Introduction to Probabilistic Graphical Models

Christoph Lampert

IST Austria (Institute of Science and Technology Austria)

Institute of Science and Technology

Markov Networks

Markov Networks

So far: write probability as a product of conditional distributions

$$
p\left(x_{1}, \ldots, x_{D}\right)=\prod_{i=1}^{D} p\left(x_{i} \mid p a\left(x_{i}\right)\right)
$$

- exactly one term per variable
- result is automatically non-negative and normalized

Markov Networks

So far: write probability as a product of conditional distributions

$$
p\left(x_{1}, \ldots, x_{D}\right)=\prod_{i=1}^{D} p\left(x_{i} \mid p a\left(x_{i}\right)\right)
$$

- exactly one term per variable
- result is automatically non-negative and normalized

More flexible: allow products of arbitrary factors

$$
p(x, y, z) \stackrel{?}{=} \phi(x, y) \phi(y, z)
$$

Markov Networks

So far: write probability as a product of conditional distributions

$$
p\left(x_{1}, \ldots, x_{D}\right)=\prod_{i=1}^{D} p\left(x_{i} \mid p a\left(x_{i}\right)\right)
$$

- exactly one term per variable
- result is automatically non-negative and normalized

More flexible: allow products of arbitrary factors

$$
p(x, y, z) \stackrel{?}{=} \phi(x, y) \phi(y, z)
$$

- result is non-negative, if each factor is non-negative, but might not be normalized!

Markov Networks

So far: write probability as a product of conditional distributions

$$
p\left(x_{1}, \ldots, x_{D}\right)=\prod_{i=1}^{D} p\left(x_{i} \mid p a\left(x_{i}\right)\right)
$$

- exactly one term per variable
- result is automatically non-negative and normalized

More flexible: allow products of arbitrary factors

$$
p(x, y, z)=\frac{1}{Z} \phi(x, y) \phi(y, z)
$$

- result is non-negative, if each factor is non-negative, but might not be normalized!
- normalization constant Z or partition function

$$
Z=?
$$

Markov Networks

So far: write probability as a product of conditional distributions

$$
p\left(x_{1}, \ldots, x_{D}\right)=\prod_{i=1}^{D} p\left(x_{i} \mid p a\left(x_{i}\right)\right)
$$

- exactly one term per variable
- result is automatically non-negative and normalized

More flexible: allow products of arbitrary factors

- result is non-negative, if each factor is non-negative, but might not be normalized!
- normalization constant Z or partition function

$$
Z=\sum_{x, y, z} \phi(x, y) \phi(y, z)
$$

Markov Networks

So far: write probability as a product of conditional distributions

$$
p\left(x_{1}, \ldots, x_{D}\right)=\prod_{i=1}^{D} p\left(x_{i} \mid p a\left(x_{i}\right)\right)
$$

- exactly one term per variable
- result is automatically non-negative and normalized

More flexible: allow products of arbitrary factors

- result is non-negative, if each factor is non-negative, but might not be normalized!
- normalization constant Z or partition function

$$
Z=\sum_{x, y, z} \phi(x, y) \phi(y, z)
$$

- convenience notation: $p(x, y, z) \propto \phi(x, y) \phi(y, z) \quad$ "proportional to"

Definitions

Potential

A potential $\phi\left(x_{1}, \ldots, x_{D}\right)$ is a non-negative function of the set of variables.

- special case: conditional distributions $\phi\left(x_{1}, \ldots, x_{D}\right)=p\left(x_{1} \mid x_{2}, \ldots, x_{D}\right)$ as in belief networks

Markov Network

For a set of variables $\mathcal{X}=\left\{x_{1}, \ldots, x_{D}\right\}$ a Markov network (or Markov random field) is defined as a product of potentials over the cliques \mathcal{X}_{c} of the graph \mathcal{G}

$$
p\left(x_{1}, \ldots, x_{D}\right)=\frac{1}{Z} \prod_{c=1}^{C} \phi_{c}\left(\mathcal{X}_{c}\right)
$$

For example:

$$
p(a, \ldots, e) \propto \phi_{a b c}(a, b, c) \phi_{a b}(a, b) \phi_{c d}(c, d) \phi_{c}(c) \phi_{e}(e)
$$

Markov Network

Markov Network

For a set of variables $\mathcal{X}=\left\{x_{1}, \ldots, x_{D}\right\}$ a Markov network (or Markov random field) is defined as a product of potentials over the cliques \mathcal{X}_{c} of the graph \mathcal{G}

$$
p\left(x_{1}, \ldots, x_{D}\right)=\frac{1}{Z} \prod_{c=1}^{C} \phi_{c}\left(\mathcal{X}_{c}\right)
$$

For example:

$$
p(a, \ldots, e) \propto \phi_{a b c}(a, b, c) \phi_{a b}(a, b) \phi_{c d}(c, d) \phi_{c}(c) \phi_{e}(e)
$$

- Equivalent: use only maximal cliques (with different potentials)

$$
p(a, \ldots, e) \propto \phi_{a b c}^{\prime}(a, b, c) \phi_{c d}^{\prime}(c, d) \phi_{e}(e)
$$

Markov Network

Markov Network

For a set of variables $\mathcal{X}=\left\{x_{1}, \ldots, x_{D}\right\}$ a Markov network (or Markov random field) is defined as a product of potentials over the cliques \mathcal{X}_{c} of the graph \mathcal{G}

$$
p\left(x_{1}, \ldots, x_{D}\right)=\frac{1}{Z} \prod_{c=1}^{C} \phi_{c}\left(\mathcal{X}_{c}\right)
$$

For example:

$$
p(a, \ldots, e) \propto \phi_{a b c}(a, b, c) \phi_{a b}(a, b) \phi_{c d}(c, d) \phi_{c}(c) \phi_{e}(e)
$$

- Equivalent: use only maximal cliques (with different potentials)

$$
p(a, \ldots, e) \propto \phi_{a b c}^{\prime}(a, b, c) \phi_{c d}^{\prime}(c, d) \phi_{e}(e)
$$

- Special case: cliques of size 2 - pairwise Markov network

Properties of Markov Networks

$$
p(a, b, c)=\frac{1}{Z} \phi_{a c}(a, c) \phi_{b c}(b, c)
$$

Variables are independent if they have no path between them. Otherwise they are usually dependent.
Check (by marginalising over c): $p(a, b) \neq p(a) p(b)$.

Properties of Markov Networks

$$
p(a, b, c)=\frac{1}{Z} \phi_{a c}(a, c) \phi_{b c}(b, c)
$$

Conditioning on c makes a and b independent. Check: $p(a, b \mid c)=p(a \mid c) p(b \mid c)$.

Difference to directed model: there, conditioning could introduce dependency:

- for example,
 $a \Perp b$, but $a \not \Perp|b| c$

Global Markov Property

Separation

A subset \mathcal{S} separates \mathcal{A} from \mathcal{B} if every path from a member of \mathcal{A} to any member of \mathcal{B} passes through \mathcal{S}.

Example: $\left\{x_{4}\right\}$ separates $\left\{x_{1}, x_{2}, x_{3}\right\}$ from $\left\{x_{5}, x_{6}, x_{7}\right\}$.

Global Markov Property

For disjoint sets of variables $(\mathcal{A}, \mathcal{B}, \mathcal{S})$ where \mathcal{S} separates \mathcal{A} from \mathcal{B}, then $\mathcal{A} \Perp \mathcal{B} \mid \mathcal{S}$

Example: $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ are conditionally independent of $\left\{x_{7}\right\}$ conditioned on $\left\{x_{5}, x_{6}\right\}$

Gibbs Distributions

Gibbs Distribution

A probability distribution that can be written in the form $p(x)=\frac{1}{Z} e^{-E(x)}$ for a function $E: \mathcal{X} \rightarrow \mathbb{R}$ is called Gibbs distribution. E is called energy function.

In particular, a Gibbs distribution can only have strictly positive values (i.e. no zero values).
Any Markov network that has only strictly positive potentials is a Gibbs distribution:
with energy function

$$
p\left(x_{1}, \ldots, x_{D}\right)=\frac{1}{Z} \prod_{c=1}^{C} \phi_{c}\left(\mathcal{X}_{c}\right)=\frac{1}{Z} e^{-E\left(x_{1}, \ldots, x_{D}\right)}
$$

Gibbs distributions are often also written as

$$
p\left(x_{1}, \ldots, x_{D}\right)=e^{-E\left(x_{1}, \ldots, x_{D}\right)-\log Z}=e^{-\sum_{c} \log \phi_{c}\left(\mathcal{X}_{c}\right)-\log Z}
$$

For Markov networks that are Gibbs distributions, the so-called local Markov property holds

$$
\begin{aligned}
& \text { Local Markov Property } \\
& \qquad p(x \mid \mathcal{X} \backslash\{x\})=p(x \mid n e(x))
\end{aligned}
$$

For Markov networks that are Gibbs distributions, the so-called local Markov property holds

$$
\begin{aligned}
& \text { Local Markov Property } \\
& \qquad p(x \mid \mathcal{X} \backslash\{x\})=p(x \mid n e(x))
\end{aligned}
$$

- The set of neighboring nodes $n e(x)$ is called the Markov blanket
- This also holds for sets of variables \Rightarrow simple independence check by separation

Local Markov Property - Example

- $p\left(x_{4} \mid x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)=p\left(x_{4} \mid x_{2}, x_{3}, x_{5}, x_{6}\right)$
- in other words $x_{4} \Perp\left\{x_{1}, x_{7}\right\} \mid\left\{x_{2}, x_{3}, x_{5}, x_{6}\right\}$

Local Markov Property - Example

- $p\left(x_{4} \mid x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)=p\left(x_{4} \mid x_{2}, x_{3}, x_{5}, x_{6}\right)$
- in other words $x_{4} \Perp\left\{x_{1}, x_{7}\right\} \mid\left\{x_{2}, x_{3}, x_{5}, x_{6}\right\}$
- and others

The Hammersley-Clifford Theorem

We know:

- Every Gibbs distribution that is defined with respect to a graph \mathcal{G} has certain conditional independencies (the local Markov property).

The Hammersley-Clifford Theorem

We know:

- Every Gibbs distribution that is defined with respect to a graph \mathcal{G} has certain conditional independencies (the local Markov property).

The opposite also holds!

Hammersely-Clifford Theorem [Hammersley, Clifford, 1971]

Every positive distribution that fulfills the local Markov property with respect to a graph \mathcal{G} can be written as a Markov network over \mathcal{G}.

Directed vs Undirected who wins?

Bayes or Markov?

- So which one is better? Directed or Undirected ?
- Both directed and undirected graphical models imply sets of conditional independences

Bayes or Markov?

- So which one is better? Directed or Undirected ?
- Both directed and undirected graphical models imply sets of conditional independences
- Which one models more distributions? Or are they the same?

Bayes or Markov?

- So which one is better? Directed or Undirected ?
- Both directed and undirected graphical models imply sets of conditional independences
- Which one models more distributions? Or are they the same?
- First introduce "canonical" representation

Relationship directed - undirected models: maps

D Map
A graph is said to be a D map (dependency map) of a distribution if every conditional independence statement satisfied by the distribution is reflected in the graph

D Map

A graph is said to be a D map (dependency map) of a distribution if every conditional independence statement satisfied by the distribution is reflected in the graph

- The graph on the right specifies one conditional independence relation: $x_{1} \Perp x_{2} \mid x_{3}$

D Map

A graph is said to be a D map (dependency map) of a distribution if every conditional independence statement satisfied by the distribution is reflected in the graph

- The graph on the right specifies one conditional independence relation: $x_{1} \Perp x_{2} \mid x_{3}$
- \Rightarrow it is a D map for every distribution that fulfills this independence or less (i.e. none)

Relationship directed - undirected models: maps

D Map

A graph is said to be a D map (dependency map) of a distribution if every conditional independence statement satisfied by the distribution is reflected in the graph

- The graph on the right specifies one conditional independence relation: $x_{1} \Perp x_{2} \mid x_{3}$
- \Rightarrow it is a D map for every distribution that fulfills this independence or less (i.e. none)
- A completely disconnected graph contains all possible
 independence statements for its variables

I Map

A graph is said to be a I map (independence map) of a distribution if every conditional independence implied by the graph is satisfied by the distribution

I Map

A graph is said to be a I map (independence map) of a distribution if every conditional independence implied by the graph is satisfied by the distribution

- The graph on the right specifies one conditional independence relation: $x_{1} \Perp x_{2} \mid x_{3}$

I Map
 A graph is said to be a I map (independence map) of a distribution if every conditional independence implied by the graph is satisfied by the distribution

- The graph on the right specifies one conditional independence relation: $x_{1} \Perp x_{2} \mid x_{3}$
- \Rightarrow it is a I map for every distribution that fulfills this independence or more

I Map

A graph is said to be a I map (independence map) of a distribution if every conditional independence implied by the graph is satisfied by the distribution

- The graph on the right specifies one conditional independence relation: $x_{1} \Perp x_{2} \mid x_{3}$
- \Rightarrow it is a I map for every distribution that fulfills this independence or more
- A fully connected graph implies no independence statements

- \Rightarrow it is a trivial I map for any distribution

Perfect Map

If every conditional independence property of the distribution is reflected in the graph, and vice versa, then the graph is said to be a perfect map for that distribution.

Perfect Map

If every conditional independence property of the distribution is reflected in the graph, and vice versa, then the graph is said to be a perfect map for that distribution.

- A perfect map: Both I map and a D map of the distribution

Relationship directed - undirected GM

- P - set of all distributions for a given set of variables

- P - set of all distributions for a given set of variables
- Distributions that can be represented as a perfect map
- using undirected graph - U
- using a directed graph - D

(a)

(b)
- Middle: conditional independence properties cannot be expressed using an undirected graph over the same three variables

(a)

(b)
- Middle: conditional independence properties cannot be expressed using an undirected graph over the same three variables
- Right: conditional independence properties cannot be expressed using a directed graph over the same four variables
- How to form the smallest undirect model that is at least as powerful as a)?
a)

b)

- How to form the smallest undirect model that is at least as powerful as a)?
b) "Moralize" the graph, i.e. connect unconnected parents.
a)

b)

c)

- How to form the smallest undirect model that is at least as powerful as a)?
b) "Moralize" the graph, i.e. connect unconnected parents.
c) Remove arrows.
a)

b)

c)

- How to form the smallest undirect model that is at least as powerful as a)?
b) "Moralize" the graph, i.e. connect unconnected parents.
c) Remove arrows.
c) is the 'smallest' undirected model that can represent all distributed that a) can. There's many others, e.g. fully connected.

Factor Graphs

Relationship Factorizations to Graphs

- Consider

$$
p(a, b, c)=\phi(a, b) \phi(b, c) \phi(c, a)
$$

- Consider $\quad p(a, b, c)=\phi(a, b) \phi(b, c) \phi(c, a)$
- What is the graph of the corresponding Markov network?

- Consider $\quad p(a, b, c)=\phi(a, b) \phi(b, c) \phi(c, a)$
- What is the graph of the corresponding Markov network?

- How about this one? $\quad p(a, b, c)=\phi(a, b, c)$
- Consider

$$
p(a, b, c)=\phi(a, b) \phi(b, c) \phi(c, a)
$$

- What is the graph of the corresponding Markov network?

- How about this one? $\quad p(a, b, c)=\phi(a, b, c)$
- The same!

Relationship Factorizations to Graphs

- Consider

$$
p(a, b, c)=\phi(a, b) \phi(b, c) \phi(c, a)
$$

- What is the graph of the corresponding Markov network?

- How about this one? $\quad p(a, b, c)=\phi(a, b, c)$
- The same!
- no one-to-one relation between the graph and the factorization of the potential functions!

Relationship Factorizations to Graphs

Why is this a problem?

- Many problems have only small (e.g. pairwise) interactions, e.g. " friendship" in Facebook

Relationship Factorizations to Graphs

Why is this a problem?

- Many problems have only small (e.g. pairwise) interactions, e.g. "friendship" in Facebook
- $p\left(x_{1}, \ldots, x_{6}\right)=\frac{1}{Z} \prod_{i \neq j} \phi_{i j}\left(x_{i}, x_{j}\right) \quad$ with $x_{i} \in\{1, \ldots, L\}$
- $\binom{6}{2}=15$ factors of size $2 \rightarrow$ distribution specified by $15 L^{2}$ values

Relationship Factorizations to Graphs

Why is this a problem?

- Many problems have only small (e.g. pairwise) interactions, e.g. "friendship" in Facebook
- $p\left(x_{1}, \ldots, x_{6}\right)=\frac{1}{Z} \prod_{i \neq j} \phi_{i j}\left(x_{i}, x_{j}\right) \quad$ with $x_{i} \in\{1, \ldots, L\}$
- $\binom{6}{2}=15$ factors of size $2 \rightarrow$ distribution specified by $15 L^{2}$ values
- corresponding graph: fully connected

Relationship Factorizations to Graphs

Why is this a problem?

- Many problems have only small (e.g. pairwise) interactions, e.g. "friendship" in Facebook
- $p\left(x_{1}, \ldots, x_{6}\right)=\frac{1}{Z} \prod_{i \neq j} \phi_{i j}\left(x_{i}, x_{j}\right) \quad$ with $x_{i} \in\{1, \ldots, L\}$
- $\binom{6}{2}=15$ factors of size $2 \rightarrow$ distribution specified by $15 L^{2}$ values
- corresponding graph: fully connected

- also compatible with, e.g.,

$$
p\left(x_{1}, \ldots, x_{6}\right)=\frac{1}{Z} \phi\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \phi\left(x_{1}, x_{2}, x_{5}, x_{6}\right) \phi\left(x_{3}, x_{4}, x_{5}, x_{6}\right) \quad \rightarrow \quad 3 L^{4} \text { values! }
$$

- or even $p\left(x_{1}, \ldots, x_{6}\right)=\frac{1}{Z} \phi\left(x_{1}, \ldots, x_{6}\right) \quad \rightarrow \quad L^{6}$ values!

Relationship Factorizations to Graphs

Why is this a problem?

- Many problems have only small (e.g. pairwise) interactions, e.g. "friendship" in Facebook
- $p\left(x_{1}, \ldots, x_{6}\right)=\frac{1}{Z} \prod_{i \neq j} \phi_{i j}\left(x_{i}, x_{j}\right) \quad$ with $x_{i} \in\{1, \ldots, L\}$
- $\binom{6}{2}=15$ factors of size $2 \rightarrow$ distribution specified by $15 L^{2}$ values
- corresponding graph: fully connected

- also compatible with, e.g.,

$$
p\left(x_{1}, \ldots, x_{6}\right)=\frac{1}{Z} \phi\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \phi\left(x_{1}, x_{2}, x_{5}, x_{6}\right) \phi\left(x_{3}, x_{4}, x_{5}, x_{6}\right) \quad \rightarrow \quad 3 L^{4} \text { values! }
$$

- or even $p\left(x_{1}, \ldots, x_{6}\right)=\frac{1}{Z} \phi\left(x_{1}, \ldots, x_{6}\right) \quad \rightarrow \quad L^{6}$ values!

The graph alone does not tell us if the model is tractable or not. So why bother with it???

Relationship Potentials to Graphs

- We overcome his by augmenting the notation.
- We introduce an extra node (a square) for each factor in the factorization The square is connected to all nodes contributing to the factor.

(a)

(b)

(c)
- (a): Markov Network graph

Relationship Potentials to Graphs

- We overcome his by augmenting the notation.
- We introduce an extra node (a square) for each factor in the factorization The square is connected to all nodes contributing to the factor.

(a)

(b)

(c)
- (a): Markov Network graph
- (b): Factor graph representation of $p(a, b, c) \propto \phi(a, b, c)$

Relationship Potentials to Graphs

- We overcome his by augmenting the notation.
- We introduce an extra node (a square) for each factor in the factorization The square is connected to all nodes contributing to the factor.

(a)

(b)

(c)
- (a): Markov Network graph
- (b): Factor graph representation of $p(a, b, c) \propto \phi(a, b, c)$
- (c): Factor graph representation of $p(a, b, c) \propto \phi(a, b) \phi(b, c) \phi(c, a)$

Relationship Potentials to Graphs

- We overcome his by augmenting the notation.
- We introduce an extra node (a square) for each factor in the factorization The square is connected to all nodes contributing to the factor.

(a)

(b)

(c)
- (a): Markov Network graph
- (b): Factor graph representation of $p(a, b, c) \propto \phi(a, b, c)$
- (c): Factor graph representation of $p(a, b, c) \propto \phi(a, b) \phi(b, c) \phi(c, a)$
- Different factor graphs can have the same Markov network $(b, c) \Rightarrow(a)$

Directed Factor Graphs

- This also works for directed graph / belief network.
- The structure of the factorization is retained:

- But doesn't add much information, so typically not used.

Factor Graph

Given a function

$$
f\left(x_{1}, \ldots, x_{n}\right)=\prod_{i} \psi_{i}\left(\mathcal{X}_{i}\right)
$$

the factor graph (FG) has a node (represented by a square) for each factor $\psi_{i}\left(\mathcal{X}_{i}\right)$ and a variable node (represented by a circle) for each variable x_{j}.

Factor Graph

Given a function

$$
f\left(x_{1}, \ldots, x_{n}\right)=\prod_{i} \psi_{i}\left(\mathcal{X}_{i}\right)
$$

the factor graph (FG) has a node (represented by a square) for each factor $\psi_{i}\left(\mathcal{X}_{i}\right)$ and a variable node (represented by a circle) for each variable x_{j}. When used to represent a distribution

$$
p\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z} \prod_{i} \psi_{i}\left(\mathcal{X}_{i}\right)
$$

a normalization constant is assumed.

Bipartite graph

Bipartite

A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V

- Factor graphs are bipartite graphs. Edge are always between a variables node (circle) and a factor node (square).
- Question: which distribution ?

- Answer:
- Question: which distribution ?

- Answer:

$$
p(x)=\frac{1}{Z} f_{a}\left(x_{1}, x_{2}\right) f_{b}\left(x_{1}, x_{2}\right) f_{c}\left(x_{2}, x_{3}\right) f_{d}\left(x_{3}\right)
$$

- Question: Which factor graph ?

$$
p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{1}, x_{2}\right)
$$

- Answer:
- Question: Which factor graph ?

$$
p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{1}, x_{2}\right)
$$

- Answer:

Example: A Factor Graph and Energy Function for Image Denoising

$\mathcal{X}:$

$$
p(x, y)=\frac{1}{Z} e^{-E(x, y)} \quad E(x, y)=\sum_{i \in\{\text { pixels }\}} E_{i}\left(x_{i}, y_{i}\right)+\sum_{(i, j) \in\{\text { edges }\}} E_{i j}\left(y_{i}, y_{j}\right)
$$

Pairwise Markov Random Field (MRF):

- $E_{i}\left(x_{i}, y_{i}\right)=\alpha\left(x_{i}-y_{i}\right)^{2}$
- $E_{i j}\left(y_{i}, y_{j}\right)=\beta\left|y_{i}-y_{j}\right|$
- $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}$ can be adjusted per image

Example: A Factor Graph and Energy Function for Human Pose Estimation

$$
p(y \mid x)=\frac{1}{Z} e^{-E(y ; x)} \quad E(y ; x)=\sum_{i \in\{\text { head,torso }, \ldots\}} E_{i}\left(y_{i} ; x_{i}\right)+\sum_{(i, j)} E_{i j}\left(y_{i}, y_{j}\right)
$$

- unary factors (depend on one label): appearance
- e.g. $E_{\text {head }}(y ; x)$ "Does location y in image x look like a head?"
- pairwise factors (depend on two labels): geometry
- e.g. $E_{\text {head-torso }}\left(y_{\text {head }}, y_{\text {torso }}\right)$ "Is location $y_{\text {head }}$ above location $y_{\text {torso }}$?"

Example: A Factor Graph and Energy Function for Image Segmentation

Energy function components ("Ising" model):

- $E_{i}\left(y_{i}=1, x_{i}\right)=\left\{\begin{array}{ll}\text { low } & \text { if } x_{i} \text { is the right color, e.g. brown } \\ \text { high } & \text { otherwise }\end{array} \quad E_{i}\left(y_{i}=0, x_{i}\right)=-E_{i}\left(y_{i}=1, x_{i}\right)\right.$
- $E_{i}\left(y_{i}, y_{j}\right)= \begin{cases}\text { low } & \text { if } y_{i}=y_{j} \\ \text { high } & \text { otherwise }\end{cases}$
higher probability if neighbors have same labels
\rightarrow smooth labelings

The graphs of graphical models represent families of probability distributions graphically:

- Bayesian networks: directed acyclic graphs, product of conditional distribution
- by default, arrows have no causal interpretation
- but: causal Bayesian networks also exist

The graphs of graphical models represent families of probability distributions graphically:

- Bayesian networks: directed acyclic graphs, product of conditional distribution
- by default, arrows have no causal interpretation
- but: causal Bayesian networks also exist
- Markov networks: undirected, local cliques of dependent variables

The graphs of graphical models represent families of probability distributions graphically:

- Bayesian networks: directed acyclic graphs, product of conditional distribution
- by default, arrows have no causal interpretation
- but: causal Bayesian networks also exist
- Markov networks: undirected, local cliques of dependent variables
- Factor graphs
- makes the factorization explicit
- not a larger class of distributions, "just" a different way of drawing the graph

The graphs of graphical models represent families of probability distributions graphically:

- Bayesian networks: directed acyclic graphs, product of conditional distribution
- by default, arrows have no causal interpretation
- but: causal Bayesian networks also exist
- Markov networks: undirected, local cliques of dependent variables
- Factor graphs
- makes the factorization explicit
- not a larger class of distributions, "just" a different way of drawing the graph
- for modeling undirected models, thinking in terms of factor graphs is very useful

The graphs of graphical models represent families of probability distributions graphically:

- Bayesian networks: directed acyclic graphs, product of conditional distribution
- by default, arrows have no causal interpretation
- but: causal Bayesian networks also exist
- Markov networks: undirected, local cliques of dependent variables
- Factor graphs
- makes the factorization explicit
- not a larger class of distributions, "just" a different way of drawing the graph
- for modeling undirected models, thinking in terms of factor graphs is very useful

To specify an actual distribution, we also have to provide:

- for directed models: the conditional tables
- for undirected models: the potentials

Often, these are learned from training data (while the graph structure is fixed manually).

