Machine Learning and
Computer Vision Group il RUSTRIA

Institute of Science and Technology

Deep Learning with TensorFlow
http://cvml.ist.ac.at/courses/DLWT_W18

Lecture 10:
Deep Q-Learning

Q-Learning - Deep Learning with TensorFlow (DLWT)

'18

Mathias Lechner

IST Austria

mathias.lechner@ist.ac.at

January 20, 2019

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 1/23

Overview

© Reinforcement Learning
@ Definitions
o Different approaches

© Q-Learning
o With tables
@ Deep-Q-Networks (DQN)

© Advanced methods

2/23

Mathias Lechner (IST Austria) Q-Learning January 20, 2019

Types of Machine Learning

Supervised Learning:
Given: Labeled samples (x1,y1), (x2,¥2), - - - (Xn, ¥n)
Task: Find f : x +— y, that has minimal loss L(y,)

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 3/23

Types of Machine Learning

Supervised Learning:
Given: Labeled samples (x1,y1), (x2,¥2), - - - (Xn, ¥n)
Task: Find f : x +— y, that has minimal loss L(y,)

Reinforcement Learning:
Given: Interactive environment

Task: Find interacting policy, that maximizes reward

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 3/23

Types of Machine Learning

Supervised Learning:
Given: Labeled samples (x1,y1), (x2,¥2), - - - (Xn, ¥n)
Task: Find f : x +— y, that has minimal loss L(y,)

Reinforcement Learning:
Given: Interactive environment

Task: Find interacting policy, that maximizes reward

What's an "Interactive environment”?

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 3/23

Markov-Decision-Process (MDP)

e MDP = (S,A, P, R)
- Set of states S
- Set of actions A

- Initial state distribution Py = P[sp]

- Transition probability
P(s,a,s’) = P[s'|s, a]

- Reward function R: S - R

Mathias Lechner (IST Austria)

Q-Learning

January 20, 2019

4/

23

Markov-Decision-Process (MDP)

o MDP = (S,A,P,R)

Set of states S

Set of actions A

Initial state distribution Py = IP[sp]
Transition probability

P(s,a,s") =P[s|s, a]

Reward function R: S — R

@ Policynm:5S— A

Mathias Lechner (IST Austria) Q-Learning

January 20, 2019

4/

23

Markov-Decision-Process (MDP)

e MDP = (S,A,P,R) i
state = env.reset()
- Set of states S for range(1000) :
- Set of actions A action = policy(state)
- Initial state distribution Py = P[sp] state, reward, done, info \
- Transition probability = env.step(action)
P(s,a,s") =P[s|s, g
- Reward function R: S - R

@ Policynm:5S— A

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 4/23

Markov-Decision-Process (MDP)

e MDP = (S,A,P,R) i
state = env.reset()
- Set of states S for range(1000) :
- Set of actions A action = policy(state)
- Initial state distribution Py = P[sp] state, reward, done, info \
- Transition probability = env.step(action)
P(s,a,s") =P[s|s, g
- Reward function R: S - R

@ Policynm:5S— A

S0

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 4/23

Markov-Decision-Process (MDP)

e MDP = (S,A,P,R) i
state = env.reset()
- Set of states S for range(1000) :
- Set of actions A action = policy(state)
- Initial state distribution Py = P[sp] state, reward, done, info \
- Transition probability = env.step(action)
P(s,a,s") =P[s|s, g
- Reward function R: S - R

@ Policynm:5S— A

503

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 4/23

Markov-Decision-Process (MDP)

e MDP = (S,A,P,R) i
state = env.reset()

- Set of states S for range(1000) :

- Set of actions A action = policy(state)

- Initial state distribution Py = P[sp] state, reward, done, info \

- Transition probability = env.step(action)
P(s,a,s") =P[s|s, g
Reward function R: S — R

@ Policynm:5S— A

a
50$r0,51
= 0

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 4/23

Markov-Decision-Process (MDP)

e MDP = (S,A,P,R) i
state = env.reset()

- Set of states S for range(1000) :

- Set of actions A action = policy(state)

- Initial state distribution Py = P[sp] state, reward, done, info \

- Transition probability = env.step(action)
P(s,a,s") =P[s|s, g
Reward function R: S — R

@ Policynm:5S— A

soﬂro,sli

r0:0

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 4/23

Markov-Decision-Process (MDP)

e MDP = (S,A,P,R) i
state = env.reset()

- Set of states S for range(1000) :

- Set of actions A action = policy(state)

- Initial state distribution Py = P[sp] state, reward, done, info \

- Transition probability = env.step(action)
P(s,a,s") =P[s|s, g
Reward function R: S — R

@ Policynm:5S— A

a a

504r0,514r1,52
= 0
r]. = 0 o

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 4/23

Markov-Decision-Process (MDP)

e MDP = (S,A,P,R) i
state = env.reset()

- Set of states S for range(1000) :

- Set of actions A action = policy(state)

- Initial state distribution Py = P[sp] state, reward, done, info \

- Transition probability = env.step(action)
P(s,a,s") =P[s|s, g
Reward function R: S — R

@ Policynm:5S— A

Soﬂro,slirl,@g X
=0 X | 0| X
r]. = 0 o

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 4/23

Markov-Decision-Process (MDP)

e MDP = (S,A,P,R) i
state = env.reset()

- Set of states S for range(1000) :

- Set of actions A action = policy(state)

- Initial state distribution Py = P[sp] state, reward, done, info \

- Transition probability = env.step(action)
P(s,a,s") =P[s|s, g
Reward function R: S — R

@ Policynm:5S— A

503r0,513r1,523r2,53 o] X
n = 0 X|0
r]. = 0 o
rp=-1 You lost!

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 4/23

Objective

@ Let’s say we are in an arbitrary state s;

@ The optimal action would maximize sum of future rewards
ey re41, - -« Fetn

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 5/23

Objective

@ Let’s say we are in an arbitrary state s;

@ The optimal action would maximize sum of future rewards
res re415 - - - Fen
- Butn—
- and r; are random variables
- that depend on future actions

Mathias Lechner (IST Austria) Q-Learning January 20, 2019

jective

@ Let’s say we are in an arbitrary state s;

@ The optimal action would maximize sum of future rewards
res re415 - - - Fen
- Butn—
- and r; are random variables
- that depend on future actions

Optimal policy:
t+n]
maxiTrrnize E[Z ri 401 ‘ 7T:|
i=t

Re

Mathias Lechner (IST Austria) Q-Learning January 20, 2019

Different approaches to RL

Reinforcement Learning

N

Model based Model free

N

Q-Learning Policy gradient Gradient-free

approaches

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 6/23

Different approaches to RL

Reinforcement Learning

7N

Model based Model free

/e

Q-Learning Policy gradient Gradient-free

approaches

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 6/23

State-Action function

We define
Q*(s,a) = max]E[Rt

St = S, at :a,’ﬂ':|

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 7/23

State-Action function

We define
Q*(s,a) = max]E[Rt

St = S, at :a,’ﬂ':|

Q*(s,a) = What's the expected discounted return if we execute action a
in state s and then follow the optimal policy

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 7/23

State-Action function

We define
Q*(s,a) = max]E[Rt

St = S, at :a,’ﬂ':|

Q*(s,a) = What's the expected discounted return if we execute action a
in state s and then follow the optimal policy

By this definition max Q*(s, a) is the optimal policy
a

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 7/23

State-Action function

We define
Q*(s,a) = max]E[Rt

St = S, at :a,’ﬂ':|

Q*(s,a) = What's the expected discounted return if we execute action a
in state s and then follow the optimal policy

By this definition max Q*(s, a) is the optimal policy
a

Q*(s,a) =Es [r +7 max Q(s, a')}

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 7/23

State-Action function

We define
Q*(s,a) = max]E[Rt

St = S, at :a,’ﬂ':|

Q*(s,a) = What's the expected discounted return if we execute action a
in state s and then follow the optimal policy

By this definition max Q*(s, a) is the optimal policy
a

Q*(s,a) =Es [r +7 max Q(s, a')}

This identity is know as Bellman equation

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 7/23

Idea: Learn State-Action function by performing iterative Bellman updates

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 8/23

Idea: Learn State-Action function by performing iterative Bellman updates

Qita(s,a) == Eo |r + 7 max Qi(s',)
a

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 8/23

Idea: Learn State-Action function by performing iterative Bellman updates
Qit1(s, a) =Eg [r +7 max Qi(s',)

This is known as value iteration algorithm and has been shown to
converge to Q* for i — oo

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 8/23

Q-Learning sampling

Learn State-Action function from samples (s, a,r,s’) :

Q*(s,a) ~ r +v max Q*(s',a)
a/

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 9/23

Q-Learning sampling

Learn State-Action function from samples (s, a,r,s’) :
~ o
Q'(s.a) = r+7 max Q(s',2)

with
7(s) = argmax Q(s, a)
a

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 9/23

Q-Learning sampling

Learn State-Action function from samples (s, a, r,s’) :
~ o
Q'(s.a) = r+7 max Q(s',2)

with
7(s) = argmax Q(s, a)
a

or e-greedy:

argmax Q(s,a) with probability 1 — ¢
71'(5) = a
a~ U(A) with probability &

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 9/23

Q-Learning with tables

Q-Table
‘s‘a‘Q(s,a)‘

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 10/23

Q-Learning with tables

-Tabl
Q-Table Questions?

|s|a| Qs a) | (you need to implement such a ta-
S : ble as part of the homework)

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 10/23

Beyond tables

@ Using a table to store the @ function is inefficient
- Sparse entries
- No generalization

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 11/23

Beyond tables

@ Using a table to store the @ function is inefficient
- Sparse entries
- No generalization

@ Idea: Let's use a "deep” neural net Qy(s, a) to approximate Q*(s, a)

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 11/23

Beyond tables

@ Using a table to store the @ function is inefficient
- Sparse entries
- No generalization

@ Idea: Let's use a "deep” neural net Qy(s, a) to approximate Q*(s, a)

nature

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning.”
Nature 518.7540 (2015): 529

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 11/23

Training procedure of a Deep Q-Network (DQN)

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 12/23

Training procedure of a Deep Q-Network (DQN)

Target value: For every sample (s, a, r,s’) compute

G :=r—+v max Q(s’,a)
a/

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 12/23

Training procedure of a Deep Q-Network (DQN)

Target value: For every sample (s, a, r,s’) compute
§:= 1+ max Qy(s, 4)
a
With squared error loss:

L(Q.4) = (Quls.0) ~4)

and gradient descent:
dL

9,‘ = 9,‘ — 00—
+1 ad@

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 12/23

How to encode Q-Network?

Q@ZSXA*)R

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 13 /23

How to encode Q-Network?

DQN: First attempt:

Mathias Lechner (IST Austria)

s_input tf.placeholder(tf.float32,shape=[state_dim])
a input tf.placeholder(tf.float32,shape=[action dim])

x = tf.concat([s_input,a_input],axis=0)
hl = tf.layers.dense(x,units=100,activation=tf.nn.tanh)
q_prediction = tf.layers.dense(hl,units=1)

Q-Learning January 20, 2019 13/23

How to encode Q-Network?

DQN: First attempt:

s_input tf.placeholder(tf.float32,shape=[state_dim])
a input tf.placeholder(tf.float32,shape=[action dim])

x = tf.concat([s_input,a_input],axis=0)
hl = tf.layers.dense(x,units=100,activation=tf.nn.tanh)
q_prediction = tf.layers.dense(hl,units=1)

Question: Why is that a bad idea?

Mathias Lechner (IST Austria)

Q-Learning January 20, 2019 13/23

How to encode Q-Network?

(Q@ SxA—-R

[)CQPJ: First attempt: s_input tf.placeholder(tf.float32,shape=[state_dim])
a input tf.placeholder(tf.float32,shape=[action dim])

x = tf.concat([s_input,a_input],axis=0)
hl = tf.layers.dense(x,units=100,activation=tf.nn.tanh)
q_prediction = tf.layers.dense(hl,units=1)

Question: Why is that a bad idea?

max Qy(s’, a’) requires |A| evaluations of the network
a/

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 13/23

How to encode a Q-Network?

Qo :S — RA

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 14 /23

How to encode a Q-Network?

A
Q: S — RA
DQN s _input = tf.placeholder(tf.float32,shape=[state dim])
. hl = tf.layers.dense(s_input,units=100,activation=tf.nn.tanh)
Second attempt' q_prediction = tf.layers.dense(hl,units=num_of possible actions)

January 20, 2019 14 /23

Mathias Lechner (IST Austria) Q-Learning

How to encode a Q-Network?

Qo :S — RA

DQN s _input = tf.placeholder(tf.float32,shape=[state dim])
Second attempt: hl = tf.layers.dense(s_input,units=100,activation=tf.nn.tanh)

q_prediction = tf.layers.dense(hl,units=num_of possible actions)

“
<
5
8
-1
3
2
o3
g
g

Convolution Convolution Fully connected

]

=
e
P-oez-o

dadoban

m

codobbh ddtobbh_dégobhn_ détobbn

o

‘o] o
of] o

cesecssccssecsscscecs

ARERARNENARRAAE _)"
olololololololol”

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 14 /23

How to train a Q-Network?

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 15 /23

How to train a Q-Network?

target q = tf.placeholder(tf.float32)
target_index = tf.placeholder(tf.int32)
loss = tf.square(target q - g prediction) \
* tf.one_hot(target_index,num_of_possible_actions)
update step = tf.train.GradientDescentOptimizer(0.001).minimize(loss)

updateQ(s,a,r,s_prime):

g _next = tf session.run(q_prediction,{s input:s prime})

q_max = np.max(q_next)

r+ 0.99 * g _max

tf session.run(update step,{s input:s,target index:a,target q:q})
state = env.reset()
for _ range(1600) :

action = policy(state)

next state, reward, done, info = env.step(action)

updateQ(state,action, reward,next state)

state = next state

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 15/23

How does a Q-Network perform?

Cumulative reward over time on Tic-Tac-Toe

Mathias Lechner (IST Austria)

Questions so far?

Q-Learning

vs random VS smart VS smarter
6000 4000
1000
4000
2000 500
2000
0
0 0
0 20000 40000 60000 0 20000 40000 60000 0 20000 40000 60000 80000
Moves Moves Moves

January 20, 2019

Experience Replay Buffer

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 17 /23

Experience Replay Buffer

e Batch multiple (s, a, r, s’) updates together

s_input tf.placeholder(tf.float32,shape=[state dim])

s_input tf.placeholder(tf.float32,shape=| ,state dim])

- Stabilizes learning

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 17 /23

Experience Replay Buffer

e Batch multiple (s, a, r, s’) updates together

s_input tf.placeholder(tf.float32,shape=[state dim])

s_input tf.placeholder(tf.float32,shape=| ,state dim])

- Stabilizes learning
@ Store (s,a,r,s’) in a buffer an re-use multiple times
- Increases efficiency

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 17/23

Advanced Methods

Method Included in
Experience Replay Buffer DQN (2013/2015)
Double Q-Learning
Prioritized Experience Replay
Duelling Q networks
Multistep-Learning
Distributional DQN
Noisy Nets
Distributed Prioritized Experience Replay Ape-X (2018)

Rainbow (2017)

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 18/23

DQN
— DDQN
— Prioritized DDQN
— Dueling DDQN
200% - A3C

Distributional DQN
— Noisy DQN
== Rainbow

100%

Median human-normalized score

4 L |
7 44 100 200
Millions of frames

Mathias Lechner (IST Austria) Q-Learnin

January 20, 2019

19

/23

Performance

DQN 450%
— DDQN
— Prioritized DDQN
— Dueling DDQN
200% - A3C

Distributional DQN
— Noisy DQN
== Rainbow

(]
Ape-X DQN (120hrs)

400% °
Ape-X DQN (70hrs)

®
350% Ape-X DQN (20hrs)

300%
100% -

Median human-normalized score

250%

. Rainbow
200%
0% a1 100 700 o 0L
Millions of frames 150% Prioritized DQN
bl (v
——— 100%
Gorila .
DQN
50% L
0 50 100 150 200 250 300

Training Time (Hours)

Mathias Lechner (IST Austria) Q-Learning January 20, 2019

Conclusion

@ Q-Learning with tables: Qi1 1(s,a) :=r+~ max Qi(s',d)
- Poor scaling to large action/state spaces
- No generalization
@ Solution: Approximation with neural net
- No convergence guarantee to Q*
@ Active research on improving Q-Learning
- e.g Experience Replay Buffer

Mathias Lechner (IST Austria) Q-Learning January 20, 2019 20/23

	Reinforcement Learning
	Definitions
	Different approaches

	Q-Learning
	With tables
	Deep-Q-Networks (DQN)

	Advanced methods

