
Machine Learning and
Computer Vision Group

Deep Learning with TensorFlow
http://cvml.ist.ac.at/courses/DLWT_W18

Lecture 4:
Word Vectors

Word Vectors
Learning Representations of Words and Phrases

Divyansh Gupta
Deep Learning with TensorFlow
2018-12-10

How to meaningfully represent text?
● Most basic unit of text encoding is a character (ascii/unicode)
● A character in itself carries very little meaning

‘H’ , ‘G’ , ‘R’
● Words are the fundamental semantic and syntactic unit in language

‘Help’, ‘garden’, ‘running’
● In machine learning, we usually represent quantities as vectors (or

tensors). Strings are difficult to operate on.
● How can we have a vector for each word?

One - Hot vectors
● Only one entry is 1, rest are all 0s.

● Vector length = size of vocabulary (can be ~1,000,000 !)
● They are all orthogonal, no measure of similarity

● Can we do better?

Vocabulary size (|V|)

The Idea

Represent words as dense
vectors that capture
semantic and syntactic
similarity.

That is, similar words
should have similar
vectors.

Distributional Semantics

● Guiding dogma of distributional semantics:

“You shall know a word by the company it keeps”
(J. R. Firth 1957)

● Use context information to learn meaningful vectors

Transfer Learning

● We can’t have a completely supervised way of training them, since
we don’t actually know what these vectors should look like.

● So we train for a “proxy” task and use the representations for the
actual task

● ‘Actual’ NLP tasks:
○ Machine Translation
○ Summarization
○ Text Classification
○ Question Answering
○ ...

Methods

1. Skip-gram (Mikolov et al. 2013)

Predict context words from center word

2. CBOW: Continuous Bag of Words
(Mikolov et al. 2013)

Predict center word from context words

3. GloVe (Socher et al. 2014)

Incorporate co-occurrence counts into

training

4. FastText (Bojanowski, et al. 2016)

Uses morphological elements of words

Remember!
● We are not actually interested in the “fake”

tasks that we are optimizing for

● What we really care about are the
intermediate representations that are learnt
in the process

● Also known as self-supervised learning as
we are using implicit labels derived from the
input data itself

Skip-gram Training Data

Skip-gram Architecture

Objective Function

Input vector (v
w

) Output vector (u
c

)

Upgrades! (Mikolov et al. 2013b)

1. Treating common word pairs or phrases as single “words” in their
model. Example: New York

2. Subsampling frequent words to decrease the number of training
examples. Probability of getting discarded:

3. Modifying the optimization objective with a technique they called
“Negative Sampling”, which causes each training sample to update
only a small percentage of the model’s weights.

Negative Sampling
● Softmax is too costly to compute
● So we convert the problem to binary classification of whether a given

(word, context_word) pair belongs to the dataset, D

● Has a trivial solution if = 1 for all (w ,c)
● So we randomly sample some negative examples that need not be in

the text

Negative Sampling (contd.)

● D’ is constructed by randomly sampling c’ from the following distribution

● There are k (5-15) negative samples for each (w, c) \in D

Skip-gram Summary

● The model needs to predict similar outputs for words that
occur in similar contexts
○ This can be done by making their vectors similar
○ For example, intelligent and smart would appear in similar

contexts
○ Similarly for contexts like “There are 11 players in a team”,

and “Basketball is played by five members”...

● CBOW is just the opposite: predict center word from context
words

A slightly different approach: co-occurrence

● Construct
co-occurrence matrix

● Reduce with SVD
(patented for IR in
1988)

● Example corpus:
○ I like deep. learning
○ I like NLP.
○ I enjoy flying.

GloVe (2014) - Combining both methods

● Pij is the co-occurrence count of wi
and wj

● f(Pij) is used to give less weight to
infrequently occurring pairs

● Faster to train as it does not makes
multiple passes through the corpus

Evaluation

Intrinsic

● Analyse the word vectors themselves to see what they represent
● For instance, Analogy task, similarity task, clustering

Extrinsic

● Use the generated representation on actual NLP tasks
● See which embedding does best on Part-of-speech tagging, machine

translation etc.

Analogy Task

Other cool applications

Other cool applications

Implementation

● Pre-trained vectors available for all these methods!

○ Word2Vec (Skip-gram)

https://code.google.com/archive/p/word2vec/

○ GloVe

https://nlp.stanford.edu/projects/glove/

○ FastText (also for 156 other languages!)

https://fasttext.cc/docs/en/english-vectors.html

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/docs/en/english-vectors.html

TensorFlow Code
embeddings = tf.Variable(tf.random_uniform([vocabulary_size,embedding_size],
-1.0, 1.0))
nce_weights = tf.Variable(tf.truncated_normal([vocabulary_size,
embedding_size],stddev=1.0 / math.sqrt(embedding_size)))
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))

Placeholders for inputs
train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])

Embedding helper function:
embed = tf.nn.embedding_lookup(embeddings, train_inputs)

TensorFlow Code (Continued)
Compute the NCE loss, using a sample of the negative labels each time.
loss = tf.reduce_mean(
 tf.nn.nce_loss(weights=nce_weights,
 biases=nce_biases,
 labels=train_labels,
 inputs=embed,
 num_sampled=num_sampled,
 num_classes=vocabulary_size))

We use the SGD optimizer.
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0).minimize(loss)

with tf.Session as session:
 for inputs, labels in generate_batch(...):
 feed_dict = {train_inputs: inputs, train_labels: labels}
 _, cur_loss = session.run([optimizer, loss], feed_dict=feed_dict)

References

1. Stanford NLP CS224n -
http://web.stanford.edu/class/cs224n/syllabus.html

2. Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
Estimation of Word Representations in Vector Space. In Proceedings
of Workshop at ICLR, 2013.

3. Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey
Dean. Distributed Representations of Words and Phrases and their
Compositionality. In Proceedings of NIPS, 2013.

4. McCormick, C. (2016, April 19). Word2Vec Tutorial - The Skip-Gram
Model. Retrieved from http://www.mccormickml.com

http://web.stanford.edu/class/cs224n/syllabus.html

TensorBoard Demo
Adapted from:

http://www.cse.chalmers.se/~richajo/dit865/files/Word%20embeddings%20in%20Gensim.html

and

https://github.com/sudharsan13296/visualise-word2vec

http://www.cse.chalmers.se/~richajo/dit865/files/Word%20embeddings%20in%20Gensim.html
https://github.com/sudharsan13296/visualise-word2vec

Questions?

