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1 The treewidth of a graph

A crucial property to identify if probabilitic inference in a graphical model can be done efficiently is the treewidth
of the underlying graph.

Definition 1. (see Wikipedia: https://en.wikipedia.org/wiki/Chordal_graph)
A graph is called chordal, if any cycle in it that consists of four or more
vertices has a chord, i.e. there exists an edge that is not part of the cycle
but connects two vertices of the cycle.

Definition 2. (see Wikipedia: https://en.wikipedia.org/wiki/Chordal_completion)
A chordal completion of a graph is a chordal graph that has the same
vertex set and contains at least all edges of the original graph. Note: in
general, graphs can have many different chordal completions.

Definition 3. (see Wikipedia: https://en.wikipedia.org/wiki/Treewidth)
The treewidth of a chordal graph is the size of its largest clique minus
1. The treewidth of a (potentially non-chordal) graph is the smallest
treewidth of any of its chordal completions.

For each the following graphs 1)–7),

a) determine if it is chordal,

b) if not, construct a chordal completion,

c) determine its treewidth.

a) graph that is b) not a chordal
not chordal completion of a)

c) a chordal d) a chordal
completion of a) completion of a)

e) a chordal f) chordal, but not
completion of a) a completion of a)

h) not chordal (try to see why!)
If you really can’t find the solution, there’s a
hint at the bottom of the page.
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a1 b1 c1 d1 e1 f1

a2 b2 c2 d2 e2 f2

a3 b3 c3 d3 e3 f3

Hint for 1h): Thebigoutercyclehasnochord.
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2 Factor Graphs

Assume you are given eight binary-valued random variables, X1, . . . , X8. Construct factor graphs for the follow-
ing probability distributions (with x = (x1, . . . , x8)), such that their underlying graphs have minimal treewidth.

a) p(x) ∝ enumber of 1s in x

b) p(x) ∝ enumber of (0–1) transitions in x1, . . . , x8

c) p(x) ∝ enumber of (0–1–0) transitions in x1, . . . , x8

d) p(x) ∝ enumber of (1–0–1) combinations between any three distinct entries in x

e) p(x) =

{
1 if x = (0, 0, . . . , 0)

0 otherwise

f) p(x) =

{
1
2

if x = (1, 1, . . . , 1)
1

510
otherwise

g) p(x) ∝ eparity of x

Could you do better, if you introduced additional (latent) random variables?

3 Marginal Inference

Assume you are given four binary-valued random variables, X1, . . . , X4, and a distribution p(x1, x2, x3, x4) ∝

φ1(x1, x2)φ2(x2, x3)φ3(x3, x4) with factors φi(xi, xi+1) =

{
3 if xi = 0 and xi+1 = 1

1 otherwise
for i = 1, . . . , 3.

Compute (on paper!):

a) the normalizing constant

b) the probability p(x1 = 0, x2 = 0, x3 = 0, x4 = 0)

c) the marginal probability p(x1 = 0)

d) corr(X1, X2)

e) the marginal probability p(x1 = 0, x4 = 0)

In each case, perform the computation in two ways: once naively, and once using belief propagation where
possible (note: e) might require some thought for this). What is more efficient? How would this change f) for
a larger number of variables, g) for variables with more states?

4 Maximum Entropy Distribution

Complete the proof we skipped in the lecture:

For samples z1, . . . , zN and feature functions φi : Z → R for i = 1, . . . , d, define µi :=
∑N

n=1 φi(zi).
Show for finite Z: out of all probability distribution, p(z), that fulfill Ez∼p(z)[φ(z)] = µi for i = 1, . . . , D, the
one with highest entropy has the form

p(z) ∝ exp
(∑

i

θiφi(z)
)

for some values θ1, . . . , θD ∈ R.
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