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Storks Deliver Babies (p = 0.008)
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Summary

This article shows that a highly statistically
significant correlation exists between stork
populations and human birth rates across Europe.
While storks may not deliver babies, unthinking
interpretation of correlation and p-values can
certainly deliver unreliable conclusions.

¢ INTRODUCTION &

I ntroductory statistics textbooks routinely warn
of the dangers of confusing correlation with
causation, pointing out that while a high corre-
lation coefficient is indicative of (linear) association,
it cannot be taken as a measure of causation. Such

association between storks and the concept of
women as bringers of life, and also in the bird’s
feeding habits, which were once regarded as a
search for embryonic life in water (Cooper 1992).
The legend lives on to this day, with neonate-
bearing storks being a regular feature of greetings
cards celebrating births.

[Matthews, Robert. "Storks deliver babies (p= 0.008).” Teaching Statistics 22.2 (2000): 36-38.]
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Table 1. Geographic, human and stork data for 17
European countries Fig 1. How the number of human births varies with stork populations in 17 European countries.

[Matthews, Robert. "Storks deliver babies (p= 0.008).” Teaching Statistics 22.2 (2000): 36-38.]
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» Eating red meat causes cancer

» CO; deprivation explains near-death experiences

» Women have lower salaries than men

» Immigrants are more often criminals

» Smoking reduces the 1Q

» Creative people have more sex

» Happy people are healthier

» Reducing unemployment requires economic growth

» Learning Latin in school helps learning your native language
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CO; deprivation explains near-death experiences
Women have lower salaries than men
Immigrants are more often criminals

Smoking reduces the 1Q
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Happy people are healthier
» Reducing unemployment requires economic growth

» Learning Latin in school helps learning your native language
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Fact: causal effects are time-directed
» | dropped my phone and then the display was cracked.

» | overslept in the morning and then missed the bus.

But: just because something happens after something else doesn’t mean one of the cause of
the other.

» | dropped my phone and then ran out of data volume.

» | overslept in the morning and then lunch at the restaurant was bad.
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US President Barack Obama Praises Progress
On Wages, Employment

BY AMY NORDRUM ¥/ ON 02/05/16 AT 2:05 PM

THE UNEMPLOYMENT RATE FELL BELOW §

U.S. President Barack Obama dlscusses the latest unemplaymenl rate within the U.S. economy at the White House,
Feb. 5,2016, in Washington, D.C. k e

U.S. President Barack Obama said he was in a good mood Friday as he praised his administration’s
progress on the economy after a new jobs report showed wage growth and the lowest rate of
unemployment the nation has recorded since 2008.
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Unemployment rate under W Bush and Obama
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Unemployment rate under W Bush and Obama
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Source: BLS
Graphic by @ddiamond
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Intervention experiments, e.g. Biology

» observe correlation: bacteria that are resistant against some drug produce protein X,
non-resistant bacteria do not.

» hypothesis: X is the cause for the bacteria to be resistant
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Intervention experiments, e.g. Biology

» observe correlation: bacteria that are resistant against some drug produce protein X,
non-resistant bacteria do not.

» hypothesis: X is the cause for the bacteria to be resistant
» intervention (knock-out): create a mutant without the gene for producing X

» observe: mutant bacteria are not resistant
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Intervention experiments, e.g. Biology

» observe correlation: bacteria that are resistant against some drug produce protein X,
non-resistant bacteria do not.

» hypothesis: X is the cause for the bacteria to be resistant

» intervention (knock-out): create a mutant without the gene for producing X
» observe: mutant bacteria are not resistant

» intervention (rescue): inject protein X into mutants

» observe: now, mutants are also restistant

Note: we can be pretty sure there is a causal link, even though we don't know if the effect is
"direct” or "indirect” (it's not even clear what is meant by that)

13/32
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A causal graph is a Bayesian network in which arrows indicate causal relations
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Illustration: adapted from Markus Holzemer " Probabilistic Reasoning”
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Equivalent underlying Bayesian network, but (some) arrows are not causal
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Probabilistic Inference (purely
observational):
» We hear the alarm, what's the probability
that Mary calls?
Pr(M = true|A = true)
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Probabilistic Inference (purely

observational):
» We hear the alarm, what's the probability -

| Fantuake
that Mary calls?
\ [
~
 MaryCalls

Pr(M = true|A = true) ‘
Causal Inference: L/ \
» We trigger the alarm, what's the -

probability that Mary calls?
Pr(M = true| do(A = true) )

18/32
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Mary calls because:
1. she hears the alarm, or
2. she feels the earthquake.

Probabilistic Inference:

./ .

» because the alarm rings, the chances of an
earthquake higher than normal.

Causal Inference:

40

> we trigger the alarm ourselves s

» the chances of an earthquake are the
regular ones.

'

19/32
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user_intent u — query x ad_inventory v
ads «a bids b
scores ¢
\
slate s prices ¢
clicks y »revenue z

[Bottou et al, " Counterfactual Reasoning and Learning Systems”, JMLR 2013]
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user_intent u

query x ad_inventory v

\ A

bids b

scores g

/
slate s prices ¢
Observations L
Clic =revenue z

[Bottou et al, " Counterfactual Reasoning and Learning Systems”, JMLR 2013]
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Inductive Causation (IC) algorithm (Verma, Pearl 1990) partially solves the task:

» for any pair of variables, X and Y, identify the smallest set Sx y such that X 1L Y|Sx y,
if any such set exists

» if no such set exists, add a direct connection X — Y
» for any substructure X —Z — Y, orient it as X — Z <= Y if Z & Sx y (" V-structure")

w w w
‘Z//ﬁl\\\\i T T T
X Y X Y X Y
o)
vé VA U v VA U v Z U
true causal graph recovered undirected graph  recovered V-structures
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Inductive Causation (IC) algorithm (Verma, Pearl 1990) partially solves the task:

» for any pair of variables, X and Y, identify the smallest set Sx y such that X 1L Y|Sx y,
if any such set exists

» if no such set exists, add a direct connection X — Y
» for any substructure X —Z — Y, orient it as X — Z <= Y if Z & Sx y (" V-structure")

w w w
AL T T
X Y X Y X Y
o)
vd VA U v VA U v Z U
true causal graph recovered undirected graph  recovered V-structures

Caveat 1: we assume that some causal structure exists at all

Caveat 2: it's hard to find which nodes are conditional independent given just observations |
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Build undirected graph based on conditional (in)dependence:

» if we fix a value for 'Earth destroyed’ (D), / N\

Burglar (B) and Earthquake (E) are Y <>
N\
S/

independent
— no edge,
\\

— memorize Sgp = {D} T
Identify directed V-structures:

» for any unconnected pair X,Y that are both connected to a Z
» if Zis not in Sx y, orient edges X — Z <Y
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Build undirected graph based on conditional (in)dependence:

» if we fix a value for 'Earth destroyed’ (D), / N\

Burglar (B) and Earthquake (E) are Y <>
N\
S/

independent
— no edge,
\\

— memorize SE,B = {D} -

Identify directed V-structures:
» for any unconnected pair X,Y that are both connected to a Z
» if Zis not in Sx y, orient edges X — Z <Y
» eg. Burglar — Alarm < Earthquake

22/32



Excurse: Causality
000000000000 0000000e0000000000

Build undirected graph based on conditional (in)dependence:
-
» if we fix a value for 'Earth destroyed’ (D), N\
Burglar (B) and Earthquake (E) are
independent
— no edge,
— memorize Sgp = {D}

'

Identify directed V-structures:
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Build undirected graph based on conditional (in)dependence:
-
» if we fix a value for 'Earth destroyed’ (D), N\
Burglar (B) and Earthquake (E) are
independent
— no edge,
— memorize Sgp = {D}

'

Identify directed V-structures:
» for any unconnected pair X,Y that are both connected to a Z
» if Zis not in Sx y, orient edges X — Z <Y
» eg. Burglar — Alarm < Earthquake
» but not Burglar — Earth-destroyed < Earthquake

For many edges, we can’t decide!
22/32
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We observe data for three random variables, X, Y and Z. How to tell if X 1L Y|Z7

We need to find out if p(x, y|z) L p(x|z)p(y|z) for every z € Z

Observation: already without the Z, things are hard: is p(x, y) L p(x)p(y)?

» when we compute an estimate p(x, y), from data, this relation will not be fulfilled exactly,
e.g.

assume X 1L Y, with p(x) =

n Observations: (0,0), (0, 1),

B(X=0)=08 p(Y=0)=0

B(X=0Y=0)=06 p(X=0)p

PX=1Y=0)=0 p(X =1)p(Y

vV vy VY VvYy

One would hope that the difference shrinks when n — oo, but how to measure?

We need of quantitative measure of how much p(x, y) differs from p(x)p(y).

23/32
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Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence between two discrete distribution p and q over t is

L(pllq) = Zp |og

and for continuous distribution with probability densities p and g:

KL(pll9) = [ (e |og58

(can be oo, if g(t) = 0 where p(t) # 0)

One can show that KL divergence is the only measure of difference between probability
distributions that satisfies some desirable properties in relation to the entropy (see Wikipedia).

24 /32
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Observation: both p(x, y) and p(x)p(y) are distributions over (x, y):

Mutual Information
The mutual information between two random variables X, Y is defined as

I(X;Y) = KL(p(X, Y)[[p(X)p(Y))

The mutual information has some nice properties
» I(X,Y)>0 positivity
» I(X,Y)>0 symmetry
» [(X,Y)=0ifandonlyif X 1L Y

It also has some not so nice properties:

» it's difficult to estimate from finite data
25/32
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For any z, p(x, y|z) and p(x|z)p(y|z) are distributions over (x,y):

Conditional Mutual Information
The mutual information between two random variables X, Y is defined as

1(X; Y|Z) = Eonz [KL(p(X, Y|Z = 2)||p(X|Z = 2)p(Y|Z = 2))]

The nice properties of the mutual information still hold
» [(X,Y]|Z)>0 positivity

» I(X,Y]|Z)>0 symmetry
» I(X,Y|Z)=0if and only if X L Y|Z almost surely

But the not so nice ones as well:

» it's difficult to estimate from finite data
26 /32
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Finite X', Y and Z

» given n observations, compute estimate p(x, y, z)

» for n — oo, plug-in estimated mutual information will converge to the true one

Idea 1: discretize
» quantize X, ), Z into finitely many bins
» use discrete estimate as above

» beware: for n — oo, bins must shrink (and some assumptions must hold)

Idea 2: hope for some functional relation, e.g.
» use to the observation to learn two functions, f : X x Z — Y and g: X — Y,
» compare how much f fits the data better than g.
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The Annals of Statistics

2013, Vol. 41, No. 2, 436—4863

DOI: 10.1214/12-A081080

@© Institute of Mathematical Statistics, 2013

GEOMETRY OF THE FAITHFULNESS ASSUMPTION IN
CAUSAL INFERENCE!

By CAROLINE UHLER, GARVESH RASKUTTI,
PETER BUHLMANN AND BIN YU

IST Austria, SAMSI, ETH Ziirich and Unwersity of California, Berkeley

Many algorithms for inferring causality rely heavily on the faith-
fulness assumption. The main justification for imposing this assump-
tion is that the set of unfaithful distributions has Lebesgue measure
zero, since it can be seen as a collection of hypersurfaces in a hyper-
cube. However, due to sampling error the faithfulness condition alone
is not sufficient for statistical estimation, and strong-faithfulness has
been proposed and assumed to achieve uniform or high-dimensional
consistency. In contrast to the plain faithfulness assumption, the set
of distributions that is not strong-faithful has nonzero Lebesgue mea-
sure and in fact, can be surprisingly large as we show in this paper.
‘We study the strong-faithfulness condition from a geometric and com-
binatorial point of view and give upper and lower bounds on the
Lebesgue measure of strong-faithful distributions for various classes
of directed acyclic graphs. Our results imply fundamental limitations
for the PC-algorithm and potentially also for other algorithms based
on partial correlation testing in the Gaussian case.

28/32
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Problem: many undecidable cases.

Embarrassing fact: we can't even handle the "easiest possible case”: two variables

temperature temperature

or
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Problem: many undecidable cases.

Embarrassing fact: we can't even handle the "easiest possible case”: two variables

temperature temperature

or

Impossible to decide based on just conditional independence.

We need introduce additional assumptions, e.g. what is "normal”?

29/32
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v

two random variables, X and Y (e.g. sunshine, temperature)
» one causes the other as Y = f(X) + 'noise’

noise contribution independent of input X

we observe pairs (X1, Y1),...,(Xn, Yn)

v

v
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two random variables, X and Y (e.g. sunshine, temperature)
» one causes the other as Y = f(X) + 'noise’

v

» noise contribution independent of input X
» we observe pairs (X1, Y1), ..., (Xn, Yn)
Algorithm:

» estimate functions in both directions: gy, g», such that
g1(Xi) = Y; and &(Yi) = X;

» analyze distribution of "noise”,
g1(Xi) =Y and &(Yi) — Xi

» pick direction in which noise is more independent of input

30/32
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unlikely noise distribution (X 1L )) likely noise distribution (X AL Y) .
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» causality is actively researched in machine learning and statistics
» so far, computers are even worse at causal inference than people
» many open challenges, e.g. causality from single examples
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