Introduction to Probabilistic Graphical Models

Christoph Lampert

IST Austria (Institute of Science and Technology Austria)

Institute of Science and Technology

Excurse: Causality

Correlation is not Causation - Storks and Babies

Storks Deliver Babies ($p=0.008$)

KEYWORDS:

Teaching;
Correlation;
Significance;
p-values.

Introductory statistics textbooks routinely warn of the dangers of confusing correlation with causation, pointing out that while a high correlation coefficient is indicative of (linear) association, it cannot be taken as a measure of causation. Such

Robert Matthews

Aston University, Birmingham, England.
e-mail: rajm@compuserve.com

Summary

This article shows that a highly statistically significant correlation exists between stork populations and human birth rates across Europe. While storks may not deliver babies, unthinking interpretation of correlation and p-values can certainly deliver unreliable conclusions.
association between storks and the concept of women as bringers of life, and also in the bird's feeding habits, which were once regarded as a search for embryonic life in water (Cooper 1992). The legend lives on to this day, with neonatebearing storks being a regular feature of greetings cards celebrating births.

Correlation is not Causation - Storks and Babies

Country	Area $\left(\mathrm{km}^{2}\right)$	Storks $($ pairs $)$	Humans $\left(10^{6}\right)$	Birth rate $\left(10^{3} / \mathrm{yr}\right)$
Albania	28,750	100	3.2	83
Austria	83,860	300	7.6	87
Belgium	30,520	1	9.9	118
Bulgaria	111,000	5000	9.0	117
Denmark	43,100	9	5.1	59
France	544,000	140	56	774
Germany	357,000	3300	78	901
Greece	132,000	2500	10	106
Holland	41,900	4	15	188
Hungary	93,000	5000	11	124
Italy	301,280	5	57	551
Poland	312,680	30,000	38	610
Portugal	92,390	1500	10	120
Romania	237,500	5000	23	367
Spain	504,750	8000	39	439
Switzerland	41,290	150	6.7	82
Turkey	779,450	25,000	56	1576

Table 1. Geographic, human and stork data for 17 European countries

Fig 1. How the number of human births varies with stork populations in 17 European countries.

Less obvious fallacies (they might not be wrong, just their derivation is)

- Eating red meat causes cancer
- CO_{2} deprivation explains near-death experiences
- Women have lower salaries than men
- Immigrants are more often criminals
- Smoking reduces the IQ
- Creative people have more sex
- Happy people are healthier
- Reducing unemployment requires economic growth
- Learning Latin in school helps learning your native language
- Eating red meat causes cancer
- CO_{2} deprivation explains near-death experiences
- Women have lower salaries than men
- Immigrants are more often criminals
- Smoking reduces the IQ
- Creative people have more sex
- Happy people are healthier
- Reducing unemployment requires economic growth
- Learning Latin in school helps learning your native language

Less obvious fallacies (from the recent news)

```
JAMA Internal Medicine

Formerly Archives of Internal Medicine
Home Current Issue All Issues Online First Collections CME Multimedia For Authors Subscribe

April 9, 2012, Vol 172, No. 7 >
<Previous Article Next Article >
Original Investigation | Apr 9, 2012

\section*{Red Meat Consumption and Mortality}

\author{
Results From 2 Prospective Cohort Studies \\ FREE \\ An Pan, PhD; Qi Sun, MD, ScD; Adam M. Bernstein, MD, ScD; Matthias B. Schulze, DrPH; JoAnn E. Manson, MD, DrPH; Meir J. Stampfer, MD, DrPH; Walter C. Willett, MD, DrPH; Frank B. Hu, MD, PhD \\ [+] Author Affiliations
}

Arch Intern Med. 2012;172(7):555-563. doi:10.1001/archinternmed.2011.2287.

Text Size: a A A

Article Figures Tables Supplemental Content References Comments ( 3 )

Some tools below are only available to our subscribers or users with an online account.
\begin{tabular}{|c|c|}
\hline \% Print & 國 PDF \\
\hline \(\square\) Email & \(i\) Gel Citation \\
\hline © Get Permissions & \(\triangle\) Get Alerts \\
\hline Submit Letter & - Submita Comment \\
\hline > \(\square_{\text {slideset (.ppt) }}\) & (2) Supplemental Contents \\
\hline \begin{tabular}{l}
86,271 \\
Views
\end{tabular} & \begin{tabular}{l}
120 \\
Citations
\end{tabular} \\
\hline & Q View Metrics \\
\hline
\end{tabular}

\section*{Related Content}

Customize your page view by dragging \& repositioning the boxes

Less obvious fallacies (from the recent news)
FOOD

\section*{Super Hot Drinks May Cause Cancer}

TOP STORIES

\begin{tabular}{lll}
\hline & 2 & Why You Should Stop Using \\
Dryer Sheets Now
\end{tabular}
\begin{tabular}{llllllll}
\(\mathbf{f}\) & 16 & \(\because\) & tweet & g \(_{+}\) & 1 & EMAIL & 70 \\
\hline
\end{tabular}

Fact: causal effects are time-directed
- I dropped my phone and then the display was cracked.
- I overslept in the morning and then missed the bus.

But: just because something happens after something else doesn't mean one of the cause of the other.
- I dropped my phone and then ran out of data volume.
- I overslept in the morning and then lunch at the restaurant was bad.

US President Barack Obama Praises Progress
On Wages, Employment

U.S. President Barack Obama discusses the latest unemployment rate within the U.S. economy at the White House, Feb. 5, 2016, in Washington, D.C. Photo: Mark Wi ison/Getty Images
U.S. President Barack Obama said he was in a good mood Friday as he praised his administration's progress on the economy after a new jobs report showed wage growth and the lowest rate of unemployment the nation has recorded since 2008

\section*{Unemployment rate under W Bush and Obama}

"Post hoc ergo propter hoc"

\section*{Unemployment rate under W Bush and Obama}

"Post hoc ergo propter hoc" (after this, therefore because of this)


THEN I TOOK A
STATISTICS CLASS. NOW I DON'T.


SOUNDS LIKE THE CLASS HELPED.


Image: xkcd.com

Intervention experiments, e.g. Biology
- observe correlation: bacteria that are resistant against some drug produce protein \(X\), non-resistant bacteria do not.
- hypothesis: \(X\) is the cause for the bacteria to be resistant

\section*{How can we establish a causal relation?}

Intervention experiments, e.g. Biology
- observe correlation: bacteria that are resistant against some drug produce protein \(X\), non-resistant bacteria do not.
- hypothesis: \(X\) is the cause for the bacteria to be resistant
- intervention (knock-out): create a mutant without the gene for producing \(X\)
- observe: mutant bacteria are not resistant

\section*{How can we establish a causal relation?}

\section*{Intervention experiments, e.g. Biology}
- observe correlation: bacteria that are resistant against some drug produce protein \(X\), non-resistant bacteria do not.
- hypothesis: \(X\) is the cause for the bacteria to be resistant
- intervention (knock-out): create a mutant without the gene for producing \(X\)
- observe: mutant bacteria are not resistant
- intervention (rescue): inject protein \(X\) into mutants
- observe: now, mutants are also restistant

Note: we can be pretty sure there is a causal link, even though we don't know if the effect is "direct" or "indirect" (it's not even clear what is meant by that)

\section*{Pioneers of Causality Research: Clive W.J. Granger (1934-2009)}



\section*{JUDEA PEARL}

United States - 2011
CITATION
For fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning.

\section*{Causal Graph / Causal Bayesian Network}

A causal graph is a Bayesian network in which arrows indicate causal relations


\footnotetext{
Illustration: adapted from Markus Holzemer "Probabilistic Reasoning"
}

\section*{Causal Graph / Causal Bayesian Network}

Equivalent underlying Bayesian network, but (some) arrows are not causal


\footnotetext{
Illustration: adapted from Markus Holzemer "Probabilistic Reasoning"
}

\section*{Causal Inference - do calculus}

\section*{Probabilistic Inference (purely} observational):
- We hear the alarm, what's the probability that Mary calls?
\[
\operatorname{Pr}(M=\text { true } \mid A=\text { true })
\]

\section*{Causal Inference - do calculus}

\section*{Probabilistic Inference (purely} observational):
- We hear the alarm, what's the probability that Mary calls?
\[
\operatorname{Pr}(M=\text { true } \mid A=\text { true })
\]

\section*{Causal Inference:}
- We trigger the alarm, what's the
 probability that Mary calls?
\[
\operatorname{Pr}(M=\operatorname{true} \mid \mathbf{d o}(A=\text { true }))
\]

\section*{Causal Inference}

Mary calls because:
1. she hears the alarm, or
2. she feels the earthquake.

\section*{Probabilistic Inference:}
- because the alarm rings, the chances of an earthquake higher than normal.


\section*{Causal Inference:}
- we trigger the alarm ourselves
- the chances of an earthquake are the regular ones.


\section*{Real world example: ad placement}

[Bottou et al, "Counterfactual Reasoning and Learning Systems", JMLR 2013]

\section*{Real world example: ad placement}


\section*{Causality without interventions?}

Inductive Causation (IC) algorithm (Verma, Pearl 1990) partially solves the task:
- for any pair of variables, \(X\) and \(Y\), identify the smallest set \(S_{X, Y}\) such that \(X \Perp Y \mid S_{X, Y,}\) if any such set exists
- if no such set exists, add a direct connection \(X-Y\)
- for any substructure \(X-Z-Y\), orient it as \(X \rightarrow Z \leftarrow Y\) if \(Z \notin S_{X, Y}\) ("V-structure")

true causal graph

recovered undirected graph

recovered V-structures

\section*{Causality without interventions?}

Inductive Causation (IC) algorithm (Verma, Pearl 1990) partially solves the task:
- for any pair of variables, \(X\) and \(Y\), identify the smallest set \(S_{X, Y}\) such that \(X \Perp Y \mid S_{X, Y,}\) if any such set exists
- if no such set exists, add a direct connection \(X-Y\)
- for any substructure \(X-Z-Y\), orient it as \(X \rightarrow Z \leftarrow Y\) if \(Z \notin S_{X, Y}\) ("V-structure")

true causal graph

recovered undirected graph

recovered V -structures

Caveat 1: we assume that some causal structure exists at all
Caveat 2: it's hard to find which nodes are conditional independent given just observations

\section*{Causality without interventions?}

Build undirected graph based on conditional (in)dependence:
- if we fix a value for 'Earth destroyed' (D), Burglar (B) and Earthquake (E) are independent
\(\rightarrow\) no edge,
\(\rightarrow\) memorize \(S_{\mathrm{E}, \mathrm{B}}=\{\mathrm{D}\}\)


Identify directed \(V\)-structures:
- for any unconnected pair \(X, Y\) that are both connected to a \(Z\)
- if \(Z\) is not in \(S_{X, Y}\), orient edges \(X \rightarrow Z \leftarrow Y\)

\section*{Causality without interventions?}

Build undirected graph based on conditional (in)dependence:
- if we fix a value for 'Earth destroyed' (D), Burglar (B) and Earthquake (E) are independent
\(\rightarrow\) no edge,
\(\rightarrow\) memorize \(S_{\mathrm{E}, \mathrm{B}}=\{\mathrm{D}\}\)


Identify directed \(V\)-structures:
- for any unconnected pair \(X, Y\) that are both connected to a \(Z\)
- if \(Z\) is not in \(S_{X, Y}\), orient edges \(X \rightarrow Z \leftarrow Y\)
- e.g. Burglar \(\rightarrow\) Alarm \(\leftarrow\) Earthquake

\section*{Causality without interventions?}

Build undirected graph based on conditional (in)dependence:
- if we fix a value for 'Earth destroyed' (D), Burglar (B) and Earthquake (E) are independent
\(\rightarrow\) no edge,
\(\rightarrow\) memorize \(S_{\mathrm{E}, \mathrm{B}}=\{\mathrm{D}\}\)


Identify directed \(V\)-structures:
- for any unconnected pair \(X, Y\) that are both connected to a \(Z\)
- if \(Z\) is not in \(S_{X, Y}\), orient edges \(X \rightarrow Z \leftarrow Y\)
- e.g. Burglar \(\rightarrow\) Alarm \(\leftarrow\) Earthquake

\section*{Causality without interventions?}

Build undirected graph based on conditional (in)dependence:
- if we fix a value for 'Earth destroyed' (D), Burglar (B) and Earthquake (E) are independent
\(\rightarrow\) no edge,
\(\rightarrow\) memorize \(S_{\mathrm{E}, \mathrm{B}}=\{\mathrm{D}\}\)


Identify directed \(V\)-structures:
- for any unconnected pair \(X, Y\) that are both connected to a \(Z\)
- if \(Z\) is not in \(S_{X, Y}\), orient edges \(X \rightarrow Z \leftarrow Y\)
- e.g. Burglar \(\rightarrow\) Alarm \(\leftarrow\) Earthquake
- but not Burglar \(\rightarrow\) Earth-destroyed \(\leftarrow\) Earthquake

For many edges, we can't decide!

\section*{How to Identify Conditional Independence from Observations?}

We observe data for three random variables, \(X, Y\) and \(Z\). How to tell if \(X \Perp Y \mid Z\) ? We need to find out if \(p(x, y \mid z) \stackrel{?}{=} p(x \mid z) p(y \mid z)\) for every \(z \in \mathcal{Z}\)

Observation: already without the \(Z\), things are hard: is \(p(x, y) \stackrel{?}{=} p(x) p(y)\) ?
- when we compute an estimate \(\hat{p}(x, y)\), from data, this relation will not be fulfilled exactly, e.g.
- assume \(X \Perp Y\), with \(p(x)=p(y)=0.5\)
- \(n\) Observations: \((0,0),(0,1),(0,0),(1,1),(0,0)\)
- \(\hat{p}(X=0)=0.8 \quad \hat{p}(Y=0)=0.6\)
- \(\hat{p}(X=0, Y=0)=0.6 \quad \hat{p}(X=0) \hat{p}(Y=0)=0.48\)
- \(\hat{p}(X=1, Y=0)=0 \quad \hat{p}(X=1) \hat{p}(Y=0)=0.12\)

One would hope that the difference shrinks when \(n \rightarrow \infty\), but how to measure?
We need of quantitative measure of how much \(p(x, y)\) differs from \(p(x) p(y)\).

\section*{Kullback-Leibler Divergence}

\section*{Kullback-Leibler Divergence}

The Kullback-Leibler (KL) divergence between two discrete distribution \(p\) and \(q\) over \(t\) is
\[
\mathrm{KL}(p \| q)=\sum_{i} p(t) \log \frac{p(t)}{q(t)}
\]
and for continuous distribution with probability densities \(p\) and \(q\) :
\[
\mathrm{KL}(p \| q)=\int_{t} p(t) \log \frac{p(t)}{q(t)}
\]
(can be \(\infty\), if \(q(t)=0\) where \(p(t) \neq 0\) )
One can show that KL divergence is the only measure of difference between probability distributions that satisfies some desirable properties in relation to the entropy (see Wikipedia).

\section*{Mutual Information}

Observation: both \(p(x, y)\) and \(p(x) p(y)\) are distributions over \((x, y)\) :

\section*{Mutual Information}

The mutual information between two random variables \(X, Y\) is defined as
\[
I(X ; Y)=\mathrm{KL}(p(X, Y) \| p(X) p(Y))
\]

The mutual information has some nice properties
- \(I(X, Y) \geq 0 \quad\) positivity
- \(I(X, Y) \geq 0 \quad\) symmetry
- \(I(X, Y)=0\) if and only if \(X \Perp Y\)

It also has some not so nice properties:
- it's difficult to estimate from finite data

\section*{Conditional Mutual Information}

For any \(z, p(x, y \mid z)\) and \(p(x \mid z) p(y \mid z)\) are distributions over \((x, y)\) :

\section*{Conditional Mutual Information}

The mutual information between two random variables \(X, Y\) is defined as
\[
I(X ; Y \mid Z)=\mathbb{E}_{z \sim Z}[\mathrm{KL}(p(X, Y \mid Z=z)| | p(X \mid Z=z) p(Y \mid Z=z))]
\]

The nice properties of the mutual information still hold
- \(I(X, Y \mid Z) \geq 0 \quad\) positivity
- \(I(X, Y \mid Z) \geq 0 \quad\) symmetry
- \(I(X, Y \mid Z)=0\) if and only if \(X \Perp Y \mid Z\) almost surely

But the not so nice ones as well:
- it's difficult to estimate from finite data

\section*{Estimating (Conditional) Mutual Information in Practice}

\section*{Finite \(\mathcal{X}, \mathcal{Y}\) and \(\mathcal{Z}\)}
- given \(n\) observations, compute estimate \(\hat{p}(x, y, z)\)
- for \(n \rightarrow \infty\), plug-in estimated mutual information will converge to the true one

\section*{Continuous, real-valued \(\mathcal{X}, \mathcal{Y}\) and \(\mathcal{Z}\)}

Idea 1: discretize
- quantize \(\mathcal{X}, \mathcal{Y}, \mathcal{Z}\) into finitely many bins
- use discrete estimate as above
- beware: for \(n \rightarrow \infty\), bins must shrink (and some assumptions must hold)

Idea 2: hope for some functional relation, e.g.
- use to the observation to learn two functions, \(f: \mathcal{X} \times \mathcal{Z} \rightarrow \mathcal{Y}\) and \(g: \mathcal{X} \rightarrow \mathcal{Y}\),
- compare how much \(f\) fits the data better than \(g\).

\section*{Active Research}

The Annals of Statistics
2013, Vol. 41, No. 2, 436-463
DOI: \(10.1214 / 12\)-AOS1080
(c) Institute of Mathematical Statistics, 2013

\title{
GEOMETRY OF THE FAITHFULNESS ASSUMPTION IN CAUSAL INFERENCE \({ }^{1}\)
}

\author{
By Caroline Uhler, Garvesh Raskutti, Peter Bühlmann and Bin Yu \\ IST Austria, SAMSI, ETH Zürich and University of California, Berkeley
}

Many algorithms for inferring causality rely heavily on the faithfulness assumption. The main justification for imposing this assumption is that the set of unfaithful distributions has Lebesgue measure zero, since it can be seen as a collection of hypersurfaces in a hypercube. However, due to sampling error the faithfulness condition alone is not sufficient for statistical estimation, and strong-faithfulness has been proposed and assumed to achieve uniform or high-dimensional consistency. In contrast to the plain faithfulness assumption, the set of distributions that is not strong-faithful has nonzero Lebesgue measure and in fact, can be surprisingly large as we show in this paper. We study the strong-faithfulness condition from a geometric and combinatorial point of view and give upper and lower bounds on the Lebesgue measure of strong-faithful distributions for various classes of directed acyclic graphs. Our results imply fundamental limitations for the PC-algorithm and potentially also for other algorithms based on partial correlation testing in the Gaussian case.

\section*{Limitations}

Problem: many undecidable cases.
Embarrassing fact: we can't even handle the "easiest possible case" : two variables


\section*{Limitations}

Problem: many undecidable cases.
Embarrassing fact: we can't even handle the "easiest possible case": two variables


Impossible to decide based on just conditional independence.
We need introduce additional assumptions, e.g. what is "normal" ?
- two random variables, \(X\) and \(Y\) (e.g. sunshine, temperature)
- one causes the other as \(Y=f(X)+\) 'noise'
- noise contribution independent of input \(X\)
- we observe pairs \(\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\)
- two random variables, \(X\) and \(Y\) (e.g. sunshine, temperature)
- one causes the other as \(Y=f(X)+\) 'noise'
- noise contribution independent of input \(X\)
- we observe pairs \(\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\)

Algorithm:
- estimate functions in both directions: \(g_{1}, g_{2}\), such that
\[
g_{1}\left(X_{i}\right) \approx Y_{i} \quad \text { and } \quad g_{2}\left(Y_{i}\right) \approx X_{i}
\]
- analyze distribution of "noise",
\[
g_{1}\left(X_{i}\right)-Y_{i} \quad \text { and } \quad g_{2}\left(Y_{i}\right)-X_{i}
\]
- pick direction in which noise is more independent of input







unlikely noise distribution \((\mathcal{X} \Perp \mathcal{Y})\)

likely noise distribution \((\mathcal{X} \not \Perp \perp \mathcal{Y})\)

\section*{Summary}
- causality is actively researched in machine learning and statistics
- so far, computers are even worse at causal inference than people
- many open challenges, e.g. causality from single examples

\section*{Summary}
- causality is actively researched in machine learning and statistics
- so far, computers are even worse at causal inference than people
- many open challenges, e.g. causality from single examples


VS.```

