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How to meaningfully represent text?
● Most basic unit of text encoding is a character (ascii/unicode)
● A character in itself carries very little meaning

‘H’ , ‘G’ , ‘R’
● Words are the fundamental semantic and syntactic unit in language

‘Help’, ‘garden’, ‘running’
● In machine learning, we usually represent quantities as vectors (or 

tensors). Strings are difficult to operate on.
● How can we have a vector for each word?



One - Hot vectors
● Only one entry is 1, rest are all 0s.

● Vector length = size of vocabulary (can be ~1,000,000 !)
● They are all orthogonal, no measure of similarity

● Can we do better?

Vocabulary size (|V|)



The Idea

Represent words as dense 
vectors that capture 
semantic and syntactic 
similarity.

That is, similar words 
should have similar 
vectors.





Distributional Semantics

● Guiding dogma of distributional semantics:

“You shall know a word by the company it keeps”
(J. R. Firth 1957)

● Use context information to learn meaningful vectors



Transfer Learning

● We can’t have a completely supervised way of training them, since 
we don’t actually know what these vectors should look like.

● So we train for a “proxy” task and use the representations for the 
actual task

● ‘Actual’ NLP tasks:
○ Machine Translation
○ Summarization
○ Text Classification
○ Question Answering
○ ...



Methods

1. Skip-gram (Mikolov et al. 2013)

Predict context words from center word

2. CBOW: Continuous Bag of Words
(Mikolov et al. 2013)

Predict center word from context words

3. GloVe (Socher et al. 2014)

Incorporate co-occurrence counts into 

training

4. FastText (Bojanowski, et al. 2016)

Uses morphological elements of words



Remember!
● We are not actually interested in the “fake” 

tasks that we are optimizing for

● What we really care about are the 
intermediate representations that are learnt 
in the process 

● Also known as self-supervised learning as 
we are using implicit labels derived from the 
input data itself



Skip-gram Training Data



Skip-gram Architecture



Objective Function
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Upgrades! (Mikolov et al. 2013b)

1. Treating common word pairs or phrases as single “words” in their 
model. Example: New York

2. Subsampling frequent words to decrease the number of training 
examples. Probability of getting discarded:

3. Modifying the optimization objective with a technique they called 
“Negative Sampling”, which causes each training sample to update 
only a small percentage of the model’s weights.



Negative Sampling
● Softmax is too costly to compute
● So we convert the problem to binary classification of whether a given 

(word, context_word) pair belongs to the dataset, D

● Has a trivial solution if                         = 1 for all (w ,c)
● So we randomly sample some negative examples that need not be in 

the text



Negative Sampling (contd.)

● D’ is constructed by randomly sampling c’ from the following distribution

● There are k (5-15) negative samples for each (w, c) \in D



Skip-gram Summary

● The model needs to predict similar outputs for words that 
occur in similar contexts
○ This can be done by making their vectors similar
○ For example, intelligent and smart would appear in similar 

contexts
○ Similarly for contexts like “There are 11 players in a team”, 

and “Basketball is played by five members”...

● CBOW is just the opposite: predict center word from context 
words



A slightly different approach: co-occurrence

● Construct 
co-occurrence matrix

● Reduce with SVD 
(patented for IR in 
1988)

● Example corpus:
○ I like deep. learning
○ I like NLP.
○ I enjoy flying.



GloVe (2014) - Combining both methods

● Pij  is the co-occurrence count of wi 
and wj

● f(Pij) is used to give less weight to 
infrequently occurring pairs

● Faster to train as it does not makes 
multiple passes through the corpus



Evaluation

Intrinsic

● Analyse the word vectors themselves to see what they represent
● For instance, Analogy task, similarity task, clustering

Extrinsic

● Use the generated representation on actual NLP tasks
● See which embedding does best on Part-of-speech tagging, machine 

translation etc.



Analogy Task







Other cool applications



Other cool applications



Implementation

● Pre-trained vectors available for all these methods!

○ Word2Vec (Skip-gram)

https://code.google.com/archive/p/word2vec/

○ GloVe

https://nlp.stanford.edu/projects/glove/

○ FastText (also for 156 other languages!)

https://fasttext.cc/docs/en/english-vectors.html

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/docs/en/english-vectors.html


TensorFlow Code
embeddings = tf.Variable(tf.random_uniform([vocabulary_size,embedding_size], 
-1.0, 1.0))
nce_weights = tf.Variable(tf.truncated_normal([vocabulary_size, 
embedding_size],stddev=1.0 / math.sqrt(embedding_size)))
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))

# Placeholders for inputs
train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])

# Embedding helper function:
embed = tf.nn.embedding_lookup(embeddings, train_inputs)



TensorFlow Code (Continued)
# Compute the NCE loss, using a sample of the negative labels each time.
loss = tf.reduce_mean(
  tf.nn.nce_loss(weights=nce_weights,
                 biases=nce_biases,
                 labels=train_labels,
                 inputs=embed,
                 num_sampled=num_sampled,
                 num_classes=vocabulary_size))

# We use the SGD optimizer.
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0).minimize(loss)

with tf.Session as session:
  for inputs, labels in generate_batch(...):
    feed_dict = {train_inputs: inputs, train_labels: labels}
    _, cur_loss = session.run([optimizer, loss], feed_dict=feed_dict)
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TensorBoard Demo
Adapted from:

http://www.cse.chalmers.se/~richajo/dit865/files/Word%20embeddings%20in%20Gensim.html

and

https://github.com/sudharsan13296/visualise-word2vec

http://www.cse.chalmers.se/~richajo/dit865/files/Word%20embeddings%20in%20Gensim.html
https://github.com/sudharsan13296/visualise-word2vec


Questions?


