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Correlation is not Causation – Storks and Babies

[Matthews, Robert. ”Storks deliver babies (p= 0.008).” Teaching Statistics 22.2 (2000): 36-38.]
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Less obvious fallacies (they might not be wrong, just their derivation is)

I Eating red meat causes cancer

I CO2 deprivation explains near-death experiences

I Women have lower salaries than men

I Immigrants are more often criminals

I Smoking reduces the IQ

I Creative people have more sex

I Happy people are healthier

I Reducing unemployment requires economic growth

I Learning Latin in school helps learning your native language
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Less obvious fallacies (from the recent news)
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”Post hoc ergo propter hoc”

Fact: causal effects are time-directed

I I dropped my phone and then the display was cracked.

I I overslept in the morning and then missed the bus.

But: just because something happens after something else doesn’t mean one of the cause of
the other.

I I dropped my phone and then ran out of data volume.

I I overslept in the morning and then lunch at the restaurant was bad.
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”Post hoc ergo propter hoc” (after this, therefore because of this)

Image: xkcd.com
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How can we establish a causal relation?

Intervention experiments, e.g. Biology

I observe correlation: bacteria that are resistant against some drug produce protein X ,
non-resistant bacteria do not.

I hypothesis: X is the cause for the bacteria to be resistant

I intervention (knock-out): create a mutant without the gene for producing X

I observe: mutant bacteria are not resistant

I intervention (rescue): inject protein X into mutants

I observe: now, mutants are also restistant

Note: we can be pretty sure there is a causal link, even though we don’t know if the effect is
”direct” or ”indirect” (it’s not even clear what is meant by that)
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Pioneers of Causality Research: Clive W.J. Granger (1934–2009)
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Pioneers of Causality Research: Judea Pearl (1936–)
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Causal Graph / Causal Bayesian Network

A causal graph is a Bayesian network in which arrows indicate causal relations

Illustration: adapted from Markus Holzemer ”Probabilistic Reasoning”
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Causal Graph / Causal Bayesian Network

Equivalent underlying Bayesian network, but (some) arrows are not causal

Illustration: adapted from Markus Holzemer ”Probabilistic Reasoning”
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Excurse: Causality

Causal Inference – do calculus

Probabilistic Inference (purely
observational):

I We hear the alarm, what’s the probability
that Mary calls?

Pr(M = true|A = true)

Causal Inference:

I We trigger the alarm, what’s the
probability that Mary calls?

Pr(M = true| do(A = true) )
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Causal Inference

Mary calls because:

1. she hears the alarm, or

2. she feels the earthquake.

Probabilistic Inference:

I because the alarm rings, the chances of an
earthquake higher than normal.

Causal Inference:

I we trigger the alarm ourselves

I the chances of an earthquake are the
regular ones.
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Real world example: ad placement

[Bottou et al, ”Counterfactual Reasoning and Learning Systems”, JMLR 2013]

20 / 32



Excurse: Causality

Real world example: ad placement

[Bottou et al, ”Counterfactual Reasoning and Learning Systems”, JMLR 2013]

20 / 32



Excurse: Causality

Causality without interventions?

Inductive Causation (IC) algorithm (Verma, Pearl 1990) partially solves the task:
I for any pair of variables, X and Y , identify the smallest set SX ,Y such that X ⊥⊥ Y |SX ,Y ,

if any such set exists
I if no such set exists, add a direct connection X − Y
I for any substructure X − Z − Y , orient it as X → Z ← Y if Z 6∈ SX ,Y (”V-structure”)

true causal graph recovered undirected graph recovered V-structures

Caveat 1: we assume that some causal structure exists at all

Caveat 2: it’s hard to find which nodes are conditional independent given just observations
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Causality without interventions?

Build undirected graph based on conditional (in)dependence:

I if we fix a value for ’Earth destroyed’ (D),
Burglar (B) and Earthquake (E) are
independent
→ no edge,
→ memorize SE,B = {D}

Identify directed V-structures:
I for any unconnected pair X ,Y that are both connected to a Z
I if Z is not in SX ,Y , orient edges X → Z ← Y

I e.g. Burglar → Alarm ← Earthquake
I but not Burglar → Earth-destroyed ← Earthquake

For many edges, we can’t decide!
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How to Identify Conditional Independence from Observations?

We observe data for three random variables, X , Y and Z . How to tell if X ⊥⊥ Y |Z?

We need to find out if p(x , y |z)
?
= p(x |z)p(y |z) for every z ∈ Z

Observation: already without the Z , things are hard: is p(x , y)
?
= p(x)p(y)?

I when we compute an estimate p̂(x , y), from data, this relation will not be fulfilled exactly,
e.g.

I assume X ⊥⊥ Y , with p(x) = p(y) = 0.5
I n Observations: (0, 0), (0, 1), (0, 0), (1, 1), (0, 0)
I p̂(X = 0) = 0.8 p̂(Y = 0) = 0.6
I p̂(X = 0,Y = 0) = 0.6 p̂(X = 0)p̂(Y = 0) = 0.48
I p̂(X = 1,Y = 0) = 0 p̂(X = 1)p̂(Y = 0) = 0.12

One would hope that the difference shrinks when n→∞, but how to measure?

We need of quantitative measure of how much p(x , y) differs from p(x)p(y).
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Kullback-Leibler Divergence

Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence between two discrete distribution p and q over t is

KL(p||q) =
∑
i

p(t) log
p(t)

q(t)

and for continuous distribution with probability densities p and q:

KL(p||q) =

∫
t
p(t) log

p(t)

q(t)

(can be ∞, if q(t) = 0 where p(t) 6= 0)

One can show that KL divergence is the only measure of difference between probability
distributions that satisfies some desirable properties in relation to the entropy (see Wikipedia).
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Mutual Information

Observation: both p(x , y) and p(x)p(y) are distributions over (x , y):

Mutual Information

The mutual information between two random variables X ,Y is defined as

I (X ;Y ) = KL( p(X ,Y )||p(X )p(Y ) )

The mutual information has some nice properties

I I (X ,Y ) ≥ 0 positivity

I I (X ,Y ) ≥ 0 symmetry

I I (X ,Y ) = 0 if and only if X ⊥⊥ Y

It also has some not so nice properties:

I it’s difficult to estimate from finite data
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Conditional Mutual Information

For any z , p(x , y |z) and p(x |z)p(y |z) are distributions over (x , y):

Conditional Mutual Information

The mutual information between two random variables X ,Y is defined as

I (X ;Y |Z ) = Ez∼Z

[
KL( p(X ,Y |Z = z)||p(X |Z = z)p(Y |Z = z) )

]
The nice properties of the mutual information still hold

I I (X ,Y |Z ) ≥ 0 positivity

I I (X ,Y |Z ) ≥ 0 symmetry

I I (X ,Y |Z ) = 0 if and only if X ⊥⊥ Y |Z almost surely

But the not so nice ones as well:

I it’s difficult to estimate from finite data
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Estimating (Conditional) Mutual Information in Practice

Finite X , Y and Z
I given n observations, compute estimate p̂(x , y , z)

I for n→∞, plug-in estimated mutual information will converge to the true one

Continuous, real-valued X , Y and Z
Idea 1: discretize

I quantize X , Y, Z into finitely many bins

I use discrete estimate as above

I beware: for n→∞, bins must shrink (and some assumptions must hold)

Idea 2: hope for some functional relation, e.g.

I use to the observation to learn two functions, f : X × Z → Y and g : X → Y,

I compare how much f fits the data better than g .
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Active Research
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Limitations

Problem: many undecidable cases.

Embarrassing fact: we can’t even handle the ”easiest possible case”: two variables

temperaturesunshine

or

temperaturesunshine

Impossible to decide based on just conditional independence.

We need introduce additional assumptions, e.g. what is ”normal”?
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Causality from noise [J. Peters, J. Mooij, B. Schölkopf, 2010s]

I two random variables, X and Y (e.g. sunshine, temperature)

I one causes the other as Y = f (X ) + ’noise’

I noise contribution independent of input X

I we observe pairs (X1,Y1), . . . , (Xn,Yn)

Algorithm:

I estimate functions in both directions: g1, g2, such that
g1(Xi ) ≈ Yi and g2(Yi ) ≈ Xi

I analyze distribution of ”noise”,
g1(Xi )− Yi and g2(Yi )− Xi

I pick direction in which noise is more independent of input
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Summary

I causality is actively researched in machine learning and statistics
I so far, computers are even worse at causal inference than people
I many open challenges, e.g. causality from single examples

vs.

Images. left: all over the Internet, right: Ritter Sport

32 / 32



Excurse: Causality

Summary

I causality is actively researched in machine learning and statistics
I so far, computers are even worse at causal inference than people
I many open challenges, e.g. causality from single examples

vs.

Images. left: all over the Internet, right: Ritter Sport

32 / 32


	Excurse: Causality

