Machine Learning and Computer Vision Group

Deep Learning with TensorFlow

http://cvml.ist.ac.at/courses/DLWT_W18

Lecture 4: Word Vectors

Word Vectors

Learning Representations of Words and Phrases

Divyansh Gupta
Deep Learning with TensorFlow
2018-12-10

How to meaningfully represent text?

- Most basic unit of text encoding is a character (ascii/unicode)
- A character in itself carries very little meaning (H', 'G', 'R')
- In machine learning, we usually represent quantities as vectors (or tensors). Strings are difficult to operate on.
- How can we have a vector for each word?

One - Hot vectors

Only one entry is 1, rest are all 0s.

- Vector length = size of vocabulary (can be ~1,000,000!)
- They are all orthogonal, no measure of similarity

```
motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0]
```

Can we do better?

Represent words as dense vectors that capture semantic and syntactic similarity.

That is, similar words should have similar vectors.

Distributional Semantics

Guiding dogma of distributional semantics:

"You shall know a word by the company it keeps"

(J. R. Firth 1957)

Use context information to learn meaningful vectors

```
...government debt problems turning into banking crises as happened in 2009...
...saying that Europe needs unified banking regulation to replace the hodgepodge...
...India has just given its banking system a shot in the arm...
```

Transfer Learning

 We can't have a completely supervised way of training them, since we don't actually know what these vectors should look like.

So we train for a "proxy" task and use the representations for the

actual task

'Actual' NLP tasks:

- Machine Translation
- Summarization
- Text Classification
- Question Answering

0 ...

Methods

1. **Skip-gram** (Mikolov et al. 2013)

Predict context words from center word

2. **CBOW:** Continuous Bag of Words (Mikolov et al. 2013)

Predict center word from context words

3. GloVe (Socher et al. 2014)
Incorporate co-occurrence counts into training

FastText (Bojanowski, et al. 2016)
 Uses morphological elements of words

Remember!

- We are not actually interested in the "fake" tasks that we are optimizing for
- What we really care about are the intermediate representations that are learnt in the process
- Also known as self-supervised learning as we are using implicit labels derived from the input data itself

Skip-gram Training Data

Skip-gram Architecture

Hidden Layer Weight Matrix

$$\begin{bmatrix} 17 & 24 & 1 \\ 23 & 5 & 7 \\ 4 & 6 & 13 \\ 10 & 12 & 19 \\ 11 & 18 & 25 \end{bmatrix} = \begin{bmatrix} 10 & 12 & 19 \end{bmatrix}$$

Objective Function

$$J(\theta) = \frac{1}{|\text{Text}|} \sum_{w \in \text{Text}} \sum_{c \in C(w)} \log P(c|w; \theta) \qquad P(c|w; \theta) = \frac{\exp(u_c^T v_w)}{\sum_{c' \in V} \exp(u_{c'}^T v_w)}$$

Upgrades! (Mikolov et al. 2013b)

- Treating common word pairs or phrases as single "words" in their model. Example: New York
- Subsampling frequent words to decrease the number of training examples. Probability of getting discarded:

$$P(w_i) = 1 - \sqrt{\frac{t}{f(w_i)}}$$

3. Modifying the optimization objective with a technique they called "Negative Sampling", which causes each training sample to update only a small percentage of the model's weights.

Negative Sampling

- Softmax is too costly to compute
- So we convert the problem to binary classification of whether a given (word, context_word) pair belongs to the dataset, D

$$J(\theta) = \sum_{(w,c)\in D} P(D=1|w,c;\theta) = \sum_{(w,c)\in D} \log \frac{1}{1 + exp(-u_c \cdot v_w)}$$

- Has a trivial solution if $P(D=1|w,c;\theta)=1$ for all (w ,c)
- So we randomly sample some negative examples that need not be in the text

$$J(\theta) = \sum_{(w,c)\in D} P(D=1|w,c;\theta) + \sum_{(w,c')\in D'} P(D=0|w,c';\theta)$$

Negative Sampling (contd.)

$$J(\theta) = \sum_{(w,c)\in D} P(D=1|w,c;\theta) + \sum_{(w,c')\in D'} P(D=0|w,c';\theta)$$

$$= \sum_{(w,c)\in D} \log \frac{1}{1 + exp(-u_c \cdot v_w)} + \sum_{(w,c')\in D'} \log \frac{1}{1 + exp(u_{c'} \cdot v_w)}$$

$$= \sum_{(w,c)\in D} \log \sigma(u_c \cdot v_w) + \sum_{(w,c')\in D'} \log \sigma(-u_{c'} \cdot v_w)$$

- D' is constructed by randomly sampling c' from the following distribution $P(w_i) = \frac{f(w_i)^{s_i 1}}{\sum_{j=0}^{n} \left(f(w_j)^{3/4}\right)}$
- There are k (5-15) negative samples for each (w, c) \in D

Skip-gram Summary

- The model needs to predict similar outputs for words that occur in similar contexts
 - This can be done by making their vectors similar
 - For example, intelligent and smart would appear in similar contexts
 - Similarly for contexts like "There are 11 players in a team", and "Basketball is played by five members"...
- CBOW is just the opposite: predict center word from context words

A slightly different approach: co-occurrence

- Construct co-occurrence matrix
- Reduce with SVD (patented for IR in 1988)
- Example corpus:
 - I like deep. learning
 - I like NLP.
 - I enjoy flying.

counts	1	like	enjoy	deep	learning	NLP	flying	
1	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
flying	0	0	1	0	0	0	0	1
	0	0	0	0	1	1	1	0

GloVe (2014) - Combining both methods

$$J(\theta) = \frac{1}{2} \sum_{i,j=1}^{W} f(P_{ij}) (u_i^T v_j - \log P_{ij})^2$$

- P_{ij} is the co-occurrence count of w_i and w_i
- f(P_{ij}) is used to give less weight to infrequently occurring pairs
- Faster to train as it does not makes multiple passes through the corpus

Evaluation

Intrinsic

- Analyse the word vectors themselves to see what they represent
- For instance, Analogy task, similarity task, clustering

Extrinsic

- Use the generated representation on actual NLP tasks
- See which embedding does best on Part-of-speech tagging, machine translation etc.

Analogy Task

a:b :: c:?

man:woman::king:?

$$d = \arg\max_{i} \frac{(x_b - x_a + x_c)^T x_i}{||x_b - x_a + x_c||}$$

Relationship	Example 1	Example 2	Example 3	
1	•	-	•	
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee	
big - bigger	small: larger	cold: colder	quick: quicker	
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii	
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter	
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan	
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium	
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack	
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone	
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs	
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza	

Other cool applications

Context

Input

Context

Other cool applications

t-SNE visualization of the bilingual word embedding. Green is Chinese, Yellow is English. (Socher *et al.* (2013a))

Implementation

- Pre-trained vectors available for all these methods!
 - Word2Vec (Skip-gram)
 - https://code.google.com/archive/p/word2vec/
 - GloVe
 - https://nlp.stanford.edu/projects/glove/
 - FastText (also for 156 other languages!)
 - https://fasttext.cc/docs/en/english-vectors.html

TensorFlow Code

```
embeddings = tf. Variable(tf.random uniform([vocabulary size,embedding size],
-1.0, 1.0)
nce_weights = tf.Variable(tf.truncated normal([vocabulary size.
embedding size],stddev=1.0 / math.sqrt(embedding size)))
nce biases = tf.Variable(tf.zeros([vocabulary size]))
# Placeholders for inputs
train inputs = tf.placeholder(tf.int32, shape=[batch size])
train labels = tf.placeholder(tf.int32, shape=[batch size, 1])
# Embedding helper function:
embed = tf.nn.embedding lookup(embeddings, train inputs)
```

TensorFlow Code (Continued)

```
# Compute the NCE loss, using a sample of the negative labels each time.
loss = tf.reduce mean(
  tf.nn.nce loss(weights=nce weights,
                 biases=nce biases,
                 labels=train labels,
                 inputs=embed,
                 num sampled=num sampled,
                 num classes=vocabulary size))
# We use the SGD optimizer.
optimizer = tf.train.GradientDescentOptimizer(learning rate=1.0).minimize(loss)
with tf. Session as session:
  for inputs, labels in generate batch(...):
    feed dict = {train inputs: inputs, train labels: labels}
    , cur loss = session.run([optimizer, loss], feed dict=feed dict)
```

References

- Stanford NLP CS224n <u>http://web.stanford.edu/class/cs224n/syllabus.html</u>
- 2. Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. *Efficient Estimation of Word Representations in Vector Space*. In Proceedings of Workshop at ICLR, 2013.
- 3. Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. *Distributed Representations of Words and Phrases and their Compositionality*. In Proceedings of NIPS, 2013.
- 4. McCormick, C. (2016, April 19). Word2Vec Tutorial The Skip-Gram Model. Retrieved from http://www.mccormickml.com

TensorBoard Demo

Adapted from:

http://www.cse.chalmers.se/~richajo/dit865/files/Word%20embeddings%20in%20Gensim.html

and

https://github.com/sudharsan13296/visualise-word2vec

Questions?