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David Barber

» David Barber, Bayesian Reasoning and Machine Learning,
Cambridge University Press, 2011, ISBN-13: 978-0521518147

» Available online for free: http://tinyurl.com/3flppuo
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For the curious ones...
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Information Theory, Inference,
'ROBABILISTIC GRAPHICAL MODELS

» Bishop, Pattern Recognition and Machine Learning, Springer New York, 2006,
ISBN-13: 978-0387310732

» Koller, Friedman, Probabilistic Graphical Models: Principles and Techniques, The
MIT Press, 2009, ISBN-13: 978-0262013192

» MacKay, Information Theory, Inference and Learning Algorithms, Cambridge
University Press, 2003, ISBN-13: 978-0521642989
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Computer Vision”, Foundations and Trends in Computer Graphics and Vision, now
publisher, http://www.nowpublishers.com/

» available as PDF on my homepage
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Success Stories of Machine Learning

amazoncom
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pd Body by Science
WS Our Price: $9.99
¥ Used & new from $9.99
. (Seeallbuying options

Because you purchased...

The Black Swan: Second Edition: The
Impact of the Highly Improbable: With a

Social Networks

ém“%‘a /) .
Language Processing Healthcare Natural Sciences

All of these require dealing with Structured Data



Overview
This course is about modeling structured data. . .

Jemand musste Josef K. verleumdet haben, denn ohne dass er etwas
Boses getan hatte, wurde er eines Morgens verhaftet. »Wie ein
Hund! « sagte er, es war, als sollte die Scham ihn berleben. Als
Gregor Samsa eines Morgens aus unruhigen Traumen erwachte,
fand er sich in seinem Bett zu einem ungeheueren Ungeziefer
verwandelt. Und es war ihnen wie eine Bestatigung ihrer neuen
Traume und guten Absichten, als am Ziele ihrer Fahrt die Tochter als
erste sich erhob und ihren jungen Kérper dehnte. »Es ist ein
eigentimlicher Apparat«, sagte der Offizier zu dem
Forschungsreisenden und lberblickte mit einem gewissermaBen

Source wikipedia.org

Text

T

Documents/HyperText



0000000000000
..and about predicting structured data:
» Natural Language Processing:

» Automatic Translation (output: sentences)
» Sentence Parsing (output: parse trees)

» Bioinformatics:
» Secondary Structure Prediction (output: bipartite graphs)
» Enzyme Function Prediction (output: path in a tree)
» Speech Processing:
» Automatic Transcription (output: sentences)
» Text-to-Speech (output: audio signal)
» Robotics:
» Planning (output: sequence of actions)
» Computer Vision:

» Human Pose Estimation (output: locations of body parts)
» Image Segmentation (output: segmentation mask)

10/51
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Example: Human Pose Estimation

yey

» Given an image, where is a person and how is it articulated?
f:XxX—=Y

» Image x, but what is human pose y € Y precisely?
11/51
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Human Pose )

Example Yhead

» Body Part: yhead = (u, v, 0) where (u, v) center, 6 rotation
» (u,v)e{l,...,M} x{1,...,N},0 € {0,45°,90°, ...}
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Human Pose )

Example Yhead

» Body Part: yhead = (u, v, 0) where (u, v) center, 6 rotation
» (u,v)e{l,...,M} x{1,...,N},0 € {0,45°,90°, ...}

» Entire BOdy: y = (}/headaYtorso>)/|eft—lower—arm> .. } ey

12/51
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Human Pose )

Y (Ynead, )

Image x € X Example yhead Head detector

» Idea: Have a head classifier (CNN, SVM, ...)  ¢(Vhead, X) € Ry
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» Evaluate everywhere and record score

13 /51



Overview

0000008000000

Human Pose )

Y (Ynead, )

Image x € X Example yhead Head detector

» Idea: Have a head classifier (CNN, SVM, ...)  ¢(Vhead, X) € Ry
» Evaluate everywhere and record score
» Repeat for all body parts

13 /51
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Human Pose Estimation

U (Ynead, ) U(Yrorsor T)

Image x € X

» Compute

y = (y;wkeadvy:orsov T ) = argmax w(}/heada X)Qb()/torsoax) T

Yhead,Ytorso, "
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Human Pose Estimation

U (Ynead, ) U(Yrorsor T)

Image x € X

» Compute

y = (y;wkeadvy:orsov T ) = argmax w(}/heada X)Qb()/torsoax) T

Yhead,Ytorso, "

= (argmaxt)(yhead, x), argmaxi(yrorso; X), *+)

Yhead Ytorso
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Human Pose Estimation

" s w2k 2 s

mage x € X Prediction y* € Y
» Compute

y = (y;;eadvy:orsov T ) = argmax w(}/heada X)¢(ytorsoax) T

Yhead,Ytorso, "

= (argmaxt)(yhead, x), argmaxi(yrorso; X), *+)

Yhead Ytorso

» Problem solved!?
14 /51
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Idea: Connect up the body

model parameters: py,;;
state space: L=l b, b, 1,17

(lwlry')
Av=(ly,l,)

Y (Yneads Yeorso)

Y (Vtorso, Yarm) Head-Torso Model

» Ensure head is on top of torso

(0 (Yhead » Ytorso ) e R,

» Compute
*

y = argmax w(Yheadv X)d’(Ytorso: X)w()/headv }/torso) ce

Yhead>Ytorso, "
This does not decompose anymore. Easy problem has become difficult!

left image by Ben Sapp
15/51
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Example Part-of-Speech (POS) Tagging

» given an English sentence, what part-of-speech is each word?

» useful for automatic natural language processing
> text-to-speech,
» automatic translation,
> question answering, etc.

They refuse to permit us to obtain the refuse | permit
pronoun | verb | inf-to verb pronoun | inf-to | verb article | noun noun

» prediction task: f: X — Y
» X' sequences of English words, (xi,...,xn)

» V: sequences of tags, (y1,...,Ym) with y; € {noun, verb, participle, article,
pronoun, preposition, adverb, conjunction, other}

16 /51
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mple: Part-of-Speech (POS) Tagging

They refuse to permit us to obtain the refuse | permit
pronoun | verb inf-to verb pronoun | inf-to verb article | noun noun

Simplest idea: classify each word

» learn a mapping g : {words} — {tags}
» problem: words are ambiguous

» permit can be verb or noun
» refuse can be verb or noun

per-word prediction cannot avoid mistakes

Structured model: allow for dependencies between tags
» article is typically followed by noun
» inf-to is typically followed by verb

We need to assign tags jointly for the whole sentence, not one word at a time.

17 /51
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Example: RNA Secondary Structure Prediction

Given an RNA sequence in text form, what's it geometric arrangement in the cell?

GAUACCAGCCCUUGGCAGC

Prior knowledge:
» two possible binding types: G<+C and A<U
» big loops can form: local information is not sufficient

Structured model: combine local binding energies into globally optimal arrangement

18 /51
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Most quantities in machine learning are not fully deterministic.

» true randomness of events
» a photon reaches a camera’s CCD chip, is it detected or not?
it depends on quantum effects, which -to our knowledge- are stochastic

» incomplete knowledge
» what will be the next email | receive?
» who won the football match last night?

» modeling choice
» "For any bird, the probability that it can fly is high.”
VS.
» "All birds can fly, except flightless species, or birds that are still very young, or bird which are
injured in a way that prevents them...”

In practice, there is no difference between these!

Probability theory allows us to deal with this.

20/51
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A random variable is a variable that randomly takes one of its possible values:
» the number of photons reaching a CCD chip
» the text of the next email | will receive

» the position of an atom in a molecule

Some notation: we will write
» random variables with capital letters, e.g. X
> the set of possible values it can take with curly letters, e.g. X

» any individual value it can take with lowercase letters, e.g. x

How likely each value x € X is specified by a probability distribution.
There are, slightly different, possibilities:

» X is discrete (typically finite),

» X is continuous.

21/51
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For discrete X (e.g. X = {0,1}:

» p(X = x) is the probability that X takes the value x € X.
If it's clear which variable we mean, we'll just write p(x).

» for example, rolling a die, p(X =3) =p(3) =1/6

> we write x ~ p(x) to indicate that the distribution of X is p(x)

For things to make sense, we need

0<p(x)<1 forallxeX (positivity)
Z p(x)=1 (normalization)
xeX

22 /51
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Example: English words

> Xuorg: pick a word randomly from an English text. Is it "word”?

» Xyord = {true,false}

p(Xthe = true) = 0.05 p(Xihe = false) = 0.95
P(Xhorse = true) = 0.004 P(Xhorse = false) = 0.996

23 /51
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For continuous X (e.g. X = R):
> probability that X takes a value in the set M is

Pr(X € A) :/ p(x)dx
M
» we call p(x) the probability density over x

For things to make sense, we need:
p(x) >0 forallxe X (positivity)
/ p(x) =1 (normalization)
X

Note: for convenience of notation, we use the notation of discrete random variable everywhere.
24 /51



Probability Theory
00000 e0000000000000O0000000000000

Probabilities can be assigned to more than one random variable at a time:

» p(X =x,Y =y) is the probability that X =x and Y =y
(at the same time)

joint probability

Example: English words
Pick three consecutive English words: Xiord: Ywords Zword

> p(Xihe = true, Yhorse = true) = 0.00080

> p(Xhorse = true, Yipe = true) = 0.00001

> P(Xprobabilitistic = true, ygraphical = true, Yimodel = true) = 0.000000045

25 /51
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We can recover the probabilities of individual variables from the joint probability by summing
over all variables we are not interested in.

> p(X =x) = %P(X:vazy)

> p(Xo=2)=3 > X pXi=x1,X=2X3=2x3,X = xq)
X1EX1 x0€AXL X4 €EXY

marginalization

26 /51
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We can recover the probabilities of individual variables from the joint probability by summing
over all variables we are not interested in.

> p(X =x) = %P(X:vazy)

> p(Xo=2)=3% > X p(Xi=x1,X%=2X3=2x3,X =x)
X1EX1 x0€AXL X4 €EXY

marginalization

Example: English text
> p(Xihe = true, Yhorse = true) = 0.0008
> p(Xihe = true, Yhose = false) = 0.0492
Xihe = false, Yhorse = true) = 0.0032

p(

> p(
> p(Xihe = false, Yhorse = false) = 0.9468

p(

Xthe = true) = 0.0008 + 0.0492 = 0.05, etc.
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One random variable can contain information about another one:
» p(X = x| Y = y): conditional probability
what is the probability of X = x, if we already know that Y =y 7
» p(X = x): marginal probability
what is the probability of X = x, without any additional information?
» conditional probabilities can be computed from joint and marginal:

pX=x,Y =y)

not defined if p(Y =y) =0
Y =) ( p(Y =) =0)

pPX =x]Y =y) =

27 /51
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One random variable can contain information about another one:
» p(X = x| Y = y): conditional probability
what is the probability of X = x, if we already know that Y =y 7
» p(X = x): marginal probability
what is the probability of X = x, without any additional information?
» conditional probabilities can be computed from joint and marginal:
pX=x,Y =y)
p(Y =y)

p(X — X‘ Y = y) — (not defined if p(Y =y) =0)

Example: English text
> p(Xihe = true) = 0.05
> p(Xihe = true|Ypose = true) = 0.004 — 0.20

__ 0.0008

> p(Xihe = true|Yipe = true) = 060.823 = 0.006

27 /51
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" /) (zalzp =0.7)
z, = 0.7 ;//] p(zg|zy =0.

,/7

p(ma, Zb)

0 0.5 z4 1

joint (level sets), marginal, conditional probability
28 /51
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Bayes rule

p(BIA)p(A)

Most famous formula in probability:  p(A|B) =
B = (e)

29 /51
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p(BIA)p(A)

Most famous formula in probability:  p(A|B) =
B = (e)

Formally, nothing spectacular: direct consequence of definition of conditional probability.

p(A, B) _ p(B|A)p(A)
p(B) p(B)

p(AlB) =

29 /51
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Bayes rule

p(BIA)p(A)

Most famous formula in probability:  p(A|B) =
B = (e)

Formally, nothing spectacular: direct consequence of definition of conditional probability.

p(A, B) _ p(B|A)p(A)

PAIB) == By o(B)

Nevertheless very useful at least for two situations:

» when A and B have different role, so p(A|B) is intuitive but p(B|A) is not
» A= age, B = {smoker, nonsmoker}
p(A|B) is the age distribution amongst smokers and nonsmokers
p(BJA) is the probability that a person of a certain age smokes

> the information in B help us to update our knowledge about A: p(A) — p(A|B)

29 /51



Probability Theory
0000000000 e000000000000000000000

Bayes rule

Most famous formula in probability:  p(A|B) =

Image: By mattbuck (category) - Own work by mattbuck., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=14658489
30/51
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Not every random variable is informative about every other.
» We say X is independent of Y (write: X 1Y) if

p(X=x,Y=y)=p(X=x)p(Y =y) forallxe X andy € Y
» equivalent (if defined):
PX =xIY =y) =p(X =x),  p(Y = yIX =x) = p(¥ = y)

31/51
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Not every random variable is informative about every other.
» We say X is independent of Y (write: X 1Y) if

p(X=x,Y=y)=p(X=x)p(Y =y) forallxe X andy € Y
» equivalent (if defined):
PX =xIY =y) =p(X =x),  p(Y = yIX =x) = p(¥ = y)

Other random variables can influence the independence:
» X and Y are conditionally independent given Z (write X I Y|Z) if

p(X=x,Y=y|lZ=2)=p(X=x|Z=2)p(Y =y|Z =2z)
» equivalent (if defined):

p(xly,z) = p(x|z),  p(y|x,z) = p(y|z)

31/51
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Example: rolling dice

Let X and Y be the outcome of independently rolling two dice and let Z = X + Y be their

sum.
» X and Y are independent
» X and Z are not independent, Y and Z are not independent

» conditioned on Z, X and Y are not independent anymore

(for fixed Z =z, X and Y can only take certain value combinations)

Example: toddlers
Let X be the height of a toddler, Y the number of words in its vocabulary and Z its age.

» X and Y are not independent: overall, toddlers who are taller know more words

» however, X and Y are conditionally independent given Z:
at a fixed age, toddlers’ growth and vocabulary develop independently
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Example

» X = your genome

» Y1, Yo = your parents’ genomes

> 71,2», 23, Zy = your grantparents' genomes

S 31
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e~ e~ 2 N

\

Magnetic spin in each atoms of a crystal: X;; for i,j € Z

Image: https://www.en.uni-muenchen.de/news/newsarchiv/2013/f-m-81-13.html|

34 /51
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Distribution of matter in the universe: X, for p € R3

Image: By NASA, ESA, E. Jullo (JPL/LAM), P. Natarajan (Yale) and J-P. Kneib (LAM). - http://www.spacetelescope.org/images/heic1014a/, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=11561821
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We apply a function to (the values of) one or more random variables:
x1+Xxo+ -+ Xk
k

The expected value or expectation of a function f with respect to a probability distribution
is the weighted average of the possible values:

Evp(olf ()] =Y p(x)F(x)

xeX
In short, we just write Ex[f(x)] or E[f(x)] or E[f] or Ef.

> f(x) = x? or f(x1,x2,...,Xxk) =

Example: rolling dice

Let X be the outcome of rolling a die and let f(x) = x

1 1 1 1 1 1
EXNp(x)[f(X)] - EXNP(X)[X] == 61 aF 62 aF 63 aF 64 aF 65 aF 66 =35

36 /51



Probability Theory
0000000000000 0000e00000000000000

Example: rolling dice

Xy, Xa: the outcome of rolling two dice independently, f(x1,x2) = x1 + X2

]E(Xl ,x2)~p(x1,%2) [f(Xl y X2 )] =

37/51
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Example: rolling dice

Xy, Xa: the outcome of rolling two dice independently, f(x1,x2) = x1 + X2

IE(X1 ,x2)~p(x1,%2) [f(Xl y X2 )] =

Straight-forward computation: 36 options for (xi, x2), each has probability 3—16

37/51
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Example: rolling dice

Xy, Xa: the outcome of rolling two dice independently, f(x1,x2) = x1 + X2

IE(X1 ,x2)~p(x1,%2) [f(Xl y X2 )] =

Straight-forward computation: 36 options for (xi, x2), each has probability 3—16

E(Xth)Np(Xl,Xz)[f(leX2)] = Z p(X17 XZ)(XI + X2)

X1,X2
1 1 1
1+1 142
36( +1)+ 36( + )+36( 3) +
1 1
241 242 —
( + )+36( +2)+-- +36(6+6)
252
:7:7
36

37/51
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Example: rolling dice

Xy, Xa: the outcome of rolling two dice independently, f(x1,x2) = x1 + X2

E(X1,X2)~P(X1,Xz)[f(xla X2)] =7

Straight-forward computation: 36 options for (xi, x2), each has probability 3—16

E(Xth)Np(Xl,Xz)[f(leX2)] = Z p(X17 XZ)(XI + X2)

X1,X2
1 1 1
1+1 142
36( +1)+ 36( + )+36( 3) +
1 1
241 242 —
( + )+36( +2)+-- +36(6+6)
252
:7:7
36
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Example: rolling dice

X1, Xa: the outcome of rolling two dice independently, f(x1,x2) = x1 + x2

IE()ﬁ x2)~p(x1,x2) [f(Xl y X2 )] =

Sometimes a good strategy: count how often each value occurs and sum over values

s=(x1+x)| 234|567 |8[9]|10]|11 |12
count ng 112(3|4|5(6|54| 3|21

38/51
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Example: rolling dice

X1, Xa: the outcome of rolling two dice independently, f(x1,x2) = x1 + x2

IE(X1,X2)~P(X1,Xz)[f(xlv X2)] =1

Sometimes a good strategy: count how often each value occurs and sum over values

s=(x1+x)| 234|567 |8[9]|10]|11 |12
count ng 112(3|4|5(6|54| 3|21

n
E (x4 )~ p(ee) [F (X1 32)] = Y p(xa, x2) (31 + x2) = —s
X1,X2 S
1 2 3 4 2 1 252
24 3 A 54 11 12="C =7

" 36 36 36 36 36 36 36

38/51
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Example: rolling dice

X1, Xp: the outcome of rolling two dice independently, f(x1,x2) = x1 + x2

IE(X1 x2)~p(x1,%2) [f(Xl y X2 )] =

39/51
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Example: rolling dice

X1, Xp: the outcome of rolling two dice independently, f(x1,x2) = x1 + x2

IE(X1 x2)~p(x1,%2) [f(Xl y X2 )] =

The expected value has a useful property: it is linear in its argument.

> Erop()[f (%) + 8(X)] = Exp [F ()] + Exp([g(x)]

> Eoop() [AM ()] = A p() [F(X)]
If a random variables does not show up in a function, we can ignore the expectation operation
with respect to it

> E(xy)mpeon) [F ()] = Exop[f(X)]

39/51



Probability Theory
000000000000 0000000e000000000000

Example: rolling dice

X1, Xp: the outcome of rolling two dice independently, f(x1,x2) = x1 + x2

E(X17X2)NP(X1,X2)[f(X13 X2)] - E(xl,XQ)Np(xl,XQ)[Xl + X2]
- IE(Xl:X2)~P(X1,><2)[Xl] + IE(X1,X2)~p(x1,X2)[X2]
= By, op(x) [X1] + Exop(o)[x2] =35+3.5 =7

The expected value has a useful property: it is linear in its argument.

> Erop()[f (%) + 8(X)] = Exp [F ()] + Exp([g(x)]

> Eoop() [AM ()] = A p() [F(X)]
If a random variables does not show up in a function, we can ignore the expectation operation
with respect to it

> E(xy)mpeon) [F ()] = Exop[f(X)]

39/51
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Example: rolling dice

» we roll one die

» X1: number facing up, Xa: number facing down

> f(x1,x2) =x1+ X2

E(XLXz)NP(Xl,Xz)[f(le XZ)] =

40 /51
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Example: rolling dice

» we roll one die

» X1: number facing up, Xa: number facing down

> f(x1,x2) =x1+ X2

E(Xl ,Xx2)~p(x1,x2) [f(Xl y X2 )] =7

Answer 1: explicit calculation with dependent X; and X,

| % for combinations (1,6), (2,5), (3,4), (4,3), (5,2), (6,1)
p(x1, x2) = ]
0 for all other combinations.

E (s o) oplane) [F O )] = Y plxa, x0) (1 + x2)

1 7
=01+ 1) +0(1+ 2+ + (1 +6) +0Q+1) + =6 £ =7

(x1,%2)

40 /51



Probability Theory

0000000000000 0000000e00000000000

Example: rolling dice

» we roll one die

» Xi1: number facing up, Xa: number facing down

> f(x1,x2) =x1 + x2

E(Xl ,Xx2)~p(x1,x2) [f(xl y X2 )] =7

Answer 2: use properties of expectation as earlier

E(X17X2)"‘P(X1,X2)[f(xlv X2)] = E(Xl,XQ)Np(xl,XZ)[Xl + X2]
= E(lexz)NP(Xlaxz)[Xl] + E(X1,Xz)~P(X1,X2)[X2]
= B op(a) [X1] + Espp(ro) 2] =35 +35=7

The rules of probability take care of dependence, etc.
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Some expected values show up so often that they have special names.

Variance

The variance of a random variable X is the expected squared deviation from its mean

Var(X) = Ex[(x — Ex[X])2]

also

Var(X) = E,[x?] — (Ex[x])? (exercise)

The variance
» measures how much the random variable fluctuates around its mean
» is invariant under addition

Var(X + a) = Var(X) for a € R.
» scales with the square of multiplicative factors
Var(AX) = A Var(X) for A € R.
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More intuitive:

Standard deviation
The standard deviation of a random variable is the square root of the its variance.

Std(X) = v/ Var(X)

The standard deviation
» is invariant under addition

Std(X + a) = Std(X) for a e R.

» scales with the absolute value of multiplicative factors

Std(AX) = |A|Std(X)  for A € R.
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For two random variables at a time, we can test if their fluctuations around the mean are
consistent or not

Covariance
The covariance of two random variables X and Y is the expected value of the product of
their deviations from their means

Cov(X, Y) = E(x,y)mpix)[(x = Ex[X])(y — Ey[y])]

The covariance
» of a random variable with itself it its variance, Cov(X, X) = Var(X)
> is invariant under addition: Cov(X + a, Y) = Cov(X, Y) = Cov(X, Y + a) for a € R.
» scales linearly under multiplications:

Cov(AX,Y) = ACov(X,Y) = Cov(X,\Y) for A € R.

is 0, if X and Y are independent, but can be 0 even if for dependent X and Y (exercise)

v
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If we do not care about the scales of X and Y, we can normalize by their standard deviations:

Correlation

The correlation coefficient of two random variables X and Y is their covariance divided by
their standard deviations

(X Y) Bl — ED — )]
TV = Sd0sdY) T VEx EBDVE (B

The correlation
» always has values in the interval [—1, 1]
> is invariant under addition: Cov(X + a, Y) = Cov(X, Y) = Cov(X, Y + a) for a € R.
» is invariant under multiplication with positive constants
Corr(AX, Y) = Corr(X, Y) = Corr(X,A\Y) for A > 0.
> inverts its sign under multiplication with negative constants
Corr(—AX, Y) = — Corr(X, Y) = Corr(X, =AY for A > 0.
» is 0, if X and Y are independent, but can be 0 even if for dependent X and Y (exercise24 .
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X:: accustic pressure at any time t, uniformly over all songs on your MP3 player

Example: Audio Signals

For example, t = 60s, what's the probability distribution?

0.00025

> X, € {32768, -32767,...,32767}
Ex[X:] =~ 21

Pr(X; = 21) ~ 0.00045

Var(X;) ~ 12779141

Std(X,) ~ 3575

0.00020

v

0.00015

v

0.00010

v

0.00005

v

00000 566 ~2000 ~15000~10000 ~5000 0 5000 10000 15000 20000
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Xz, Yi: accustic pressures at any time t for two different randomly chosen songs

Example: Audio Signals

Joint probability distribution for t = 60s:

> X., Y, € {—32768, —32767,...,32767}
» E X =E,[Ye] =21

» Cov(Xe, Ye) =0

» Corr(Xe, Ye) =0
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Xs, X accustic pressures at times s and t for one randomly chosen songs

Example: Audio Signals

Joint probability distribution for s = 60s, t = 61s:

v

X,, X, € {32768, —32767, ...,32767}
Ei[Xs] =21, E,[X:] =~ -39

Cov(Xs, X¢) = 0

Corr(Xs, X¢) = 0

v

v

v
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Xs, X accustic pressures at times s and t for one randomly chosen songs

Example: Audio Signals

Joint probability distribution for s = 60s, t = (60 + Wl%)s (one sampling step):

1 -8128112-96-80-64-48»32-16 0 16 32 48 64 80 96112

v

Xo, X € {32768, —32767, ...,32767}
Ei[Xs] =21, E,[X;] ~ 22
Cov(Xs, X;) ~ 12613175

Corr(Xs, X¢) ~ 0.988

v

v

v
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In practice, we might know the distribution of a model, but for the real world we have to work
with samples.

Random sample (in statistics)

A set {x1,...,xp} is a random sample for a random variable X, if each x; is a realization of X.
Equivalently, but easier to treat formally: we create n random variables, Xi, ..., X,, where
each X; is distributed identically to X, and we obtain one realization: xi, ..., Xx,.

Note: in machine learning, we also call each individual realization a sample, and the set of
multiple samples a sample set.

l.i.d. sample

We call the sample set independent and identically distributed (i.i.d.), if the X; are
independent of each other, i.e. p(Xi,...,Xn) = [[; p(Xi).

In practice, we use samples to estimate properties of the underlying probability distribution.
This is easiest for i.i.d. sample sets, but we'll see other examples as well. 4951
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» X = human genome

» number of samples collected:

- g-a Genomics
deCODE = genetics

E 4.‘

2,636 100,000
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» X = human genome

» number of samples collected:

g-a Genomics
SERE deCODE = genetics

= |

2,636 100,000

A
AstraZeneca >

g

MEDICINE INITIATIVE

1 million >1 million 2 million
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Example: Matter Distribution in the Universe

» random field: X, for p € R3

» our universe is one realization — how to estimate anything?

Image: By NASA, ESA, E. Jullo (JPL/LAM), P. Natarajan (Yale) and J-P. Kneib (LAM). - http://www.spacetelescope.org/images/heic1014a/, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=11561821
51/51
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» random field: X, for p € R3

» our universe is one realization — how to estimate anything?

» assume homogeneity (=translation invariance):
for any p1,...,px € R® and for any t € R3:

P(Xpr1: Xpys - -5 Xp ) = P(Xpytts Xpptt -+, Xpytt)

> estimate quantities (e.g. average matter density or correlation
functions) by averaging over multiple locations instead of
multiple universes

Image: By NASA, ESA, E. Jullo (JPL/LAM), P. Natarajan (Yale) and J-P. Kneib (LAM). - http://www.spacetelescope.org/images/heic1014a/, CC BY 3.0,

https://commons.wikimedia.org/w/index.php?curid=11561821
51/51
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