Probabilistic Graphical Models

Christoph Lampert chl@ist.ac.at
TA: all of us pgm_2016@lists.ist.ac.at
Exercise Sheet 5 v1.0

1 The treewidth of a graph

A crucial property to identify if probabilitic inference in a graphical model can be done efficiently is the treewidth of the underlying graph.

Definition 1. (see Wikipedia: https://en.wikipedia.org/wiki/Chordal_graph)
A graph is called chordal, if any cycle in it that consists of four or more vertices has a chord, i.e. there exists an edge that is not part of the cycle but connects two vertices of the cycle.

Definition 2. (see Wikipedia: https://en.wikipedia.org/wiki/Chordal_completion) A chordal completion of a graph is a chordal graph that has the same vertex set and contains at least all edges of the original graph. Note: in general, graphs can have many different chordal completions.

Definition 3. (see Wikipedia: https://en.wikipedia.org/wiki/Treewidth)
The treewidth of a chordal graph is the size of its largest clique minus 1. The treewidth of a (potentially non-chordal) graph is the smallest treewidth of any of its chordal completions.

For each the following graphs 1)-7),
a) determine if it is chordal,
b) if not, construct a chordal completion,
c) determine its treewidth.
1)

5)

2)

3)

b) not a chordal completion of a)

d) a chordal completion of a)

f) chordal, but not
e) a chordal
a completion of a)

h) not chordal (try to see why!) If you really can't find the solution, there's a hint at the bottom of the page.
4)

6)

7)

Hint for 1h):

2 Factor Graphs

Assume you are given eight binary-valued random variables, X_{1}, \ldots, X_{8}. Construct factor graphs for the following probability distributions (with $x=\left(x_{1}, \ldots, x_{8}\right)$), such that their underlying graphs have minimal treewidth.
a) $p(x) \propto e^{\text {number of 1s in } x}$
b) $p(x) \propto e^{\text {number of }(0-1) \text { transitions in } x_{1}, \ldots, x_{8}}$
c) $p(x) \propto e^{\text {number of (0-1-0) transitions in } x_{1}, \ldots, x_{8}}$
d) $p(x) \propto e^{\text {number of (} 1-0-1 \text {) combinations between any three distinct entries in } x}$
e) $p(x)= \begin{cases}1 & \text { if } x=(0,0, \ldots, 0) \\ 0 & \text { otherwise }\end{cases}$
f) $p(x)= \begin{cases}\frac{1}{2} & \text { if } x=(1,1, \ldots, 1) \\ \frac{1}{510} & \text { otherwise }\end{cases}$
g) $p(x) \propto e^{\text {parity of } x}$

Could you do better, if you introduced additional (latent) random variables?

3 Marginal Inference

Assume you are given four binary-valued random variables, X_{1}, \ldots, X_{4}, and a distribution $p\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \propto$ $\phi_{1}\left(x_{1}, x_{2}\right) \phi_{2}\left(x_{2}, x_{3}\right) \phi_{3}\left(x_{3}, x_{4}\right)$ with factors $\phi_{i}\left(x_{i}, x_{i+1}\right)=\left\{\begin{array}{ll}3 & \text { if } x_{i}=0 \text { and } x_{i+1}=1 \\ 1 & \text { otherwise }\end{array} \quad\right.$ for $i=1, \ldots, 3$. Compute (on paper!):
a) the normalizing constant
b) the probability $p\left(x_{1}=0, x_{2}=0, x_{3}=0, x_{4}=0\right)$
c) the marginal probability $p\left(x_{1}=0\right)$
d) $\operatorname{corr}\left(X_{1}, X_{2}\right)$
e) the marginal probability $p\left(x_{1}=0, x_{4}=0\right)$

In each case, perform the computation in two ways: once naively, and once using belief propagation where possible (note: e) might require some thought for this). What is more efficient? How would this change f) for a larger number of variables, g) for variables with more states?

4 Maximum Entropy Distribution

Complete the proof we skipped in the lecture:
For samples z^{1}, \ldots, z^{N} and feature functions $\phi_{i}: \mathcal{Z} \rightarrow \mathbb{R}$ for $i=1, \ldots, d$, define $\mu_{i}:=\sum_{n=1}^{N} \phi_{i}\left(z_{i}\right)$.
Show for finite \mathcal{Z} : out of all probability distribution, $p(z)$, that fulfill $\mathbb{E}_{z \sim p(z)}[\phi(z)]=\mu_{i}$ for $i=1, \ldots, D$, the one with highest entropy has the form

$$
p(z) \propto \exp \left(\sum_{i} \theta_{i} \phi_{i}(z)\right) \quad \text { for some values } \theta_{1}, \ldots, \theta_{D} \in \mathbb{R} .
$$

