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Markov Networks

So far: write probability as a product of conditional distributions

p(x1, . . . , xD) =
∏D

i=1
p(xi | pa(xi ))

I exactly one term per variable
I result is automatically non-negative and normalized

More flexible: allow products of arbitrary factors

p(x , y , z)
?
= φ(x , y)φ(y , z)

p(x , y , z) =
1

Z
φ(x , y)φ(y , z)

I result is non-negative, if each factor is non-negative, but might not be normalized!
I normalization constant Z or partition function

Z = ?

∑
x ,y ,z

φ(x , y)φ(y , z)

I convenience notation: p(x , y , z) ∝ φ(x , y)φ(y , z) ”proportional to”

3 / 34



Markov Networks Directed vs. Undirected Factor Graphs

Markov Networks

So far: write probability as a product of conditional distributions

p(x1, . . . , xD) =
∏D

i=1
p(xi | pa(xi ))

I exactly one term per variable
I result is automatically non-negative and normalized

More flexible: allow products of arbitrary factors

p(x , y , z)
?
= φ(x , y)φ(y , z)

p(x , y , z) =
1

Z
φ(x , y)φ(y , z)

I result is non-negative, if each factor is non-negative, but might not be normalized!
I normalization constant Z or partition function

Z = ?

∑
x ,y ,z

φ(x , y)φ(y , z)

I convenience notation: p(x , y , z) ∝ φ(x , y)φ(y , z) ”proportional to”

3 / 34



Markov Networks Directed vs. Undirected Factor Graphs

Markov Networks

So far: write probability as a product of conditional distributions

p(x1, . . . , xD) =
∏D

i=1
p(xi | pa(xi ))

I exactly one term per variable
I result is automatically non-negative and normalized

More flexible: allow products of arbitrary factors

p(x , y , z)
?
= φ(x , y)φ(y , z)

p(x , y , z) =
1

Z
φ(x , y)φ(y , z)

I result is non-negative, if each factor is non-negative, but might not be normalized!

I normalization constant Z or partition function

Z = ?

∑
x ,y ,z

φ(x , y)φ(y , z)

I convenience notation: p(x , y , z) ∝ φ(x , y)φ(y , z) ”proportional to”

3 / 34



Markov Networks Directed vs. Undirected Factor Graphs

Markov Networks

So far: write probability as a product of conditional distributions

p(x1, . . . , xD) =
∏D

i=1
p(xi | pa(xi ))

I exactly one term per variable
I result is automatically non-negative and normalized

More flexible: allow products of arbitrary factors

(((((((((((((hhhhhhhhhhhhh
p(x , y , z)

?
= φ(x , y)φ(y , z) p(x , y , z) =

1

Z
φ(x , y)φ(y , z)

I result is non-negative, if each factor is non-negative, but might not be normalized!
I normalization constant Z or partition function

Z = ?

∑
x ,y ,z

φ(x , y)φ(y , z)

I convenience notation: p(x , y , z) ∝ φ(x , y)φ(y , z) ”proportional to”

3 / 34



Markov Networks Directed vs. Undirected Factor Graphs

Markov Networks

So far: write probability as a product of conditional distributions

p(x1, . . . , xD) =
∏D

i=1
p(xi | pa(xi ))

I exactly one term per variable
I result is automatically non-negative and normalized

More flexible: allow products of arbitrary factors

(((((((((((((hhhhhhhhhhhhh
p(x , y , z)

?
= φ(x , y)φ(y , z) p(x , y , z) =

1

Z
φ(x , y)φ(y , z)

I result is non-negative, if each factor is non-negative, but might not be normalized!
I normalization constant Z or partition function

Z =
∑
x ,y ,z

φ(x , y)φ(y , z)

I convenience notation: p(x , y , z) ∝ φ(x , y)φ(y , z) ”proportional to”

3 / 34



Markov Networks Directed vs. Undirected Factor Graphs

Markov Networks

So far: write probability as a product of conditional distributions

p(x1, . . . , xD) =
∏D

i=1
p(xi | pa(xi ))

I exactly one term per variable
I result is automatically non-negative and normalized

More flexible: allow products of arbitrary factors

(((((((((((((hhhhhhhhhhhhh
p(x , y , z)

?
= φ(x , y)φ(y , z) p(x , y , z) =

1

Z
φ(x , y)φ(y , z)

I result is non-negative, if each factor is non-negative, but might not be normalized!
I normalization constant Z or partition function

Z =
∑
x ,y ,z

φ(x , y)φ(y , z)

I convenience notation: p(x , y , z) ∝ φ(x , y)φ(y , z) ”proportional to”
3 / 34



Markov Networks Directed vs. Undirected Factor Graphs

Definitions

Potential

A potential φ(x1, . . . , xD) is a non-negative function of the set
of variables.

I special case: conditional distributions φ(x1, . . . , xD) = p(x1|x2, . . . , xD) as in belief
networks
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Markov Network

Markov Network

For a set of variables X = {x1, . . . , xD} a Markov
network (or Markov random field) is defined as a
product of potentials over the cliques Xc of the graph G

p(x1, . . . , xD) =
1

Z

C∏
c=1

φc(Xc)

For example:
p(a, . . . , e) ∝ φabc(a, b, c)φab(a, b)φcd(c , d)φc(c)φe(e)

I Equivalent: use only maximal cliques (with different potentials)

p(a, . . . , e) ∝ φ′abc(a, b, c)φ′cd(c , d)φe(e)

I Special case: cliques of size 2 – pairwise Markov network
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Markov Networks Directed vs. Undirected Factor Graphs

Properties of Markov Networks

a b

c
p(a, b, c) =

1

Z
φac(a, c)φbc(b, c)

a b

c

→ a b

Variables are independent if they have no path between them.
Otherwise they are usually dependent.

Check (by marginalising over c): p(a, b) 6= p(a)p(b).
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Properties of Markov Networks

a b

c
p(a, b, c) =

1

Z
φac(a, c)φbc(b, c)

a b

c

→ a b

Conditioning on c makes a and b independent. Check: p(a, b|c) = p(a|c)p(b|c).

Difference to directed model: there, conditioning could introduce dependency:

I for example,
a c b a ⊥⊥ b, but a 6⊥⊥ b|c
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Global Markov Property

Separation

A subset S separates A from B if every path from a
member of A to any member of B passes through S.

Example: {x4} separates {x1, x2, x3} from {x5, x6, x7}.

Global Markov Property

For disjoint sets of variables (A,B,S) where S separates
A from B, then A ⊥⊥ B | S

Example: {x1, x2, x3, x4} are conditionally independent
of {x7} conditioned on {x5, x6}

1

2

4

3

5

6

7
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Markov Networks Directed vs. Undirected Factor Graphs

Gibbs Distributions

Gibbs Distribution

A probability distribution that can be written in the form p(x) = 1
Z e
−E(x) for a

function E : X → R is called Gibbs distribution. E is called energy function.

In particular, a Gibbs distribution can only have strictly positive values (i.e. no zero values).

Any Markov network that has only strictly positive potentials is a Gibbs distribution:

p(x1, . . . , xD) =
1

Z

C∏
c=1

φc(Xc) =
1

Z
e−E(x1,...,xD)

with energy function E (x1, . . . , xD) =
∑
c

Ec(Xc) for Ec(Xc) = − log φ(Xc)

Gibbs distributions are often also written as

p(x1, . . . , xD) = e−E(x1,...,xD)−log Z = e−
∑

c log φc (Xc )−log Z
9 / 34



Markov Networks Directed vs. Undirected Factor Graphs

Local Markov Property

For Markov networks that are Gibbs distributions, the so-called local Markov property holds

Local Markov Property

p(x | X \ {x}) = p(x | ne(x))

I The set of neighboring nodes ne(x) is called the Markov blanket

I This also holds for sets of variables ⇒ simple independence check by separation
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Markov Networks Directed vs. Undirected Factor Graphs

Local Markov Property – Example

1

2

4

3

5

6

7

I p(x4 | x1, x2, x3, x4, x5, x6, x7) = p(x4 | x2, x3, x5, x6)

I in other words x4 ⊥⊥ {x1, x7} | {x2, x3, x5, x6}

I and others
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Markov Networks Directed vs. Undirected Factor Graphs

The Hammersley-Clifford Theorem

We know:

I Every Gibbs distribution that is defined with respect
to a graph G has certain conditional independencies
(the local Markov property).

The opposite also holds!

Hammersely-Clifford Theorem [Hammersley, Clifford, 1971]

Every positive distribution that fulfills the local Markov
property with respect to a graph G can be written as a
Markov network over G.
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Directed vs Undirected who wins?
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Markov Networks Directed vs. Undirected Factor Graphs

Bayes or Markov?

I So which one is better? Directed or Undirected ?

I Both directed and undirected graphical models imply sets of conditional independences

I Which one models more distributions? Or are they the same?

I First introduce “canonical” representation
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Markov Networks Directed vs. Undirected Factor Graphs

Relationship directed – undirected models: maps

D Map

A graph is said to be a D map (dependency map) of a
distribution if every conditional independence statement
satisfied by the distribution is reflected in the graph

I The graph on the right specifies one conditional
independence relation: x1 ⊥⊥ x2|x3

I ⇒ it is a D map for every distribution that fulfills this
independence or less (i.e. none)

I A completely disconnected graph contains all possible
independence statements for its variables

I ⇒ it is a trivial D map for any distribution
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Relationship directed – undirected models: maps

I Map

A graph is said to be a I map (independence map) of a
distribution if every conditional independence implied by the
graph is satisfied by the distribution

I The graph on the right specifies one conditional
independence relation: x1 ⊥⊥ x2|x3

I ⇒ it is a I map for every distribution that fulfills this
independence or more

I A fully connected graph implies no independence statements

I ⇒ it is a trivial I map for any distribution
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Markov Networks Directed vs. Undirected Factor Graphs

Relationship directed – undirected models: maps

Perfect Map

If every conditional independence property of the distribution
is reflected in the graph, and vice versa, then the graph is
said to be a perfect map for that distribution.

I A perfect map: Both I map and a D map of the distribution
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Markov Networks Directed vs. Undirected Factor Graphs

Relationship directed – undirected GM

I P – set of all distributions for a given set of variables

I Distributions that can be represented as a perfect map

I using undirected graph – U
I using a directed graph – D
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Markov Networks Directed vs. Undirected Factor Graphs

(a) (b)

I Middle: conditional independence properties cannot be expressed using an undirected
graph over the same three variables

I Right: conditional independence properties cannot be expressed using a directed graph
over the same four variables
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Markov Networks Directed vs. Undirected Factor Graphs

a)

x1 x2

x3 x4

b)

x1 x2

x3 x4
c)

x1 x2

x3 x4

I How to form the smallest undirect model that is at least as powerful as a)?

b) ”Moralize” the graph, i.e. connect unconnected parents.

c) Remove arrows.

c) is the ’smallest’ undirected model that can represent all distributed that a) can.
There’s many others, e.g. fully connected.
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Markov Networks Directed vs. Undirected Factor Graphs

Factor Graphs
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Markov Networks Directed vs. Undirected Factor Graphs

Relationship Factorizations to Graphs

I Consider p(a, b, c) = φ(a, b)φ(b, c)φ(c , a)

I What is the graph of the corresponding Markov network?

a

c b

I How about this one? p(a, b, c) = φ(a, b, c)

I The same!

I no one-to-one relation between the graph and the factorization of the potential functions!
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Markov Networks Directed vs. Undirected Factor Graphs

Relationship Factorizations to Graphs

Why is this a problem?

I Many problems have only small (e.g. pairwise) interactions, e.g. ”friendship” in Facebook

I p(x1, . . . , x6) = 1
Z

∏
i 6=j φij(xi , xj) with xi ∈ {1, . . . , L}

I
(6

2

)
= 15 factors of size 2 → distribution specified by 15L2 values

I corresponding graph: fully connected

I also compatible with, e.g.,

p(x1, . . . , x6) =
1

Z
φ(x1, x2, x3, x4)φ(x1, x2, x5, x6)φ(x3, x4, x5, x6) → 3L4 values!

I or even p(x1, . . . , x6) = 1
Z φ(x1, . . . , x6) → L6 values!

The graph alone does not tell us if the model is tractable or not. So why bother with it???
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I corresponding graph: fully connected

I also compatible with, e.g.,

p(x1, . . . , x6) =
1

Z
φ(x1, x2, x3, x4)φ(x1, x2, x5, x6)φ(x3, x4, x5, x6) → 3L4 values!

I or even p(x1, . . . , x6) = 1
Z φ(x1, . . . , x6) → L6 values!

The graph alone does not tell us if the model is tractable or not. So why bother with it???
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Markov Networks Directed vs. Undirected Factor Graphs

Relationship Potentials to Graphs

I We overcome his by augmenting the notation.

I We introduce an extra node (a square) for each factor in the factorization
The square is connected to all nodes contributing to the factor.

a

c b

a

c b

a

c b

(a) (b) (c)

I (a): Markov Network graph

I (b): Factor graph representation of p(a, b, c) ∝ φ(a, b, c)

I (c): Factor graph representation of p(a, b, c) ∝ φ(a, b)φ(b, c)φ(c , a)

I Different factor graphs can have the same Markov network (b,c)⇒(a)
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Markov Networks Directed vs. Undirected Factor Graphs

Directed Factor Graphs

I This also works for directed graph / belief network.

I The structure of the factorization is retained:

a

c b

a

c b

I But doesn’t add much information, so typically not used.
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Markov Networks Directed vs. Undirected Factor Graphs

Factor Graph Definition

Factor Graph

Given a function
f (x1, . . . , xn) =

∏
i

ψi (Xi ),

the factor graph (FG) has a node (represented by a square) for each factor ψi (Xi ) and a
variable node (represented by a circle) for each variable xj .

When used to represent a
distribution

p(x1, . . . , xn) =
1

Z

∏
i

ψi (Xi ),

a normalization constant is assumed.
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Markov Networks Directed vs. Undirected Factor Graphs

Bipartite graph

Bipartite

A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V such
that every edge connects a vertex in U to one in V

a

c b

I Factor graphs are bipartite graphs. Edge are always between a variables node (circle) and
a factor node (square).
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Markov Networks Directed vs. Undirected Factor Graphs

Factor graph: example 1

I Question: which distribution ?

I Answer:

28 / 34



Markov Networks Directed vs. Undirected Factor Graphs

Factor graph: example 1

I Question: which distribution ?

I Answer:

p(x) =
1

Z
fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3)

28 / 34



Markov Networks Directed vs. Undirected Factor Graphs

Factor graph: example 2

I Question: Which factor graph ?

p(x1, x2, x3) = p(x1)p(x2)p(x3 | x1, x2)

I Answer:
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Markov Networks Directed vs. Undirected Factor Graphs

Example: A Factor Graph and Energy Function for Image Denoising

X : Y:

p(x , y) =
1

Z
e−E(x ,y) E (x , y) =

∑
i∈{pixels}

Ei (xi , yi ) +
∑

(i ,j)∈{edges}

Eij(yi , yj)

Pairwise Markov Random Field (MRF):

I Ei (xi , yi ) = α(xi − yi )
2 outputs are likely similar to inputs

I Eij(yi , yj) = β|yi − yj | neighboring outputs are likely similar to each other → smooth output

I α ∈ R and β ∈ R can be adjusted per image
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Markov Networks Directed vs. Undirected Factor Graphs

Example: A Factor Graph and Energy Function for Human Pose Estimation

. . .

Ytop

Yhead

YtorsoYrarm

Yrhnd

Yrleg

Yrfoot Ylfoot

Ylleg

Ylarm

Ylhnd

X

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

F
(1)

top

F
(2)

top,head

p(y |x) =
1

Z
e−E(y ;x) E (y ; x) =

∑
i∈{head,torso,. . . }

Ei (yi ; xi ) +
∑
(i ,j)

Eij(yi , yj)

I unary factors (depend on one label): appearance
I e.g. Ehead(y ; x) ”Does location y in image x look like a head?”

I pairwise factors (depend on two labels): geometry
I e.g. Ehead-torso(yhead, ytorso) ”Is location yhead above location ytorso?”
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Markov Networks Directed vs. Undirected Factor Graphs

Example: A Factor Graph and Energy Function for Image Segmentation

X : Y:

p(y |x) =
1

Z
e−E(y ;x) E (y ; x) =

∑
i∈{pixels}

Ei (yi ; xi ) +
∑

(i ,j)∈{edges}

Eij(yi , yj)

Energy function components (”Ising” model):

I Ei (yi = 1, xi ) =

{
low if xi is the right color, e.g. brown

high otherwise
Ei (yi = 0, xi ) = −Ei (yi = 1, xi )

I Ei (yi , yj) =

{
low if yi = yj

high otherwise

higher probability if neighbors have same labels
→ smooth labelings
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Markov Networks Directed vs. Undirected Factor Graphs

Summary (so far)

The graphs of graphical models represent families of probability distributions graphically:

I Bayesian networks: directed acyclic graphs, product of conditional distribution
I by default, arrows have no causal interpretation
I but: causal Bayesian networks also exist

I Markov networks: undirected, local cliques of dependent variables
I Factor graphs

I makes the factorization explicit
I not a larger class of distributions, “just” a different way of drawing the graph

I for modeling undirected models, thinking in terms of factor graphs is very useful

To specify an actual distribution, we also have to provide:

I for directed models: the conditional tables

I for undirected models: the potentials

Often, these are learned from training data (while the graph structure is fixed manually).
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