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Types of Machine Learning

Supervised Learning:

Given: Labeled samples (x1, y1), (x2, y2), . . . (xn, yn)

Task: Find f : x 7→ ŷ , that has minimal loss L(y , ŷ)

Reinforcement Learning:

Given: Interactive environment

Task: Find interacting policy, that maximizes reward

What’s an ”Interactive environment”?
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Markov-Decision-Process (MDP)

MDP = (S ,A,P,R)

- Set of states S
- Set of actions A
- Initial state distribution P0 = P[s0]
- Transition probability
P(s, a, s ′) = P[s ′|s, a]

- Reward function R : S → R

Policy π : S → A

s0
a0→r0, s1

a1→r1, s2
a2→r2, s3

r0 = 0
r1 = 0
r2 = −1

o x

x o x

o

You lost!
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Objective

Let’s say we are in an arbitrary state st
The optimal action would maximize sum of future rewards
rt , rt+1, . . . rt+n

- But n→∞
- and ri are random variables
- that depend on future actions

Optimal policy:

maximize
π

E
[ t+n∑

i=t

ri γ
(i−t)

︸ ︷︷ ︸
Rt

∣∣∣ π]
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Different approaches to RL

Reinforcement Learning

Model freeModel based

Q-Learning Policy gradient
Gradient-free
approaches

Q-Learning
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State-Action function

We define
Q∗(s, a) = max

π
E
[
Rt

∣∣∣ st = s, at = a, π
]

Q∗(s, a) = What’s the expected discounted return if we execute action a
in state s and then follow the optimal policy

By this definition max
a

Q∗(s, a) is the optimal policy

Q∗(s, a) = Es′

[
r + γ max

a′
Q∗(s ′, a′)

]
This identity is know as Bellman equation
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Q-Learning

Idea: Learn State-Action function by performing iterative Bellman updates

Qi+1(s, a) := Es′

[
r + γ max

a′
Qi (s

′, a′)
]

This is known as value iteration algorithm and has been shown to
converge to Q∗ for i →∞
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Q-Learning sampling

Learn State-Action function from samples (s, a, r , s ′) :

Q∗(s, a) ≈ r + γ max
a′

Q∗(s ′, a′)

with
π(s) = argmax

a
Q(s, a)

or ε-greedy:

π(s) =

argmax
a

Q(s, a) with probability 1− ε

a ∼ U(A) with probability ε
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Q-Learning with tables

Q-Table

s a Q(s, a)
...

...
...

...
...

...

Questions?
(you need to implement such a ta-
ble as part of the homework )
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Beyond tables

Using a table to store the Q function is inefficient
- Sparse entries
- No generalization

Idea: Let’s use a ”deep” neural net Qθ(s, a) to approximate Q∗(s, a)

Mnih, Volodymyr, et al. ”Human-level control through deep reinforcement learning.”
Nature 518.7540 (2015): 529
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Training procedure of a Deep Q-Network (DQN)

Target value: For every sample (s, a, r , s ′) compute

q̂ := r + γ max
a′

Qθ(s ′, a′)

With squared error loss:

L(Qθ, q̂) :=
(
Qθ(s, a)− q̂

)2
and gradient descent:

θi+1 := θi − α
dL

dθ
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How to encode Q-Network?

Qθ : S × A→ R

DQN: First attempt:

Question: Why is that a bad idea?

max
a′

Qθ(s
′, a′) requires |A| evaluations of the network
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How to encode a Q-Network?

Qθ : S → R|A|

DQN:
Second attempt:
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How to train a Q-Network?
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How does a Q-Network perform?

Cumulative reward over time on Tic-Tac-Toe

vs random vs smart vs smarter

Questions so far?
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Experience Replay Buffer

Batch multiple (s, a, r , s ′) updates together

-
- Stabilizes learning

Store (s, a, r , s ′) in a buffer an re-use multiple times

- Increases efficiency
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Advanced Methods

Method Included in
Experience Replay Buffer DQN (2013/2015)

Double Q-Learning

Rainbow (2017)

Prioritized Experience Replay
Duelling Q networks
Multistep-Learning
Distributional DQN

Noisy Nets

Distributed Prioritized Experience Replay Ape-X (2018)
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Performance
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Conclusion

Q-Learning with tables: Qi+1(s, a) := r + γ max
a′

Qi (s
′, a′)

- Poor scaling to large action/state spaces
- No generalization

Solution: Approximation with neural net

- No convergence guarantee to Q∗

Active research on improving Q-Learning

- e.g Experience Replay Buffer
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