Introduction to Probabilistic Graphical Models

Christoph Lampert

IST Austria (Institute of Science and Technology Austria)

Institute of Science and Technology

Laplace Smoothing
Maximum likelihood estimation assigns 0 probability to any outcome it has not seen. This can have unfortunate consequences:

Laplace Smoothing

Maximum likelihood estimation assigns 0 probability to any outcome it has not seen.
This can have unfortunate consequences:

- simplest probabilistic text model: $p(D)=\prod_{i} p\left(w_{i}\right) \quad$ "bag of words"
- how to estimate p ?
- take an English text: $D=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ where each w_{i} is a word
- estimate the probability, $\hat{p}_{M L}(w)$, of each English word w using maximum likelihood
- take another English text: $D^{\prime}=\left(w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{n^{\prime}}^{\prime}\right)$. What is $\hat{p}_{M L}\left(D^{\prime}\right)$

Laplace Smoothing

Maximum likelihood estimation assigns 0 probability to any outcome it has not seen.
This can have unfortunate consequences:

- simplest probabilistic text model: $p(D)=\prod_{i} p\left(w_{i}\right) \quad$ "bag of words"
- how to estimate p ?
- take an English text: $D=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ where each w_{i} is a word
- estimate the probability, $\hat{p}_{M L}(w)$, of each English word w using maximum likelihood
- take another English text: $D^{\prime}=\left(w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{n^{\prime}}^{\prime}\right)$. What is $\hat{p}_{M L}\left(D^{\prime}\right)$
- most likely 0 , namely whenever D^{\prime} contains a word w not present in D, so $\hat{p}_{M L}(w)=0$

Laplace Smoothing

Maximum likelihood estimation assigns 0 probability to any outcome it has not seen.
This can have unfortunate consequences:

- simplest probabilistic text model: $p(D)=\prod_{i} p\left(w_{i}\right) \quad$ "bag of words"
- how to estimate p ?
- take an English text: $D=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ where each w_{i} is a word
- estimate the probability, $\hat{p}_{M L}(w)$, of each English word w using maximum likelihood
- take another English text: $D^{\prime}=\left(w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{n^{\prime}}^{\prime}\right)$. What is $\hat{p}_{M L}\left(D^{\prime}\right)$
- most likely 0 , namely whenever D^{\prime} contains a word w not present in D, so $\hat{p}_{M L}(w)=0$ How to overcome?

Laplace Smoothing

Maximum likelihood estimation assigns 0 probability to any outcome it has not seen.
This can have unfortunate consequences:

- simplest probabilistic text model: $p(D)=\prod_{i} p\left(w_{i}\right) \quad$ "bag of words"
- how to estimate p ?
- take an English text: $D=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ where each w_{i} is a word
- estimate the probability, $\hat{p}_{M L}(w)$, of each English word w using maximum likelihood
- take another English text: $D^{\prime}=\left(w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{n^{\prime}}^{\prime}\right)$. What is $\hat{p}_{M L}\left(D^{\prime}\right)$
- most likely 0 , namely whenever D^{\prime} contains a word w not present in D, so $\hat{p}_{M L}(w)=0$

How to overcome? $\quad \hat{p}_{M L}(x)=\frac{n_{x}}{n} \quad \rightarrow \quad \hat{p}_{\alpha}(x)=\frac{n_{x}+\alpha}{n+L \alpha} \quad$ "Laplace smoothing"

- where n_{x} is the number of counts of any $x \in \mathcal{X}$,
- $L=|\mathcal{X}|$ is the number of states,
- α is a small value, e.g. 1 , or $\frac{1}{2}$, or $\frac{1}{L}$.
also: "pseudo-count"

Maximum A-Posteriori Parameter Estimation

Role of the prior

Imagine a game:

- a roll a die five times: $1,5,2,1,3,5 \quad \rightarrow \quad \hat{p}_{M L}(x)=\left(\frac{1}{3}, \frac{1}{6}, \frac{1}{6}, 0, \frac{1}{3}, 0\right)$
- Now I offer you a bet:
- I roll the die once more: if I roll a 6, you pay me 100 Euros, otherwise, I pay you 10 Euros.
- Do you accept?

Maximum A-Posteriori Parameter Estimation

Role of the prior

Imagine a game:

- a roll a die five times: $1,5,2,1,3,5 \quad \rightarrow \quad \hat{p}_{M L}(x)=\left(\frac{1}{3}, \frac{1}{6}, \frac{1}{6}, 0, \frac{1}{3}, 0\right)$
- Now I offer you a bet:
- I roll the die once more: if I roll a 6, you pay me 100 Euros, otherwise, I pay you 10 Euros.
- Do you accept?

Possibly not, even though maximum likelihood says yes:

$$
\hat{p}_{M L}(6)=0 \quad \rightarrow \quad \mathbb{E}_{x \sim \hat{p}_{M L}}[\text { outcome }]=0 \cdot(-100)+1 \cdot 10=10
$$

What about Laplace-smoothing? For $\alpha=1$: $\quad \hat{p}_{1}(x)=\left(\frac{1}{4}, \frac{1}{6}, \frac{1}{6}, \frac{1}{12}, \frac{1}{4}, \frac{1}{12}\right)$

$$
\hat{p}_{\alpha=1}(6)=\frac{1}{12} \quad \rightarrow \quad \mathbb{E}_{x \sim \hat{p}_{1}}[\text { outcome }]=\frac{1}{12}(-100)+\frac{11}{12} 10=\frac{5}{6}>0
$$

Role of the prior

Imagine a game:

- a roll a die five times: $1,5,2,1,3,5 \quad \rightarrow \quad \hat{p}_{M L}(x)=\left(\frac{1}{3}, \frac{1}{6}, \frac{1}{6}, 0, \frac{1}{3}, 0\right)$
- Now I offer you a bet:
- I roll the die once more: if I roll a 6, you pay me 100 Euros, otherwise, I pay you 10 Euros.
- Do you accept?

Possibly not, even though maximum likelihood says yes:

$$
\hat{p}_{M L}(6)=0 \quad \rightarrow \quad \mathbb{E}_{x \sim \hat{p}_{M L}}[\text { outcome }]=0 \cdot(-100)+1 \cdot 10=10
$$

What about Laplace-smoothing? For $\alpha=1$: $\quad \hat{p}_{1}(x)=\left(\frac{1}{4}, \frac{1}{6}, \frac{1}{6}, \frac{1}{12}, \frac{1}{4}, \frac{1}{12}\right)$

$$
\hat{p}_{\alpha=1}(6)=\frac{1}{12} \quad \rightarrow \quad \mathbb{E}_{\times \sim \hat{\rho}_{1}}[\text { outcome }]=\frac{1}{12}(-100)+\frac{11}{12} 10=\frac{5}{6}>0
$$

Role of the prior

Imagine a game:

- a roll a die five times: $1,5,2,1,3,5 \quad \rightarrow \quad \hat{p}_{M L}(x)=\left(\frac{1}{3}, \frac{1}{6}, \frac{1}{6}, 0, \frac{1}{3}, 0\right)$
- Now I offer you a bet:
- I roll the die once more: if I roll a 6, you pay me 100 Euros, otherwise, I pay you 10 Euros.
- Do you accept?

Possibly not, even though maximum likelihood says yes:

$$
\hat{p}_{M L}(6)=0 \quad \rightarrow \quad \mathbb{E}_{x \sim \hat{p}_{M L}}[\text { outcome }]=0 \cdot(-100)+1 \cdot 10=10
$$

What about Laplace-smoothing? For $\alpha=1$: $\quad \hat{p}_{1}(x)=\left(\frac{1}{4}, \frac{1}{6}, \frac{1}{6}, \frac{1}{12}, \frac{1}{4}, \frac{1}{12}\right)$

$$
\hat{p}_{\alpha=1}(6)=\frac{1}{12} \quad \rightarrow \quad \mathbb{E}_{x \sim \hat{p}_{1}}[\text { outcome }]=\frac{1}{12}(-100)+\frac{11}{12} 10=\frac{5}{6}>0
$$

So why not? Most likely, you have a prior belief about what probabilities to expect!

Maximum A-Posteriori Parameter Estimation

- We treated θ as a random variable instead of unknown fixed value.
- for any fixed θ, we have a distribution over $x: \quad p(x ; \theta) \rightarrow p(x \mid \theta)$
- for data x_{1}, \ldots, x_{n}, we interested in $p\left(\theta \mid x_{1}, \ldots, x_{n}\right)$

$$
p\left(\theta \mid x_{1}, \ldots, x_{n}\right) \stackrel{\text { Bayes rule }}{=} \frac{p\left(x_{1}, \ldots, x_{n} \mid \theta\right) p(\theta)}{p\left(x_{1}, \ldots, x_{n}\right)}
$$

Maximum A-Posteriori Parameter Estimation

- We treated θ as a random variable instead of unknown fixed value.
- for any fixed θ, we have a distribution over $x: \quad p(x ; \theta) \rightarrow p(x \mid \theta)$
- for data x_{1}, \ldots, x_{n}, we interested in $p\left(\theta \mid x_{1}, \ldots, x_{n}\right)$

$$
p\left(\theta \mid x_{1}, \ldots, x_{n}\right) \stackrel{\text { Bayes rule }}{=} \frac{p\left(x_{1}, \ldots, x_{n} \mid \theta\right) p(\theta)}{p\left(x_{1}, \ldots, x_{n}\right)}
$$

- what's the most likely value for θ ? maximum a-posteriori (MAP) estimate

$$
\begin{aligned}
\hat{\theta}_{M A P} & =\underset{\theta}{\operatorname{argmax}} p\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\underset{\theta}{\operatorname{argmax}} p\left(x_{1}, \ldots, x_{n} \mid \theta\right) p(\theta) \\
& =\underset{\theta}{\operatorname{argmax}} \underbrace{p(\theta)}_{\text {Prior }} \underbrace{\left.\prod_{i=1}^{n} p\left(x_{i}\right) \mid \theta\right)}_{\text {data likelihood }}=\underset{\theta}{\operatorname{argmax}}[\underbrace{\log p(\theta)}_{\text {log-prior }}+\underbrace{\left.\sum_{i=1}^{n} \log p\left(x_{i}\right) \mid \theta\right)}_{\text {data log-likelihood }}]
\end{aligned}
$$

Maximum A-Posteriori Parameter Estimation

Maximum likelihood estimator for coin toss

We need a prior! How likely are different parameter values (without having seen data)?

- $p(\theta)=1$ for all $\theta \in[0,1]$

$$
\hat{\theta}_{M A P}=\frac{n_{\text {head }}}{n}=\hat{\theta}
$$

- $p(\theta) \propto \theta(1-\theta)$ (more mass at $\theta=\frac{1}{2}$)

$$
\hat{\theta}_{M A P}=\frac{n_{\text {head }}+1}{n+2}
$$

- $p(\theta)=2 \min (\theta, 2-\theta)$ (also more mass at $\theta=\frac{1}{2}$)

no simple expression for $\hat{\theta}_{M A P}$

Maximum A-posteriori estimation for coin toss

A prior should reflect our belief, but not destroy tractability of computations.

- a prior such that $p(\theta \mid x)$ has same parametric form as $p(\theta)$ is called conjugate.
- Coin example: $\quad p\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\theta^{n_{\text {head }}}(1-\theta)^{n-n_{\text {head }}}$
- Conjugate prior for $\theta: \quad p(\theta) \propto \theta^{a-1}(1-\theta)^{b-1} \quad$ "beta distribution" Beta (a, b)
- Posterior distribution:
$p\left(\theta \mid x_{1}, \ldots, x_{n}\right) \propto p\left(x_{1}, \ldots, x_{n} \mid \theta\right) p(\theta)=\theta^{a-1+n_{\text {head }}}(1-\theta)^{b-1+n-n_{\text {head }}}$
- MAP estimate: $\hat{\theta}_{\text {MAP }}=\frac{a-1+n_{\text {head }}}{n+a+b-2}$
- special cases:
- $a=1, b=1: \quad p(\theta)=1$
- $a=2, b=2: \quad p(\theta) \propto \theta(1-\theta)$
in both cases, we were still able to compute $\hat{\theta}_{\text {MAP }}$

A Fully Bayesian Treatment

- $\hat{\theta}_{M L}$ and $\hat{\theta}_{M A P}$ are just point estimates for θ

A Fully Bayesian Treatment

- $\hat{\theta}_{M L}$ and $\hat{\theta}_{M A P}$ are just point estimates for θ
- Maybe the full posterior distribution contains more information?

$$
p\left(\theta \mid x_{1}, \ldots, x_{n}\right) \propto \theta^{a-1+n_{\text {head }}}(1-\theta)^{b-1+n-n_{\text {head }}}
$$

- $p\left(\theta \mid x_{1}, \ldots, x_{n}\right)$ is a beta-distribution

$$
\operatorname{Beta}(t \mid \alpha, \beta)=\frac{1}{B(\alpha, \beta)} t^{\alpha-1}(1-t)^{\beta-1}
$$

Examples of Beta distributions

A Fully Bayesian Treatment

- $\hat{\theta}_{M L}$ and $\hat{\theta}_{M A P}$ are just point estimates for θ
- Maybe the full posterior distribution contains more information?

$$
p\left(\theta \mid x_{1}, \ldots, x_{n}\right) \propto \theta^{a-1+n_{\text {head }}}(1-\theta)^{b-1+n-n_{\text {head }}}
$$

- $p\left(\theta \mid x_{1}, \ldots, x_{n}\right)$ is a beta-distribution

$$
\operatorname{Beta}(t \mid \alpha, \beta)=\frac{1}{B(\alpha, \beta)} t^{\alpha-1}(1-t)^{\beta-1}
$$

For example, at $\alpha=2, \beta=5$:

- asymmetric/skewed

A Fully Bayesian Treatment

- $\hat{\theta}_{M L}$ and $\hat{\theta}_{M A P}$ are just point estimates for θ
- Maybe the full posterior distribution contains more information?

$$
p\left(\theta \mid x_{1}, \ldots, x_{n}\right) \propto \theta^{a-1+n_{\text {head }}}(1-\theta)^{b-1+n-n_{\text {head }}}
$$

- $p\left(\theta \mid x_{1}, \ldots, x_{n}\right)$ is a beta-distribution

$$
\operatorname{Beta}(t \mid \alpha, \beta)=\frac{1}{B(\alpha, \beta)} t^{\alpha-1}(1-t)^{\beta-1}
$$

For example, at $\alpha=2, \beta=5$:

- asymmetric/skewed
- maximum at $t=\frac{\alpha-1}{\alpha+\beta-2}$. Here $t=0.2$
- median at $t \approx \frac{\alpha-\frac{1}{3}}{\alpha+\beta-\frac{2}{3}}$. Here: $t \approx 0.26$:
- mean at $t=\frac{\alpha}{\alpha+\beta}$. Here $t \approx 0.28$

A Fully Bayesian Treatment

- $\hat{\theta}_{M L}$ and $\hat{\theta}_{M A P}$ are just point estimates for θ
- Maybe the full posterior distribution contains more information?

$$
p\left(\theta \mid x_{1}, \ldots, x_{n}\right) \propto \theta^{a-1+n_{\text {head }}}(1-\theta)^{b-1+n-n_{\text {head }}}
$$

- $p\left(\theta \mid x_{1}, \ldots, x_{n}\right)$ is a beta-distribution

$$
\operatorname{Beta}(t \mid \alpha, \beta)=\frac{1}{B(\alpha, \beta)} t^{\alpha-1}(1-t)^{\beta-1}
$$

For example, at $\alpha=2, \beta=5$:

- asymmetric/skewed
- maximum at $t=\frac{\alpha-1}{\alpha+\beta-2}$. Here $t=0.2$
- median at $t \approx \frac{\alpha-\frac{1}{3}}{\alpha+\beta-\frac{2}{3}}$. Here: $t \approx 0.26$:
- mean at $t=\frac{\alpha}{\alpha+\beta}$. Here $t \approx 0.28$

Common choice for "Bayesians" : posterior mean $\hat{\theta}_{P M}=\mathbb{E}_{\theta \sim p(\theta \mid \mathcal{D})}[\theta]$

Maximum A-Posteriori vs. Maximum Likelihood vs. Bayesian

Maximum A-Posteriori vs. Maximum Likelihood vs. Bayesian
Maximum likelihood

+ usually the easiest to use
+ consistent estimator, if model distribution is correct
- hard to include prior knowledge, e.g. reasonable ranges
- overconfident if little data is available, e.g. probability is 0 for never-seen values

Maximum A-Posteriori vs. Maximum Likelihood vs. Bayesian
Maximum likelihood

+ usually the easiest to use
+ consistent estimator, if model distribution is correct
- hard to include prior knowledge, e.g. reasonable ranges
- overconfident if little data is available, e.g. probability is 0 for never-seen values

Maximum a-posteriori

+ can reflect prior knowledge, e.g. known parameter ranges
+ more robust: if n is small, estimate stays close to prior
- not always clear how to chose a prior
- computationally more challenging, especially if no conjugate prior is used

Maximum A-Posteriori vs. Maximum Likelihood vs. Bayesian
Maximum likelihood

+ usually the easiest to use
+ consistent estimator, if model distribution is correct
- hard to include prior knowledge, e.g. reasonable ranges
- overconfident if little data is available, e.g. probability is 0 for never-seen values

Maximum a-posteriori

+ can reflect prior knowledge, e.g. known parameter ranges
+ more robust: if n is small, estimate stays close to prior
- not always clear how to chose a prior
- computationally more challenging, especially if no conjugate prior is used

Bayesian

+ same advantages of maximum a-posteriori
+ information about uncertainty of estimate
- same disadvantages as maximum a-posteriori, computationally even more challenging

Maximum A-Posteriori vs. Maximum Likelihood vs. Bayesian
Maximum likelihood

+ usually the easiest to use
+ consistent estimator, if model distribution is correct
- hard to include prior knowledge, e.g. reasonable ranges
- overconfident if little data is available, e.g. probability is 0 for never-seen values

Maximum a-posteriori

+ can reflect prior knowledge, e.g. known parameter ranges
+ more robust: if n is small, estimate stays close to prior
- not always clear how to chose a prior
- computationally more challenging, especially if no conjugate prior is used

Bayesian

+ same advantages of maximum a-posteriori
+ information about uncertainty of estimate
- same disadvantages as maximum a-posteriori, computationally even more challenging

Note: for $n \rightarrow \infty$, data will dominate the prior and all pretty much the same

Maximum Likelihood for Bayesian Networks

Example: Lung Cancer network

- Patient
- has lung cancer $c \in\{0,1\}$
- was exposed to asbestos $a \in\{0,1\}$
- is a smoker $s \in\{0,1\}$

Example: Lung Cancer network

- Patient
- has lung cancer $c \in\{0,1\}$
- was exposed to asbestos $a \in\{0,1\}$
- is a smoker $s \in\{0,1\}$
- Given the following relationship

$$
p(a, s, c)=p(c \mid a, s) p(a) p(s)
$$

Example: Lung Cancer network

- Patient
- has lung cancer $c \in\{0,1\}$
- was exposed to asbestos $a \in\{0,1\}$
- is a smoker $s \in\{0,1\}$
- Given the following relationship

$$
p(a, s, c)=p(c \mid a, s) p(a) p(s)
$$

-What are the parameters to learn?

Example: Lung Cancer network

- Patient
- has lung cancer $c \in\{0,1\}$
- was exposed to asbestos $a \in\{0,1\}$
- is a smoker $s \in\{0,1\}$
- Given the following relationship

$$
p(a, s, c)=p(c \mid a, s) p(a) p(s)
$$

- What are the parameters to learn? Conditional probability tables (CPT)

$$
\begin{aligned}
& \theta^{a}=p(a=1) \in \mathbb{R}, \quad \theta^{s}=p(s=1) \in \mathbb{R} \\
& \theta^{c}=\left(\theta_{a=0, s=0}^{c}, \theta_{a=0, s=1}^{c}, \theta_{a=1, s=0}^{c}, \theta_{a=1, s=1}^{c}\right) \in \mathbb{R}^{4}
\end{aligned}
$$

with

$$
\theta_{a=i, s=j}^{c}=p(c=1 \mid a=i, s=j)
$$

Example: Lung Cancer network

We observe N patients: observations $\mathcal{D}=\left\{\left(a_{1}, s_{1}, c_{1}\right),\left(a_{2}, s_{2}, c_{2}\right), \ldots\right\}$

a	s	c
1	1	1
1	0	0
0	1	1
0	1	0
1	1	1
0	0	0
1	0	1

plate notation

Example: Lung Cancer network

$$
p(a, s, c)=p(c \mid a, s) p(a) p(s)
$$

- Log-likelihood
$\log \mathcal{L}(\theta ; \mathcal{D})=\sum_{i} \log p\left(a_{i}, s_{i}, c_{i}\right)=\sum_{i} \log p\left(a_{i} ; \theta_{a}\right)+\sum_{i} \log p\left(s_{i} ; \theta_{s}\right)+\sum_{i} \log p\left(c_{i} \mid a_{i}, s_{i} ; \theta_{c}\right)$

Example: Lung Cancer network

$$
p(a, s, c)=p(c \mid a, s) p(a) p(s)
$$

- Log-likelihood
$\log \mathcal{L}(\theta ; \mathcal{D})=\sum_{i} \log p\left(a_{i}, s_{i}, c_{i}\right)=\sum_{i} \log p\left(a_{i} ; \theta_{a}\right)+\sum_{i} \log p\left(s_{i} ; \theta_{s}\right)+\sum_{i} \log p\left(c_{i} \mid a_{i}, s_{i} ; \theta_{c}\right)$
Now we count:
- Denote $n_{a=0, s=0, c=0}=\sum_{i} \llbracket a_{i}=0 \wedge s_{i}=0 \wedge c_{i}=0 \rrbracket \quad$ (count number of cases)
- Analogously $n_{a=0, s=0, c=1}, \ldots, n_{a=1, s=1, c=1}$

Example: Lung Cancer network

$$
p(a, s, c)=p(c \mid a, s) p(a) p(s)
$$

- Log-likelihood
$\log \mathcal{L}(\theta ; \mathcal{D})=\sum_{i} \log p\left(a_{i}, s_{i}, c_{i}\right)=\sum_{i} \log p\left(a_{i} ; \theta_{a}\right)+\sum_{i} \log p\left(s_{i} ; \theta_{s}\right)+\sum_{i} \log p\left(c_{i} \mid a_{i}, s_{i} ; \theta_{c}\right)$
Now we count:
- Denote $n_{a=0, s=0, c=0}=\sum_{i} \llbracket a_{i}=0 \wedge s_{i}=0 \wedge c_{i}=0 \rrbracket \quad$ (count number of cases)
- Analogously $n_{a=0, s=0, c=1}, \ldots, n_{a=1, s=1, c=1}$

Collapse terms in log-likelihood according to value combinations:

$$
\begin{aligned}
\log \mathcal{L}(\theta ; \mathcal{D})= & n_{a=0} \log p(a=0)+n_{a=1} \log p(a=1)+n_{s=0} \log p(s=0)+n_{s=1} \log p(s=1) \\
& +n_{a=0, s=0, c=0} \log p(c=0 \mid a=0, s=0)+\ldots \\
& +n_{a=1, s=1, c=1} \log p(c=1 \mid a=1, s=1)
\end{aligned}
$$

Example: Lung Cancer network

Express in terms of parameters:

$$
\begin{aligned}
\log \mathcal{L}(\theta)= & n_{a=0} \log \left(1-\theta^{a}\right)+n_{a=1} \theta^{a}+n_{s=0} \log \left(1-\theta^{s}\right)+n_{s=1} \theta^{s} \\
& +n_{a=0, s=0, c=0} \log \left(1-\theta_{a=0, s=0}^{c}\right)+\cdots+n_{a=1, s=1, c=1} \theta_{a=1, s=0}^{c}
\end{aligned}
$$

with conditional probability tables as parameters

- $\theta^{a}=p(a=1)$
- $\theta^{s}=p(s=1)$
- $\theta_{a=0, s=0}^{c}=p(c=1 \mid a=0, s=0)$
- $\theta_{a=0, s=1}^{c}=p(c=1 \mid a=0, s=1)$
- $\theta_{a=1, s=0}^{c}=p(c=1 \mid a=1, s=0)$
- $\theta_{a=1, s=1}^{c}=p(c=1 \mid a=1, s=1)$

Note: no interaction between parameters. We can optimize for each of them separately.

Example: Lung Cancer network

- For example, $\theta_{a=1, s=0}^{c}$
$\log \mathcal{L}(\theta)=n_{a=1, s=0, c=1} \log \theta_{a=1, s=0}^{c}+n_{a=1, s=0, c=0} \log \left(1-\theta_{a=1, s=0}^{c}\right) \quad$ + const.

Example: Lung Cancer network

- For example, $\theta_{a=1, s=0}^{c}$

$$
\log \mathcal{L}(\theta)=n_{a=1, s=0, c=1} \log \theta_{a=1, s=0}^{c}+n_{a=1, s=0, c=0} \log \left(1-\theta_{a=1, s=0}^{c}\right) \quad \text { + const. }
$$

- Setting the derivative to 0

$$
\frac{n_{a=1, s=0, c=1}}{\hat{\theta}_{a=1, s=0}^{c}}-\frac{n_{a=1, s=0, c=0}}{\left(1-\hat{\theta}_{a=1, s=0}^{c}\right)}=0
$$

Example: Lung Cancer network

- For example, $\theta_{a=1, s=0}^{c}$

$$
\log \mathcal{L}(\theta)=n_{a=1, s=0, c=1} \log \theta_{a=1, s=0}^{c}+n_{a=1, s=0, c=0} \log \left(1-\theta_{a=1, s=0}^{c}\right) \quad \text { + const. }
$$

- Setting the derivative to 0

$$
\frac{n_{a=1, s=0, c=1}}{\hat{\theta}_{a=1, s=0}^{c}}-\frac{n_{a=1, s=0, c=0}}{\left(1-\hat{\theta}_{a=1, s=0}^{c}\right)}=0
$$

- Therefore

$$
\hat{\theta}_{a=1, s=0}^{c}=\frac{n_{a=1, s=0, c=1}}{n_{a=1, s=0, c=0}+n_{a=1, s=0, c=1}}
$$

Example: Lung Cancer network

- For example, $\theta_{a=1, s=0}^{c}$

$$
\log \mathcal{L}(\theta)=n_{a=1, s=0, c=1} \log \theta_{a=1, s=0}^{c}+n_{a=1, s=0, c=0} \log \left(1-\theta_{a=1, s=0}^{c}\right) \quad+\text { const. }
$$

- Setting the derivative to 0

$$
\frac{n_{a=1, s=0, c=1}}{\hat{\theta}_{a=1, s=0}^{c}}-\frac{n_{a=1, s=0, c=0}}{\left(1-\hat{\theta}_{a=1, s=0}^{c}\right)}=0
$$

- Therefore

$$
\hat{\theta}_{a=1, s=0}^{c}=\frac{n_{a=1, s=0, c=1}}{n_{a=1, s=0, c=0}+n_{a=1, s=0, c=1}}
$$

Maximum Likelihood solution corresponds to empirical counts, just like in coin example!

Maximum Likelihood for CPTs

Unfortunately, sometimes, counting is not practical or possible:

- CPT might be too large

(L^{n} parameters even for L-state variables)
- not enough data (most counts would be zero)
- continuous variables, $x_{1}, \ldots, x_{d} \in \mathbb{R}$
- missing data: e.g. hidden Markov model
"observations" are observed, but "hidden states" are not \rightarrow "latent variable models"

Learning mixture models

Mixture Models

A mixture model is one in which a set of simpler models is combined to produce a richer model:

- We observe and care about a random variable V, that does not have a simple distribution.
- We model it as a generated by a two-stage procedure
- Sample the state of an auxiliary variable $H \sim p(h)$
- Given the value h of H, sample the value of v from a h-dependent distribution $p(v \mid h)$

$$
p(v, h)=p(v \mid h) p(h)
$$

$$
p(v)=\sum_{h \in \mathcal{H}} p(v \mid h) p(h)
$$

The variable V is visible or observable, while H is hidden or latent.
Note: the effect of the hidden H might be 'real', or just a computational trick.

Mixture Models

Example: Gaussian Mixture Model (GMM)

For $h \in\{1,2, \ldots, K\}$, each $p(v \mid h)=\mathcal{N}\left(x ; \mu_{h}, \Sigma_{h}\right)$

If we only see sample v_{1}, \ldots, v_{n}, can we learn $p(h)$ and $p(v \mid h)$?

Mixture Models

Example: Gaussian Mixture Model (GMM)

For $h \in\{1,2, \ldots, K\}$, each $p(v \mid h)=\mathcal{N}\left(x ; \mu_{h}, \Sigma_{h}\right)$

If we only see sample v_{1}, \ldots, v_{n}, can we learn $p(h)$ and $p(v \mid h)$?

Maximum Likelihood Estimation for GMMs

- data: v_{1}, \ldots, v_{n}
- parameters:
- $\pi:=(p(h=1), \ldots, p(h=K)) \in \mathbb{R}^{K}$
- μ_{1}, \ldots, μ_{K} with $\mu_{k} \in \mathbb{R}^{d}$ for $k=1, \ldots, K$
- $\Sigma_{1}, \ldots, \Sigma_{K}$ with $\Sigma_{k} \in \mathbb{R}^{d \times d}$ for $k=1, \ldots, K$
- model:

$$
p(v)=\sum_{k=1}^{K} \pi_{k} \frac{1}{\sqrt{(2 \pi)^{d}\left|\Sigma_{k}\right|}} e^{-\frac{1}{2}\left(v-\mu_{k}\right)^{\top} \Sigma^{-1}\left(v-\mu_{k}\right)}
$$

- data likelihood:

$$
p\left(v_{1}, \ldots, v_{n}\right)=\prod_{i=1}^{n} p\left(v_{i}\right)=\prod_{i=1}^{n} \sum_{k=1}^{K} \pi_{k} \frac{1}{\sqrt{(2 \pi)^{d}\left|\Sigma_{k}\right|}} e^{-\frac{1}{2}\left(v_{i}-\mu_{k}\right)^{\top} \Sigma_{k}^{-1}\left(v_{i}-\mu_{k}\right)}
$$

No closed-form expressions as for single Gaussian maximum likelihood estimation \rightarrow numeric optimization, e.g. gradient descent

Expectation Maximization (EM) Algorithm for GMMs

Thinking of the generating process:

- for each example: sample a hidden value $h_{i} \sim p(h)$, then sample $v_{i} \sim p\left(v \mid h_{i}\right)$
- if we knew h_{1}, \ldots, h_{n},
- we could split data into groups, $\left\{v_{i}: h_{i}=k\right\}$, and
- estimate $p(v \mid h)$ separately for each value of h
- in practice, we don't know h_{i}, but if we had $p(v, h)$, we could estimate: $p\left(h \mid v_{i}\right)$

Expectation Maximization (EM) Algorithm for GMMs

Thinking of the generating process:

- for each example: sample a hidden value $h_{i} \sim p(h)$, then sample $v_{i} \sim p\left(v \mid h_{i}\right)$
- if we knew h_{1}, \ldots, h_{n},
- we could split data into groups, $\left\{v_{i}: h_{i}=k\right\}$, and
- estimate $p(v \mid h)$ separately for each value of h
- in practice, we don't know h_{i}, but if we had $p(v, h)$, we could estimate: $p\left(h \mid v_{i}\right)$

Chicken and egg:

- to get a good model $p(v)$, we need $p(h \mid v)$
- to get $p(h \mid v)$, we need a good model of $p(v, h)$

Expectation Maximization (EM) Algorithm for GMMs

Thinking of the generating process:

- for each example: sample a hidden value $h_{i} \sim p(h)$, then sample $v_{i} \sim p\left(v \mid h_{i}\right)$
- if we knew h_{1}, \ldots, h_{n},
- we could split data into groups, $\left\{v_{i}: h_{i}=k\right\}$, and
- estimate $p(v \mid h)$ separately for each value of h
- in practice, we don't know h_{i}, but if we had $p(v, h)$, we could estimate: $p\left(h \mid v_{i}\right)$

Chicken and egg:

- to get a good model $p(v)$, we need $p(h \mid v)$
- to get $p(h \mid v)$, we need a good model of $p(v, h)$

Intuition behind the Expectation Maximization (EM) algorithm:

- alternate between estimating $p(h \mid v), p(v \mid h)$ and $p(h)$

EM Algorithm for GMMs [Dempster et al, 1977]

initialize parameters $\Theta=\left(\pi_{1}, \ldots, \pi_{K}, \mu_{1}, \ldots \mu_{K}, \Sigma_{1}, \ldots, \Sigma_{K}\right)$
we write $g_{k}(x)=\mathcal{N}\left(x ; \mu_{k}, \Sigma_{k}\right)$

repeat

E-step

for $i=1, \ldots, n, k=1 \ldots, K$ do
$\gamma_{i k} \leftarrow \frac{\pi_{k} g_{k}\left(v_{i}\right)}{\sum_{k=1}^{K} \pi_{k} g_{k}\left(v_{i}\right)} \quad / /$ "responsibilities" of component k for v_{i} end for
M-step
for $k=1 \ldots, K$ do

$$
\begin{array}{ll}
n_{k} \leftarrow \sum_{i} \gamma_{i k} & \text { // total weight of components } k \\
\pi_{k} \leftarrow \frac{n_{k}}{n} & \text { // normalized weight of component } k \\
\mu_{k} \leftarrow \frac{1}{n_{k}} \sum_{i} \gamma_{i k} v_{i} & \text { // mean, weighted by } \\
\Sigma_{k} \leftarrow \frac{1}{n_{k}} \sum_{i} \gamma_{i k}\left(v_{i}-\mu_{k}\right)\left(v_{i}-\mu_{k}\right)^{\top}
\end{array}
$$

end for
until convergence

EM Algorithm for GMMs

- $p(h=k)=\pi_{k}$,
- $p(x \mid h=k)=g_{k}(x)=\mathcal{N}\left(x ; \mu_{k}, \Sigma_{k}\right)$,
- $p(v)=\sum_{h} p(v, h)=\sum_{k=1}^{K} p(v \mid h=k) p(h=k)=\sum_{k=1}^{K} \pi_{k} g_{k}(v)$

E-step:

$$
p\left(h=k \mid v=v_{i}\right)=\frac{p\left(v=v_{i}, h=k\right)}{p\left(v=v_{i}\right)}=\frac{\pi_{k} g_{k}\left(v_{i}\right)}{\sum_{k=1}^{K} \pi_{k} g_{k}\left(v_{i}\right)}
$$

EM Algorithm for GMMs

- $p(h=k)=\pi_{k}$,
- $p(x \mid h=k)=g_{k}(x)=\mathcal{N}\left(x ; \mu_{k}, \Sigma_{k}\right)$,
- $p(v)=\sum_{h} p(v, h)=\sum_{k=1}^{K} p(v \mid h=k) p(h=k)=\sum_{k=1}^{K} \pi_{k} g_{k}(v)$

E-step:

$$
p\left(h=k \mid v=v_{i}\right)=\frac{p\left(v=v_{i}, h=k\right)}{p\left(v=v_{i}\right)}=\frac{\pi_{k} g_{k}\left(v_{i}\right)}{\sum_{k=1}^{K} \pi_{k} g_{k}\left(v_{i}\right)} \quad \rightarrow \quad \gamma_{i k}
$$

EM Algorithm for GMMs

- $p(h=k)=\pi_{k}$,
- $p(x \mid h=k)=g_{k}(x)=\mathcal{N}\left(x ; \mu_{k}, \Sigma_{k}\right)$,
- $p(v)=\sum_{h} p(v, h)=\sum_{k=1}^{K} p(v \mid h=k) p(h)=\sum_{k=1}^{K} \pi_{k} g_{k}(v)$

M-step: for known h_{1}, \ldots, h_{n} :

$$
\log p\left(v_{1}, \ldots, v_{n}, h_{1}, \ldots h_{n}\right)=\log \prod_{i} p\left(v_{i}, h_{i}\right)=\log \prod_{i=1}^{n} g_{h_{i}}\left(v_{i}\right)=\sum_{k=1}^{K}\left[\sum_{i=1}^{n} \delta_{h_{i}=k} \pi_{k} \log g_{k}\left(v_{i}\right)\right]
$$

We can do maximum likelihood estimate for each g_{k} separately, using a subset of the data. If we don't know the h_{i} ? Weigh contribution of each point by how likely it belongs to component k :

$$
\min _{\pi, \mu, \sigma} \sum_{k=1}^{K}\left[\sum_{i=1}^{n} \gamma_{i k} \pi_{k} \log g_{k}\left(v_{i}\right)\right]
$$

Derivation of the EM algorithm

We don't really know how to maximize difficult non-convex functions.
Most common is gradient-based optimization (ascent/descent), but it has shortcomings:

- need initialization,
- takes small steps,
- converges to local maximum.

Alternative: turn difficult optimization into sequence of easier ones.

Derivation of the EM algorithm

Derivation of the EM algorithm
Change notation from $\left(v_{1}, \ldots, v_{n}, h_{1}, \ldots, h_{n}\right)$ to (x, z) : we want to maximize

$$
\mathcal{L}(\theta)=\log p(x ; \theta)=\log \sum_{z} p(x, z ; \theta)
$$

First observation: it's easy to come up with lower bounds:
For any function $q(z) \geq 0$ with $\sum_{z} q(z)=1$:

$$
\begin{aligned}
& \log p(x ; \theta)=\log \sum_{h} p(x, z ; \theta)=\log \sum_{h} q(z) \frac{p(x, z ; \theta)}{q(z)}=\log \mathbb{E}_{z \sim q}\left[\frac{p(x, z ; \theta)}{q(z)}\right] \\
& \begin{aligned}
& \text { Jensen's ineq. } \\
& \geq \mathbb{E}_{z \sim q} \log \left[\frac{p(x, z ; \theta)}{q(z)}\right] \\
&=\mathbb{E}_{z \sim q} \log p(x, z ; \theta)-\mathbb{E}_{z \sim q} \log q(z) \quad=: G(\theta, q) \text { "variational lower bound" }
\end{aligned}
\end{aligned}
$$

If $q(z)$ is arbitrary, we didn't lose anything: for $q(z)=p(z \mid x ; \theta)$ the inequality is an equality.

For a convex function $f: \mathbb{R} \rightarrow \mathbb{R}$ and any distribution $p: \quad \mathbb{E}_{t \sim p}[f(t)] \leq f\left(\mathbb{E}_{t} t\right)$

For a concave function $f: \mathbb{R} \rightarrow \mathbb{R}$ the inequality holds in the opposite direction.

Derivation of the EM algorithm

$$
\text { for any } q: \quad \log p(x ; \theta) \leq \mathbb{E}_{z \sim q} \log p(x, z ; \theta)-\mathbb{E}_{z \sim q} \log q(z)=: G(\theta, q)
$$

Derivation of the EM algorithm

$$
\text { for any } q: \quad \log p(x ; \theta) \leq \mathbb{E}_{z \sim q} \log p(x, z ; \theta)-\mathbb{E}_{z \sim q} \log q(z)=: G(\theta, q)
$$

Coordinate ascent algorithm:

initialize θ^{0}
for $t=1,2, \ldots$, until convergence do
$\begin{array}{ll}q^{t} \leftarrow \operatorname{argmax}_{q} G\left(\theta^{t-1}, q\right) & / / \text { E-step } \\ \theta^{t} \leftarrow \operatorname{argmax}_{\theta} G\left(\theta, q^{t}\right) & / / \mathrm{M} \text {-step }\end{array}$

end for

Observation:

- both steps increase (or at least do not decrease) $G(\theta, q)$
- at convergence, we found a large value for $G(\theta, q)$, so $\log p(x ; \theta)$ is also large

Derivation of the EM algorithm
a) $G(\theta, q)$ increases, but does $\mathcal{L}(\theta)=\log (x ; \theta)$ also increase?

Derivation of the EM algorithm
a) $G(\theta, q)$ increases, but does $\mathcal{L}(\theta)=\log (x ; \theta)$ also increase? Yes!

$$
\mathcal{L}\left(\theta^{t}\right) \stackrel{q^{t}=p\left(z \mid x ; \theta^{t}\right)}{=} G\left(\theta^{t}, q^{t}\right) \stackrel{\text { E-step }}{\leq} G\left(\theta^{t}, q^{t+1}\right) \stackrel{\text { M-step }}{\leq} G\left(\theta^{t+1}, q^{t+1}\right) \stackrel{\text { Jensen's ineq. }}{\leq} \mathcal{L}\left(\theta^{t+1}\right)
$$

Derivation of the EM algorithm
a) $G(\theta, q)$ increases, but does $\mathcal{L}(\theta)=\log (x ; \theta)$ also increase? Yes!

$$
\mathcal{L}\left(\theta^{t}\right) \stackrel{q^{t}=p\left(z \mid x ; \theta^{t}\right)}{=} G\left(\theta^{t}, q^{t}\right) \stackrel{\text { E-step }}{\leq} G\left(\theta^{t}, q^{t+1}\right) \stackrel{\text { M-step }}{\leq} G\left(\theta^{t+1}, q^{t+1}\right) \stackrel{\text { Jensen's ineq. }}{\leq} \mathcal{L}\left(\theta^{t+1}\right)
$$

b) When we reach a local optimum of $G(\theta, q)$, is this also a local optimum of $\log (x ; \theta)$? to do

Derivation of the EM algorithm for GMMs
Step 1: $q \leftarrow \operatorname{argmax}_{q} G(\theta, q)$

- do the maths, or see from bound that $q(z)=p(z \mid x ; \theta)$ is optimal choice

$$
\begin{aligned}
& q(z)=p(z \mid x ; \theta)=\prod_{i} p\left(h \mid v_{i} ; \theta\right) \\
& p\left(h=k \mid v=v_{i}\right)=\frac{\pi_{k} g_{k}\left(v_{i}\right)}{\sum_{k=1}^{K} \pi_{k} g_{k}\left(v_{i}\right)}=\gamma_{i k} \quad \text { M-step }
\end{aligned}
$$

Step 2: $\theta \leftarrow \operatorname{argmax}_{\theta^{\prime}} G\left(\theta^{\prime}, q\right)$

$$
\begin{aligned}
\underset{\theta^{\prime}}{\operatorname{argmax}} G\left(\theta^{\prime}, q\right) & =\underset{\theta^{\prime}}{\operatorname{argmax}} \mathbb{E}_{z \sim q} \log p(x, z ; \theta)-\mathbb{E}_{z \sim q} \log q(z) \\
& =\underset{\theta^{\prime}}{\operatorname{argmax}} \sum_{i} \gamma_{i k} \log \pi_{k} g_{k}\left(v_{i} ; \theta\right)
\end{aligned}
$$

Maximize the log-likelihood of Gaussians with $\gamma_{i k}$-weighted samples: E-step!

Variational Inference
Lower bound derivation of EM is example of a large class of variational algorithms:

- to handle a difficult distribution p, approximate it by a tractable distribution q (or a sequence of such distributions)
- typically, q is not arbitrary, but taken from a tractable parametric class, e.g.
- Gaussian distributions
- distributions that factorize: $q(z)=q\left(z_{1}\right) \ldots q\left(z_{n}\right)$
- ...
- if either step is hard, we don't have to solve it exactly, as long as $G(\theta, z)$ is improved

Variational Inference

Lower bound derivation of EM is example of a large class of variational algorithms:

- to handle a difficult distribution p, approximate it by a tractable distribution q (or a sequence of such distributions)
- typically, q is not arbitrary, but taken from a tractable parametric class, e.g.
- Gaussian distributions
- distributions that factorize: $q(z)=q\left(z_{1}\right) \ldots q\left(z_{n}\right)$
- ...
- if either step is hard, we don't have to solve it exactly, as long as $G(\theta, z)$ is improved

Currently very active area in machine learning, in particular for Bayesian handling of graphical models.

Further read: [Martin Wainwright, Michael Jordan. "Graphical Models, Exponential Families, and Variational Inference", Foundations and Trends in Machine Learning 2008]

