x

o

You lost!

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 4 / 23

Objective

Let’s say we are in an arbitrary state st
The optimal action would maximize sum of future rewards
rt , rt+1, . . . rt+n

- But n→∞
- and ri are random variables
- that depend on future actions

Optimal policy:

maximize
π

E
[t+n∑

i=t

ri γ
(i−t)

︸ ︷︷ ︸
Rt

∣∣∣ π]

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 5 / 23

Objective

Let’s say we are in an arbitrary state st
The optimal action would maximize sum of future rewards
rt , rt+1, . . . rt+n

- But n→∞
- and ri are random variables
- that depend on future actions

Optimal policy:

maximize
π

E
[t+n∑

i=t

ri γ
(i−t)

︸ ︷︷ ︸
Rt

∣∣∣ π]

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 5 / 23

Objective

Let’s say we are in an arbitrary state st
The optimal action would maximize sum of future rewards
rt , rt+1, . . . rt+n

- But n→∞
- and ri are random variables
- that depend on future actions

Optimal policy:

maximize
π

E
[t+n∑

i=t

ri γ
(i−t)

︸ ︷︷ ︸
Rt

∣∣∣ π]

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 5 / 23

Different approaches to RL

Reinforcement Learning

Model freeModel based

Q-Learning Policy gradient
Gradient-free
approaches

Q-Learning

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 6 / 23

Different approaches to RL

Reinforcement Learning

Model freeModel based

Q-Learning Policy gradient
Gradient-free
approaches

Q-Learning

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 6 / 23

State-Action function

We define
Q∗(s, a) = max

π
E
[
Rt

∣∣∣ st = s, at = a, π
]

Q∗(s, a) = What’s the expected discounted return if we execute action a
in state s and then follow the optimal policy

By this definition max
a

Q∗(s, a) is the optimal policy

Q∗(s, a) = Es′

[
r + γ max

a′
Q∗(s ′, a′)

]
This identity is know as Bellman equation

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 7 / 23

State-Action function

We define
Q∗(s, a) = max

π
E
[
Rt

∣∣∣ st = s, at = a, π
]

Q∗(s, a) = What’s the expected discounted return if we execute action a
in state s and then follow the optimal policy

By this definition max
a

Q∗(s, a) is the optimal policy

Q∗(s, a) = Es′

[
r + γ max

a′
Q∗(s ′, a′)

]
This identity is know as Bellman equation

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 7 / 23

State-Action function

We define
Q∗(s, a) = max

π
E
[
Rt

∣∣∣ st = s, at = a, π
]

Q∗(s, a) = What’s the expected discounted return if we execute action a
in state s and then follow the optimal policy

By this definition max
a

Q∗(s, a) is the optimal policy

Q∗(s, a) = Es′

[
r + γ max

a′
Q∗(s ′, a′)

]
This identity is know as Bellman equation

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 7 / 23

State-Action function

We define
Q∗(s, a) = max

π
E
[
Rt

∣∣∣ st = s, at = a, π
]

Q∗(s, a) = What’s the expected discounted return if we execute action a
in state s and then follow the optimal policy

By this definition max
a

Q∗(s, a) is the optimal policy

Q∗(s, a) = Es′

[
r + γ max

a′
Q∗(s ′, a′)

]

This identity is know as Bellman equation

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 7 / 23

State-Action function

We define
Q∗(s, a) = max

π
E
[
Rt

∣∣∣ st = s, at = a, π
]

Q∗(s, a) = What’s the expected discounted return if we execute action a
in state s and then follow the optimal policy

By this definition max
a

Q∗(s, a) is the optimal policy

Q∗(s, a) = Es′

[
r + γ max

a′
Q∗(s ′, a′)

]
This identity is know as Bellman equation

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 7 / 23

Q-Learning

Idea: Learn State-Action function by performing iterative Bellman updates

Qi+1(s, a) := Es′

[
r + γ max

a′
Qi (s

′, a′)
]

This is known as value iteration algorithm and has been shown to
converge to Q∗ for i →∞

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 8 / 23

Q-Learning

Idea: Learn State-Action function by performing iterative Bellman updates

Qi+1(s, a) := Es′

[
r + γ max

a′
Qi (s

′, a′)
]

This is known as value iteration algorithm and has been shown to
converge to Q∗ for i →∞

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 8 / 23

Q-Learning

Idea: Learn State-Action function by performing iterative Bellman updates

Qi+1(s, a) := Es′

[
r + γ max

a′
Qi (s

′, a′)
]

This is known as value iteration algorithm and has been shown to
converge to Q∗ for i →∞

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 8 / 23

Q-Learning sampling

Learn State-Action function from samples (s, a, r , s ′) :

Q∗(s, a) ≈ r + γ max
a′

Q∗(s ′, a′)

with
π(s) = argmax

a
Q(s, a)

or ε-greedy:

π(s) =

argmax
a

Q(s, a) with probability 1− ε

a ∼ U(A) with probability ε

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 9 / 23

Q-Learning sampling

Learn State-Action function from samples (s, a, r , s ′) :

Q∗(s, a) ≈ r + γ max
a′

Q∗(s ′, a′)

with
π(s) = argmax

a
Q(s, a)

or ε-greedy:

π(s) =

argmax
a

Q(s, a) with probability 1− ε

a ∼ U(A) with probability ε

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 9 / 23

Q-Learning sampling

Learn State-Action function from samples (s, a, r , s ′) :

Q∗(s, a) ≈ r + γ max
a′

Q∗(s ′, a′)

with
π(s) = argmax

a
Q(s, a)

or ε-greedy:

π(s) =

argmax
a

Q(s, a) with probability 1− ε

a ∼ U(A) with probability ε

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 9 / 23

Q-Learning with tables

Q-Table

s a Q(s, a)
...

...
...

...
...

...

Questions?
(you need to implement such a ta-
ble as part of the homework)

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 10 / 23

Q-Learning with tables

Q-Table

s a Q(s, a)
...

...
...

...
...

...

Questions?
(you need to implement such a ta-
ble as part of the homework)

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 10 / 23

Beyond tables

Using a table to store the Q function is inefficient
- Sparse entries
- No generalization

Idea: Let’s use a ”deep” neural net Qθ(s, a) to approximate Q∗(s, a)

Mnih, Volodymyr, et al. ”Human-level control through deep reinforcement learning.”
Nature 518.7540 (2015): 529

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 11 / 23

Beyond tables

Using a table to store the Q function is inefficient
- Sparse entries
- No generalization

Idea: Let’s use a ”deep” neural net Qθ(s, a) to approximate Q∗(s, a)

Mnih, Volodymyr, et al. ”Human-level control through deep reinforcement learning.”
Nature 518.7540 (2015): 529

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 11 / 23

Beyond tables

Using a table to store the Q function is inefficient
- Sparse entries
- No generalization

Idea: Let’s use a ”deep” neural net Qθ(s, a) to approximate Q∗(s, a)

Mnih, Volodymyr, et al. ”Human-level control through deep reinforcement learning.”
Nature 518.7540 (2015): 529

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 11 / 23

Training procedure of a Deep Q-Network (DQN)

Target value: For every sample (s, a, r , s ′) compute

q̂ := r + γ max
a′

Qθ(s ′, a′)

With squared error loss:

L(Qθ, q̂) :=
(
Qθ(s, a)− q̂

)2
and gradient descent:

θi+1 := θi − α
dL

dθ

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 12 / 23

Training procedure of a Deep Q-Network (DQN)

Target value: For every sample (s, a, r , s ′) compute

q̂ := r + γ max
a′

Qθ(s ′, a′)

With squared error loss:

L(Qθ, q̂) :=
(
Qθ(s, a)− q̂

)2
and gradient descent:

θi+1 := θi − α
dL

dθ

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 12 / 23

Training procedure of a Deep Q-Network (DQN)

Target value: For every sample (s, a, r , s ′) compute

q̂ := r + γ max
a′

Qθ(s ′, a′)

With squared error loss:

L(Qθ, q̂) :=
(
Qθ(s, a)− q̂

)2
and gradient descent:

θi+1 := θi − α
dL

dθ

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 12 / 23

How to encode Q-Network?

Qθ : S × A→ R

DQN: First attempt:

Question: Why is that a bad idea?

max
a′

Qθ(s
′, a′) requires |A| evaluations of the network

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 13 / 23

How to encode Q-Network?

Qθ : S × A→ R

DQN: First attempt:

Question: Why is that a bad idea?

max
a′

Qθ(s
′, a′) requires |A| evaluations of the network

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 13 / 23

How to encode Q-Network?

Qθ : S × A→ R

DQN: First attempt:

Question: Why is that a bad idea?

max
a′

Qθ(s
′, a′) requires |A| evaluations of the network

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 13 / 23

How to encode Q-Network?

Qθ : S × A→ R

DQN: First attempt:

Question: Why is that a bad idea?

max
a′

Qθ(s
′, a′) requires |A| evaluations of the network

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 13 / 23

How to encode a Q-Network?

Qθ : S → R|A|

DQN:
Second attempt:

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 14 / 23

How to encode a Q-Network?

Qθ : S → R|A|

DQN:
Second attempt:

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 14 / 23

How to encode a Q-Network?

Qθ : S → R|A|

DQN:
Second attempt:

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 14 / 23

How to train a Q-Network?

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 15 / 23

How to train a Q-Network?

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 15 / 23

How does a Q-Network perform?

Cumulative reward over time on Tic-Tac-Toe

vs random vs smart vs smarter

Questions so far?

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 16 / 23

Experience Replay Buffer

Batch multiple (s, a, r , s ′) updates together

-
- Stabilizes learning

Store (s, a, r , s ′) in a buffer an re-use multiple times

- Increases efficiency

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 17 / 23

Experience Replay Buffer

Batch multiple (s, a, r , s ′) updates together

-
- Stabilizes learning

Store (s, a, r , s ′) in a buffer an re-use multiple times

- Increases efficiency

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 17 / 23

Experience Replay Buffer

Batch multiple (s, a, r , s ′) updates together

-
- Stabilizes learning

Store (s, a, r , s ′) in a buffer an re-use multiple times

- Increases efficiency

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 17 / 23

Advanced Methods

Method Included in
Experience Replay Buffer DQN (2013/2015)

Double Q-Learning

Rainbow (2017)

Prioritized Experience Replay
Duelling Q networks
Multistep-Learning
Distributional DQN

Noisy Nets

Distributed Prioritized Experience Replay Ape-X (2018)

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 18 / 23

Performance

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 19 / 23

Performance

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 19 / 23

Conclusion

Q-Learning with tables: Qi+1(s, a) := r + γ max
a′

Qi (s
′, a′)

- Poor scaling to large action/state spaces
- No generalization

Solution: Approximation with neural net

- No convergence guarantee to Q∗

Active research on improving Q-Learning

- e.g Experience Replay Buffer

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 20 / 23

	Reinforcement Learning
	Definitions
	Different approaches

	Q-Learning
	With tables
	Deep-Q-Networks (DQN)

	Advanced methods

