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Refresher of Probabilities
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Thanks to . . .

Sebastian Nowozin Peter Gehler Andreas Geiger Björn Andres Raquel Urtasun

and David Barber, author of textbook ”Bayesian Reasoning and Machine Learning”
http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=Brml.HomePage

for material and slides.
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Textbooks on Graphical Models

I David Barber, Bayesian Reasoning and Machine Learning,
Cambridge University Press, 2011, ISBN-13: 978-0521518147

I Available online for free: http://tinyurl.com/3flppuo
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For the curious ones...

I Bishop, Pattern Recognition and Machine Learning, Springer New York, 2006,
ISBN-13: 978-0387310732

I Koller, Friedman, Probabilistic Graphical Models: Principles and Techniques, The
MIT Press, 2009, ISBN-13: 978-0262013192

I MacKay, Information Theory, Inference and Learning Algorithms, Cambridge
University Press, 2003, ISBN-13: 978-0521642989
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Older tutorial...

Parts published in

I Sebastian Nowozin, Chrsitoph H. Lampert, ”Structured Learning and Prediction in
Computer Vision”, Foundations and Trends in Computer Graphics and Vision, now
publisher, http://www.nowpublishers.com/

I available as PDF on my homepage
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Introduction
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Success Stories of Machine Learning

Robotics Time Series Prediction Social Networks

Language Processing Healthcare Natural Sciences

All of these require dealing with Structured Data

Images: Wikipedia, Microsoft, U Manchester (Ross King), NASA
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This course is about modeling structured data. . .

Text Molecules / Chemical Structures

Documents/HyperText Images
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. . . and about predicting structured data:

I Natural Language Processing:
I Automatic Translation (output: sentences)
I Sentence Parsing (output: parse trees)

I Bioinformatics:
I Secondary Structure Prediction (output: bipartite graphs)
I Enzyme Function Prediction (output: path in a tree)

I Speech Processing:
I Automatic Transcription (output: sentences)
I Text-to-Speech (output: audio signal)

I Robotics:
I Planning (output: sequence of actions)

I Computer Vision:
I Human Pose Estimation (output: locations of body parts)
I Image Segmentation (output: segmentation mask)
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Example: Human Pose Estimation

x ∈ X y ∈ Y

I Given an image, where is a person and how is it articulated?

f : X → Y
I Image x , but what is human pose y ∈ Y precisely?
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Human Pose Y

Example yhead

I Body Part: yhead = (u, v , θ) where (u, v) center, θ rotation
I (u, v) ∈ {1, . . . ,M} × {1, . . . ,N}, θ ∈ {0, 45◦, 90◦, . . .}

I Entire Body: y = (yhead, ytorso, yleft-lower-arm, . . .} ∈ Y
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Human Pose Y

Yhead

X

ψ(yhead, x)

Image x ∈ X Example yhead Head detector

I Idea: Have a head classifier (CNN, SVM, ...) ψ(yhead , x) ∈ R+

I Evaluate everywhere and record score

I Repeat for all body parts
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Human Pose Estimation

Yhead

X

ψ(yhead, x)

Ytorso

X

ψ(ytorso, x)

Image x ∈ X

I Compute

y∗ = (y∗head , y
∗
torso , · · · ) = argmax

yhead ,ytorso ,···
ψ(yhead , x)ψ(ytorso , x) · · ·

= (argmax
yhead

ψ(yhead , x), argmax
ytorso

ψ(ytorso , x), · · · )

I Problem solved!?
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Human Pose Estimation

Image x ∈ X Prediction y∗ ∈ Y

I Compute

y∗ = (y∗head , y
∗
torso , · · · ) = argmax
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Idea: Connect up the body

Yhead

X

ψ(yhead, x)

Ytorso

X

ψ(ytorso, x)

ψ(yhead, ytorso)

ψ(ytorso , yarm) Head-Torso Model

I Ensure head is on top of torso

ψ(yhead , ytorso) ∈ R+

I Compute
y∗ = argmax

yhead ,ytorso ,···
ψ(yhead , x)ψ(ytorso , x)ψ(yhead , ytorso) · · ·

This does not decompose anymore. Easy problem has become difficult!

left image by Ben Sapp
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Example: Part-of-Speech (POS) Tagging

I given an English sentence, what part-of-speech is each word?

I useful for automatic natural language processing
I text-to-speech,
I automatic translation,
I question answering, etc.

They refuse to permit us to obtain the refuse permit
pronoun verb inf-to verb pronoun inf-to verb article noun noun

I prediction task: f : X → Y
I X : sequences of English words, (x1, . . . , xm)

I Y: sequences of tags, (y1, . . . , ym) with yi ∈ {noun, verb, participle, article,

pronoun, preposition, adverb, conjunction, other}
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Example: Part-of-Speech (POS) Tagging

They refuse to permit us to obtain the refuse permit
pronoun verb inf-to verb pronoun inf-to verb article noun noun

Simplest idea: classify each word

I learn a mapping g : {words} → {tags}
I problem: words are ambiguous

I permit can be verb or noun
I refuse can be verb or noun

per-word prediction cannot avoid mistakes

Structured model: allow for dependencies between tags

I article is typically followed by noun

I inf-to is typically followed by verb

We need to assign tags jointly for the whole sentence, not one word at a time.
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Example: RNA Secondary Structure Prediction

Given an RNA sequence in text form, what’s it geometric arrangement in the cell?

GAUACCAGCCCUUGGCAGC

Prior knowledge:

I two possible binding types: G↔C and A↔U

I big loops can form: local information is not sufficient

Structured model: combine local binding energies into globally optimal arrangement
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Refresher of probabilities

Most quantities in machine learning are not fully deterministic.

I true randomness of events
I a photon reaches a camera’s CCD chip, is it detected or not?

it depends on quantum effects, which -to our knowledge- are stochastic

I incomplete knowledge
I what will be the next email I receive?
I who won the football match last night?

I modeling choice
I ”For any bird, the probability that it can fly is high.”

vs.
I ”All birds can fly, except flightless species, or birds that are still very young, or bird which are

injured in a way that prevents them...”

In practice, there is no difference between these!

Probability theory allows us to deal with this.
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Random Variables

A random variable is a variable that randomly takes one of its possible values:

I the number of photons reaching a CCD chip

I the text of the next email I will receive

I the position of an atom in a molecule

Some notation: we will write

I random variables with capital letters, e.g. X

I the set of possible values it can take with curly letters, e.g. X
I any individual value it can take with lowercase letters, e.g. x

How likely each value x ∈ X is specified by a probability distribution.
There are, slightly different, possibilities:

I X is discrete (typically finite),

I X is continuous.
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Discrete Random Variables

For discrete X (e.g. X = {0, 1}:
I p(X = x) is the probability that X takes the value x ∈ X .

If it’s clear which variable we mean, we’ll just write p(x).

I for example, rolling a die, p(X = 3) = p(3) = 1/6

I we write x ∼ p(x) to indicate that the distribution of X is p(x)

For things to make sense, we need

0 ≤ p(x) ≤ 1 for all x ∈ X (positivity)∑
x∈X

p(x) = 1 (normalization)
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Example: English words

I Xword: pick a word randomly from an English text. Is it ”word”?

I Xword = {true, false}

p(Xthe = true) = 0.05 p(Xthe = false) = 0.95

p(Xhorse = true) = 0.004 p(Xhorse = false) = 0.996
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Continuous Random Variables

For continuous X (e.g. X = R):

I probability that X takes a value in the set M is

Pr(X ∈ A) =

∫
M

p(x)dx

I we call p(x) the probability density over x

For things to make sense, we need:

p(x) ≥ 0 for all x ∈ X (positivity)∫
X

p(x) = 1 (normalization)

Note: for convenience of notation, we use the notation of discrete random variable everywhere.
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Joint probabilities

Probabilities can be assigned to more than one random variable at a time:

I p(X = x ,Y = y) is the probability that X = x and Y = y
(at the same time)

joint probability

Example: English words

Pick three consecutive English words: Xword, Yword,Zword

I p(Xthe = true,Yhorse = true) = 0.00080

I p(Xhorse = true,Ythe = true) = 0.00001

I p(Xprobabilitistic = true,Ygraphical = true,Ymodel = true) = 0.000000045
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Marginalization

We can recover the probabilities of individual variables from the joint probability by summing
over all variables we are not interested in.

I p(X = x) =
∑
y∈Y

p(X = x ,Y = y)

I p(X2 = z) =
∑

x1∈X1

∑
x2∈X2

∑
x4∈X4

p(X1 = x1,X2 = z ,X3 = x3,X4 = x4)

marginalization

Example: English text

I p(Xthe = true,Yhorse = true) = 0.0008

I p(Xthe = true,Yhorse = false) = 0.0492

I p(Xthe = false,Yhorse = true) = 0.0032

I p(Xthe = false,Yhorse = false) = 0.9468

I p(Xthe = true) = 0.0008 + 0.0492 = 0.05, etc.
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Conditional probabilities

One random variable can contain information about another one:

I p(X = x |Y = y): conditional probability
what is the probability of X = x , if we already know that Y = y ?

I p(X = x): marginal probability
what is the probability of X = x , without any additional information?

I conditional probabilities can be computed from joint and marginal:

p(X = x |Y = y) =
p(X = x ,Y = y)

p(Y = y)
(not defined if p(Y = y) = 0)

Example: English text

I p(Xthe = true) = 0.05

I p(Xthe = true|Yhorse = true) = 0.0008
0.004 = 0.20

I p(Xthe = true|Ythe = true) = 0.0003
0.05 = 0.006
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Illustration

joint (level sets), marginal, conditional probability
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Bayes rule (Bayes theorem)

Bayes rule

Most famous formula in probability: p(A|B) =
p(B|A)p(A)

p(B)

Formally, nothing spectacular: direct consequence of definition of conditional probability.

p(A|B) =
p(A,B)

p(B)
=

p(B|A)p(A)

p(B)

Nevertheless very useful at least for two situations:

I when A and B have different role, so p(A|B) is intuitive but p(B|A) is not
I A = age, B = {smoker, nonsmoker}

p(A|B) is the age distribution amongst smokers and nonsmokers
p(B|A) is the probability that a person of a certain age smokes

I the information in B help us to update our knowledge about A: p(A) 7→ p(A|B)
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Bayes rule (Bayes theorem)

Bayes rule

Most famous formula in probability: p(A|B) =
p(B|A)p(A)

p(B)

Image: By mattbuck (category) - Own work by mattbuck., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=14658489
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Dependence/Independence

Not every random variable is informative about every other.

I We say X is independent of Y (write: X ⊥⊥ Y ) if

p(X = x ,Y = y) = p(X = x)p(Y = y) for all x ∈ X and y ∈ Y

I equivalent (if defined):

p(X = x |Y = y) = p(X = x), p(Y = y |X = x) = p(Y = y)

Other random variables can influence the independence:

I X and Y are conditionally independent given Z (write X ⊥⊥ Y |Z) if

p(X = x ,Y = y |Z = z) = p(X = x |Z = z)p(Y = y |Z = z)

I equivalent (if defined):

p(x |y , z) = p(x |z), p(y |x , z) = p(y |z)
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Example: rolling dice

Let X and Y be the outcome of independently rolling two dice and let Z = X + Y be their
sum.

I X and Y are independent

I X and Z are not independent, Y and Z are not independent

I conditioned on Z , X and Y are not independent anymore
(for fixed Z = z, X and Y can only take certain value combinations)

Example: toddlers

Let X be the height of a toddler, Y the number of words in its vocabulary and Z its age.

I X and Y are not independent: overall, toddlers who are taller know more words

I however, X and Y are conditionally independent given Z :
at a fixed age, toddlers’ growth and vocabulary develop independently
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Example

I X = your genome

I Y1,Y2 = your parents’ genomes

I Z1,Z2,Z3,Z4 = your grantparents’ genomes
33 / 51



Intro Overview Probability Theory

Discrete Random Fields

Magnetic spin in each atoms of a crystal: Xi ,j for i , j ∈ Z

Image: https://www.en.uni-muenchen.de/news/newsarchiv/2013/f-m-81-13.html
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Continuous Random Fields

Distribution of matter in the universe: Xp for p ∈ R3

Image: By NASA, ESA, E. Jullo (JPL/LAM), P. Natarajan (Yale) and J-P. Kneib (LAM). - http://www.spacetelescope.org/images/heic1014a/, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=11561821
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Expected value

We apply a function to (the values of) one or more random variables:

I f (x) = x2 or f (x1, x2, . . . , xk) =
x1 + x2 + · · ·+ xk

k

The expected value or expectation of a function f with respect to a probability distribution
is the weighted average of the possible values:

Ex∼p(x)[f (x)] :=
∑
x∈X

p(x)f (x)

In short, we just write Ex [f (x)] or E[f (x)] or E[f ] or Ef .

Example: rolling dice

Let X be the outcome of rolling a die and let f (x) = x

Ex∼p(x)[f (x)] = Ex∼p(x)[x ] =
1

6
1 +

1

6
2 +

1

6
3 +

1

6
4 +

1

6
5 +

1

6
6 = 3.5
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Expected value

Example: rolling dice

X1,X2: the outcome of rolling two dice independently, f (x1, x2) = x1 + x2

E(x1,x2)∼p(x1,x2)[f (x1, x2)] =

7

Straight-forward computation: 36 options for (x1, x2), each has probability 1
36

E(x1,x2)∼p(x1,x2)[f (x1, x2)] =
∑
x1,x2

p(x1, x2)(x1 + x2)

=
1

36
(1 + 1) +

1

36
(1 + 2) +

1

36
(1 + 3) + . . .

+
1

36
(2 + 1) +

1

36
(2 + 2) + · · ·+ 1

36
(6 + 6)

=
252

36
= 7
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X1,X2: the outcome of rolling two dice independently, f (x1, x2) = x1 + x2

E(x1,x2)∼p(x1,x2)[f (x1, x2)] =

7

Sometimes a good strategy: count how often each value occurs and sum over values

s = (x1 + x2) 2 3 4 5 6 7 8 9 10 11 12

count ns 1 2 3 4 5 6 5 4 3 2 1
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n
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=
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36
2 +

2
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3 +

3

36
4 +
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5 + · · ·+ 2
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11 +
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Properties of expected values

Example: rolling dice

X1,X2: the outcome of rolling two dice independently, f (x1, x2) = x1 + x2

E(x1,x2)∼p(x1,x2)[f (x1, x2)] =

E(x1,x2)∼p(x1,x2)[x1 + x2]

= E(x1,x2)∼p(x1,x2)[x1] + E(x1,x2)∼p(x1,x2)[x2]

= Ex1∼p(x1)[x1] + Ex2∼p(x2)[x2] = 3.5 + 3.5 = 7

The expected value has a useful property: it is linear in its argument.

I Ex∼p(x)[f (x) + g(x)] = Ex∼p(x)[f (x)] + Ex∼p(x)[g(x)]

I Ex∼p(x)[λf (x)] = λEx∼p(x)[f (x)]

If a random variables does not show up in a function, we can ignore the expectation operation
with respect to it

I E(x ,y)∼p(x ,y)[f (x)] = Ex∼p(x)[f (x)]
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Example: rolling dice

I we roll one die

I X1: number facing up, X2: number facing down

I f (x1, x2) = x1 + x2

E(x1,x2)∼p(x1,x2)[f (x1, x2)] =

7

Answer 1: explicit calculation with dependent X1 and X2

p(x1, x2) =

{
1
6 for combinations (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)

0 for all other combinations.

E(x1,x2)∼p(x1,x2)[f (x1, x2)] =
∑

(x1,x2)
p(x1, x2)(x1 + x2)

= 0(1 + 1) + 0(1 + 2)+ · · ·+ 1

6
(1 + 6) + 0(2 + 1) + · · · = 6 · 7

6
= 7
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Example: rolling dice

I we roll one die

I X1: number facing up, X2: number facing down

I f (x1, x2) = x1 + x2

E(x1,x2)∼p(x1,x2)[f (x1, x2)] = 7

Answer 2: use properties of expectation as earlier

E(x1,x2)∼p(x1,x2)[f (x1, x2)] = E(x1,x2)∼p(x1,x2)[x1 + x2]

= E(x1,x2)∼p(x1,x2)[x1] + E(x1,x2)∼p(x1,x2)[x2]

= Ex1∼p(x1)[x1] + Ex2∼p(x2)[x2] = 3.5 + 3.5 = 7

The rules of probability take care of dependence, etc.
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Some expected values show up so often that they have special names.

Variance

The variance of a random variable X is the expected squared deviation from its mean

Var(X ) = Ex [(x − Ex [x ])2]

also
Var(X ) = Ex [x2]− (Ex [x ])2 (exercise)

The variance
I measures how much the random variable fluctuates around its mean
I is invariant under addition

Var(X + a) = Var(X ) for a ∈ R.
I scales with the square of multiplicative factors

Var(λX ) = λ2 Var(X ) for λ ∈ R.
41 / 51
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More intuitive:

Standard deviation

The standard deviation of a random variable is the square root of the its variance.

Std(X ) =
√

Var(X )

The standard deviation

I is invariant under addition

Std(X + a) = Std(X ) for a ∈ R.

I scales with the absolute value of multiplicative factors

Std(λX ) = |λ|Std(X ) for λ ∈ R.
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For two random variables at a time, we can test if their fluctuations around the mean are
consistent or not

Covariance

The covariance of two random variables X and Y is the expected value of the product of
their deviations from their means

Cov(X ,Y ) = E(x ,y)∼p(x ,y)[(x − Ex [x ])(y − Ey [y ])]

The covariance

I of a random variable with itself it its variance, Cov(X ,X ) = Var(X )

I is invariant under addition: Cov(X + a,Y ) = Cov(X ,Y ) = Cov(X ,Y + a) for a ∈ R.
I scales linearly under multiplications:

Cov(λX ,Y ) = λCov(X ,Y ) = Cov(X , λY ) for λ ∈ R.
I is 0, if X and Y are independent, but can be 0 even if for dependent X and Y (exercise)
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If we do not care about the scales of X and Y , we can normalize by their standard deviations:

Correlation

The correlation coefficient of two random variables X and Y is their covariance divided by
their standard deviations

Corr(X ,Y ) =
Cov(X ,Y )

Std(X ) Std(Y )
=

E(x ,y)∼p(x ,y)[(x − Ex [x ])(y − Ey [y ])]√
Ex(x − Ex [x ])2

√
Ey (y − Ey [y ])2

The correlation
I always has values in the interval [−1, 1]
I is invariant under addition: Cov(X + a,Y ) = Cov(X ,Y ) = Cov(X ,Y + a) for a ∈ R.
I is invariant under multiplication with positive constants

Corr(λX ,Y ) = Corr(X ,Y ) = Corr(X , λY ) for λ > 0.
I inverts its sign under multiplication with negative constants

Corr(−λX ,Y ) = −Corr(X ,Y ) = Corr(X ,−λY ) for λ > 0.
I is 0, if X and Y are independent, but can be 0 even if for dependent X and Y (exercise)
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Example: Audio Signals
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Xt : accustic pressure at any time t, uniformly over all songs on your MP3 player

For example, t = 60s, what’s the probability distribution?

25000 20000 15000 10000 5000 0 5000 10000 15000 20000
0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

I Xt ∈ {−32768,−32767, . . . , 32767}
I Ex [Xt ] ≈ 21

I Pr(Xt = 21) ≈ 0.00045

I Var(Xt) ≈ 12779141

I Std(Xt) ≈ 3575
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Example: Audio Signals
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Xt ,Yt : accustic pressures at any time t for two different randomly chosen songs

Joint probability distribution for t = 60s:
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I Xt ,Yt ∈ {−32768,−32767, . . . , 32767}
I Ex [Xt ] = Ey [Yt ] ≈ 21

I Cov(Xt ,Yt) = 0

I Corr(Xt ,Yt) = 0
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Example: Audio Signals
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Xs ,Xt : accustic pressures at times s and t for one randomly chosen songs

Joint probability distribution for s = 60s, t = 61s:
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I Xs ,Xt ∈ {−32768,−32767, . . . , 32767}
I Ex [Xs ] ≈ 21, Ey [Xt ] ≈ −39

I Cov(Xs ,Xt) ≈ 0

I Corr(Xs ,Xt) ≈ 0
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Example: Audio Signals
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Xs ,Xt : accustic pressures at times s and t for one randomly chosen songs

Joint probability distribution for s = 60s, t = (60 + 1
65536 )s (one sampling step):
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I Xs ,Xt ∈ {−32768,−32767, . . . , 32767}
I Ex [Xs ] ≈ 21, Ey [Xt ] ≈ 22

I Cov(Xs ,Xt) ≈ 12613175

I Corr(Xs ,Xt) ≈ 0.988
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In practice, we might know the distribution of a model, but for the real world we have to work
with samples.

Random sample (in statistics)

A set {x1, . . . , xn} is a random sample for a random variable X , if each xi is a realization of X .

Equivalently, but easier to treat formally: we create n random variables, X1, . . . ,Xn, where
each Xi is distributed identically to X , and we obtain one realization: x1, . . . , xn.

Note: in machine learning, we also call each individual realization a sample, and the set of
multiple samples a sample set.

I.i.d. sample

We call the sample set independent and identically distributed (i.i.d.), if the Xi are
independent of each other, i.e. p(X1, . . . ,Xn) =

∏
i p(Xi ).

In practice, we use samples to estimate properties of the underlying probability distribution.
This is easiest for i.i.d. sample sets, but we’ll see other examples as well. 49 / 51
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Example

I X = human genome

I number of samples collected:

1 2,636 100,000

1 million >1 million 2 million
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Example: Matter Distribution in the Universe

I random field: Xp for p ∈ R3

I our universe is one realization → how to estimate anything?

I assume homogeneity (=translation invariance):
for any p1, . . . , pk ∈ R3 and for any t ∈ R3:

p(Xp1 ,Xp2 , . . . ,Xpk ) = p(Xp1+t ,Xp2+t , . . . ,Xpk+t)

I estimate quantities (e.g. average matter density or correlation
functions) by averaging over multiple locations instead of
multiple universes

Image: By NASA, ESA, E. Jullo (JPL/LAM), P. Natarajan (Yale) and J-P. Kneib (LAM). - http://www.spacetelescope.org/images/heic1014a/, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=11561821
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