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Parameter Estimation BN Maximum Likelihood Learning with latent variables

Laplace Smoothing

Maximum likelihood estimation assigns 0 probability to any outcome it has not seen.
This can have unfortunate consequences:

I simplest probabilistic text model: p(D) =
∏

i p(wi ) ”bag of words”

I how to estimate p ?

I take an English text: D = (w1,w2, . . . ,wn) where each wi is a word

I estimate the probability, p̂ML(w), of each English word w using maximum likelihood

I take another English text: D ′ = (w ′1,w
′
2, . . . ,w

′
n′). What is p̂ML(D ′)

I most likely 0, namely whenever D ′ contains a word w not present in D, so p̂ML(w) = 0

How to overcome? p̂ML(x) =
nx
n

→ p̂α(x) =
nx + α

n + Lα
”Laplace smoothing”

I where nx is the number of counts of any x ∈ X ,

I L = |X | is the number of states,

I α is a small value, e.g. 1, or 1
2 , or 1

L . also: ”pseudo-count”
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Parameter Estimation BN Maximum Likelihood Learning with latent variables

Maximum A-Posteriori Parameter Estimation

Role of the prior

Imagine a game:

I a roll a die five times: 1, 5, 2, 1, 3, 5 → p̂ML(x) = ( 1
3 ,

1
6 ,

1
6 , 0,

1
3 , 0)

I Now I offer you a bet:
I I roll the die once more: if I roll a 6, you pay me 100 Euros, otherwise, I pay you 10 Euros.
I Do you accept?

Possibly not, even though maximum likelihood says yes:

p̂ML(6) = 0 → Ex∼p̂ML
[outcome] = 0 · (−100) + 1 · 10 = 10

What about Laplace-smoothing? For α = 1: p̂1(x) = ( 1
4 ,

1
6 ,

1
6 ,

1
12 ,

1
4 ,

1
12 )

p̂α=1(6) =
1

12
→ Ex∼p̂1 [outcome] =

1

12
(−100) +

11

12
10 =

5

6
> 0

So why not? Most likely, you have a prior belief about what probabilities to expect!
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Maximum A-Posteriori Parameter Estimation

I We treated θ as a random variable instead of unknown fixed value.

I for any fixed θ, we have a distribution over x : p(x ; θ)→ p(x |θ)
I for data x1, . . . , xn, we interested in p(θ|x1, . . . , xn)

p(θ|x1, . . . , xn)
Bayes rule

=
p(x1, . . . , xn|θ)p(θ)

p(x1, . . . , xn)

I what’s the most likely value for θ? maximum a-posteriori (MAP) estimate

θ̂MAP = argmax
θ

p(θ|x1, . . . , xn) = argmax
θ

p(x1, . . . , xn|θ)p(θ)

= argmax
θ

p(θ)︸︷︷︸
Prior

n∏
i=1

p(xi )|θ)︸ ︷︷ ︸
data likelihood

= argmax
θ

[
log p(θ)︸ ︷︷ ︸
log-prior

+
n∑

i=1

log p(xi )|θ)︸ ︷︷ ︸
data log-likelihood

]
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Maximum A-Posteriori Parameter Estimation

Maximum likelihood estimator for coin toss

We need a prior! How likely are different parameter values (without having seen data)?

I p(θ) = 1 for all θ ∈ [0, 1]

θ̂MAP =
nhead

n
= θ̂

I p(θ) ∝ θ(1− θ) (more mass at θ = 1
2 )

θ̂MAP =
nhead + 1

n + 2

I p(θ) = 2min(θ, 2− θ) (also more mass at θ = 1
2 )

no simple expression for θ̂MAP

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

2.0
p(θ)∝ θ(1− θ)
p(θ) = 1

p(θ) =min(2θ, 4− 2θ)
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Maximum A-posteriori estimation for coin toss

A prior should reflect our belief, but not destroy tractability of computations.

I a prior such that p(θ|x) has same parametric form as p(θ) is called conjugate.

I Coin example: p(x1, . . . , xn|θ) = θnhead(1− θ)n−nhead

I Conjugate prior for θ: p(θ) ∝ θa−1(1− θ)b−1 ”beta distribution” Beta(a, b)

I Posterior distribution:
p(θ|x1, . . . , xn) ∝ p(x1, . . . , xn|θ)p(θ) = θa−1+nhead(1− θ)b−1+n−nhead

I MAP estimate: θ̂MAP =
a− 1 + nhead

n + a + b − 2

I special cases:
I a = 1, b = 1: p(θ) = 1
I a = 2, b = 2: p(θ) ∝ θ(1− θ)

in both cases, we were still able to compute θ̂MAP
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A Fully Bayesian Treatment

I θ̂ML and θ̂MAP are just point estimates for θ

I Maybe the full posterior distribution contains more information?

p(θ|x1, . . . , xn) ∝ θa−1+nhead(1− θ)b−1+n−nhead

I p(θ|x1, . . . , xn) is a beta-distribution

Beta(t | α, β) =
1

B(α, β)
tα−1(1− t)β−1

For example, at α = 2, β = 5:
I asymmetric/skewed

I maximum at t = α−1
α+β−2 . Here t = 0.2

I median at t ≈ α− 1
3

α+β− 2
3

. Here: t ≈ 0.26:

I mean at t = α
α+β . Here t ≈ 0.28

Examples of Beta distributions

Common choice for ”Bayesians”: posterior mean θ̂PM = Eθ∼p(θ|D)[θ]
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Maximum A-Posteriori vs. Maximum Likelihood vs. Bayesian

Maximum likelihood

+ usually the easiest to use
+ consistent estimator, if model distribution is correct
– hard to include prior knowledge, e.g. reasonable ranges
– overconfident if little data is available, e.g. probability is 0 for never-seen values

Maximum a-posteriori

+ can reflect prior knowledge, e.g. known parameter ranges
+ more robust: if n is small, estimate stays close to prior
– not always clear how to chose a prior
– computationally more challenging, especially if no conjugate prior is used

Bayesian

+ same advantages of maximum a-posteriori
+ information about uncertainty of estimate
– same disadvantages as maximum a-posteriori, computationally even more challenging

Note: for n→∞, data will dominate the prior and all pretty much the same
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Maximum Likelihood for Bayesian Networks
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Parameter Estimation BN Maximum Likelihood Learning with latent variables

Example: Lung Cancer network

I Patient
I has lung cancer c ∈ {0, 1}
I was exposed to asbestos a ∈ {0, 1}
I is a smoker s ∈ {0, 1}

I Given the following relationship

p(a, s, c) = p(c | a, s)p(a)p(s)

a s

c

I What are the parameters to learn?

Conditional probability tables (CPT)

θa = p(a = 1) ∈ R, θs = p(s = 1) ∈ R,

θc =
(
θca=0,s=0, θ

c
a=0,s=1, θ

c
a=1,s=0, θ

c
a=1,s=1

)
∈ R4

with θca=i ,s=j = p(c = 1|a = i , s = j).

10 / 31
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Example: Lung Cancer network

We observe N patients: observations D = {(a1, s1, c1), (a2, s2, c2), . . .}

a s c

1 1 1

1 0 0

0 1 1

0 1 0

1 1 1

0 0 0

1 0 1

a s

c

a s

c

a s

c

...
a s
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Parameter Estimation BN Maximum Likelihood Learning with latent variables

Example: Lung Cancer network

p(a, s, c) = p(c | a, s)p(a)p(s)

I Log-likelihood

logL(θ;D) =
∑
i

log p(ai , si , ci ) =
∑
i

log p(ai ; θa) +
∑
i

log p(si ; θs) +
∑
i

log p(ci | ai , si ; θc)

Now we count:

I Denote na=0,s=0,c=0 =
∑

iJai = 0 ∧ si = 0 ∧ ci = 0K (count number of cases)
I Analogously na=0,s=0,c=1, . . . , na=1,s=1,c=1

Collapse terms in log-likelihood according to value combinations:

logL(θ;D) = na=0 log p(a = 0) + na=1 log p(a = 1) + ns=0 log p(s = 0) + ns=1 log p(s = 1)

+ na=0,s=0,c=0 log p(c = 0|a = 0, s = 0) + . . .

+ na=1,s=1,c=1 log p(c = 1|a = 1, s = 1)
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Parameter Estimation BN Maximum Likelihood Learning with latent variables

Example: Lung Cancer network

Express in terms of parameters:

logL(θ) = na=0 log(1− θa) + na=1θ
a + ns=0 log(1− θs) + ns=1θ

s

+ na=0,s=0,c=0 log(1− θca=0,s=0) + · · ·+ na=1,s=1,c=1θ
c
a=1,s=0

with conditional probability tables as parameters

I θa = p(a = 1)

I θs = p(s = 1)

I θca=0,s=0 = p(c = 1|a = 0, s = 0)

I θca=0,s=1 = p(c = 1|a = 0, s = 1)

I θca=1,s=0 = p(c = 1|a = 1, s = 0)

I θca=1,s=1 = p(c = 1|a = 1, s = 1)

Note: no interaction between parameters. We can optimize for each of them separately.
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Parameter Estimation BN Maximum Likelihood Learning with latent variables

Example: Lung Cancer network

I For example, θca=1,s=0

logL(θ) = na=1,s=0,c=1 log θca=1,s=0 + na=1,s=0,c=0 log(1− θca=1,s=0) + const.

I Setting the derivative to 0

na=1,s=0,c=1

θ̂ca=1,s=0

− na=1,s=0,c=0

(1− θ̂ca=1,s=0)
= 0

I Therefore
θ̂ca=1,s=0 =

na=1,s=0,c=1

na=1,s=0,c=0 + na=1,s=0,c=1

Maximum Likelihood solution corresponds to empirical counts, just like in coin example!

14 / 31



Parameter Estimation BN Maximum Likelihood Learning with latent variables

Example: Lung Cancer network

I For example, θca=1,s=0

logL(θ) = na=1,s=0,c=1 log θca=1,s=0 + na=1,s=0,c=0 log(1− θca=1,s=0) + const.

I Setting the derivative to 0

na=1,s=0,c=1

θ̂ca=1,s=0

− na=1,s=0,c=0

(1− θ̂ca=1,s=0)
= 0

I Therefore
θ̂ca=1,s=0 =

na=1,s=0,c=1

na=1,s=0,c=0 + na=1,s=0,c=1

Maximum Likelihood solution corresponds to empirical counts, just like in coin example!

14 / 31



Parameter Estimation BN Maximum Likelihood Learning with latent variables

Example: Lung Cancer network

I For example, θca=1,s=0

logL(θ) = na=1,s=0,c=1 log θca=1,s=0 + na=1,s=0,c=0 log(1− θca=1,s=0) + const.

I Setting the derivative to 0

na=1,s=0,c=1

θ̂ca=1,s=0

− na=1,s=0,c=0

(1− θ̂ca=1,s=0)
= 0

I Therefore
θ̂ca=1,s=0 =

na=1,s=0,c=1

na=1,s=0,c=0 + na=1,s=0,c=1

Maximum Likelihood solution corresponds to empirical counts, just like in coin example!

14 / 31



Parameter Estimation BN Maximum Likelihood Learning with latent variables

Example: Lung Cancer network

I For example, θca=1,s=0

logL(θ) = na=1,s=0,c=1 log θca=1,s=0 + na=1,s=0,c=0 log(1− θca=1,s=0) + const.

I Setting the derivative to 0

na=1,s=0,c=1

θ̂ca=1,s=0

− na=1,s=0,c=0

(1− θ̂ca=1,s=0)
= 0

I Therefore
θ̂ca=1,s=0 =

na=1,s=0,c=1

na=1,s=0,c=0 + na=1,s=0,c=1

Maximum Likelihood solution corresponds to empirical counts, just like in coin example!

14 / 31



Parameter Estimation BN Maximum Likelihood Learning with latent variables

Maximum Likelihood for CPTs

Unfortunately, sometimes, counting is not practical or possible:

I CPT might be too large

x1 x2 x3 . . . xn−1 xn

y

(Ln parameters even for L-state variables)

I not enough data (most counts would be zero)

I continuous variables, x1, . . . , xd ∈ R

I missing data: e.g. hidden Markov model
”observations” are observed, but ”hidden states” are not → ”latent variable models”
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Learning mixture models
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Parameter Estimation BN Maximum Likelihood Learning with latent variables

Mixture Models

A mixture model is one in which a set of simpler models is combined to produce a richer model:

I We observe and care about a random variable V , that does not have a simple distribution.
I We model it as a generated by a two-stage procedure

I Sample the state of an auxiliary variable H ∼ p(h)
I Given the value h of H, sample the value of v from a h-dependent distribution p(v |h)

H V p(v , h) = p(v |h)p(h) p(v) =
∑
h∈H

p(v |h)p(h)

The variable V is visible or observable, while H is hidden or latent.

Note: the effect of the hidden H might be ’real’, or just a computational trick.
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Parameter Estimation BN Maximum Likelihood Learning with latent variables

Mixture Models

Example: Gaussian Mixture Model (GMM)

For h ∈ {1, 2, . . . ,K}, each p(v |h) = N (x ;µh,Σh)
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If we only see sample v1, . . . , vn, can we learn p(h) and p(v |h)?
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Mixture Models

Example: Gaussian Mixture Model (GMM)
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Image: http://pypr.sourceforge.net/
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Parameter Estimation BN Maximum Likelihood Learning with latent variables

Maximum Likelihood Estimation for GMMs

I data: v1, . . . , vn
I parameters:

I π :=
(
p(h = 1), . . . , p(h = K )

)
∈ RK

I µ1, . . . , µK with µk ∈ Rd for k = 1, . . . ,K
I Σ1, . . . ,ΣK with Σk ∈ Rd×d for k = 1, . . . ,K

I model:

p(v) =
K∑

k=1

πk
1√

(2π)d |Σk |
e−

1
2

(v−µk )>Σ−1(v−µk )

I data likelihood:

p(v1, . . . , vn) =
n∏

i=1

p(vi ) =
n∏

i=1

K∑
k=1

πk
1√

(2π)d |Σk |
e−

1
2

(vi−µk )>Σ−1
k (vi−µk )

No closed-form expressions as for single Gaussian maximum likelihood estimation
→ numeric optimization, e.g. gradient descent
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Expectation Maximization (EM) Algorithm for GMMs

Thinking of the generating process:

I for each example: sample a hidden value hi ∼ p(h), then sample vi ∼ p(v |hi )
I if we knew h1, . . . , hn,

I we could split data into groups, {vi : hi = k}, and
I estimate p(v |h) separately for each value of h

I in practice, we don’t know hi , but if we had p(v , h), we could estimate: p(h|vi )

Chicken and egg:

I to get a good model p(v), we need p(h|v)

I to get p(h|v), we need a good model of p(v , h)

Intuition behind the Expectation Maximization (EM) algorithm:

I alternate between estimating p(h|v), p(v |h) and p(h)
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Parameter Estimation BN Maximum Likelihood Learning with latent variables

EM Algorithm for GMMs [Dempster et al, 1977]

initialize parameters Θ = (π1, . . . , πK , µ1, . . . µK ,Σ1, . . . ,ΣK )
we write gk(x) = N (x ;µk ,Σk)
repeat

———————— E-step ————————
for i = 1, . . . , n, k = 1 . . . ,K do
γik ← πkgk (vi )∑K

k=1 πkgk (vi )
// ”responsibilities” of component k for vi

end for
———————— M-step ————————
for k = 1 . . . ,K do
nk ←

∑
i γik // total weight of components k

πk ← nk
n // normalized weight of component k

µk ← 1
nk

∑
i γikvi // mean, weighted by

Σk ← 1
nk

∑
i γik(vi − µk)(vi − µk)>

end for
until convergence
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EM Algorithm for GMMs

I p(h = k) = πk ,

I p(x |h = k) = gk(x) = N (x ;µk ,Σk),

I p(v) =
∑

h p(v , h) =
∑K

k=1 p(v |h = k)p(h = k) =
∑K

k=1 πkgk(v)

E-step:

p(h = k |v = vi ) =
p(v = vi , h = k)

p(v = vi )
=

πkgk(vi )∑K
k=1 πkgk(vi )

→ γik
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EM Algorithm for GMMs

I p(h = k) = πk ,
I p(x |h = k) = gk(x) = N (x ;µk ,Σk),
I p(v) =

∑
h p(v , h) =

∑K
k=1 p(v |h = k)p(h) =

∑K
k=1 πkgk(v)

M-step: for known h1, . . . , hn:

log p(v1, . . . , vn, h1, . . . hn) = log
∏
i

p(vi , hi ) = log
n∏

i=1

ghi (vi ) =
K∑

k=1

[
n∑

i=1

δhi=kπk log gk(vi )

]
We can do maximum likelihood estimate for each gk separately, using a subset of the data.
If we don’t know the hi? Weigh contribution of each point by how likely it belongs to
component k:

min
π,µ,σ

K∑
k=1

[
n∑

i=1

γikπk log gk(vi )

]
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Derivation of the EM algorithm

We don’t really know how to maximize difficult non-convex functions.

Most common is gradient-based optimization (ascent/descent), but it has shortcomings:

I need initialization,

I takes small steps,

I converges to local maximum.

Alternative: turn difficult optimization into sequence of easier ones.
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Derivation of the EM algorithm

Image: [T. Minka, ”Expectation-Maximization as lower bound maximization”, TR 1998]
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Derivation of the EM algorithm

Change notation from (v1, . . . , vn, h1, . . . , hn) to (x , z): we want to maximize

L(θ) = log p(x ; θ) = log
∑
z

p(x , z ; θ)

First observation: it’s easy to come up with lower bounds:

For any function q(z) ≥ 0 with
∑

z q(z) = 1:

log p(x ; θ) = log
∑
h

p(x , z ; θ) = log
∑
h

q(z)
p(x , z ; θ)

q(z)
= logEz∼q

[
p(x , z ; θ)

q(z)

]
Jensen’s ineq.
≥ Ez∼q log

[
p(x , z ; θ)

q(z)

]
=Ez∼q log p(x , z ; θ)− Ez∼q log q(z) =: G (θ, q) ”variational lower bound”

If q(z) is arbitrary, we didn’t lose anything: for q(z) = p(z |x ; θ) the inequality is an equality.
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Jensen’s inequality

For a convex function f : R→ R and any distribution p: Et∼p[f (t)] ≤ f (Ett)

For a concave function f : R→ R the inequality holds in the opposite direction.

Figure: By Eli Osherovich - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=10764763
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Derivation of the EM algorithm

for any q: log p(x ; θ) ≤ Ez∼q log p(x , z ; θ)− Ez∼q log q(z) =: G (θ, q)

Coordinate ascent algorithm:

initialize θ0

for t = 1, 2, . . . , until convergence do
qt ← argmaxq G (θt−1, q) // E-step
θt ← argmaxθ G (θ, qt) // M-step

end for

Observation:

I both steps increase (or at least do not decrease) G (θ, q)

I at convergence, we found a large value for G (θ, q), so log p(x ; θ) is also large
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Derivation of the EM algorithm

a) G (θ, q) increases, but does L(θ) = log(x ; θ) also increase?

Yes!

L(θt)
qt=p(z|x ;θt)

= G (θt , qt)
E-step
≤ G (θt , qt+1)

M-step
≤ G (θt+1, qt+1)

Jensen’s ineq.
≤ L(θt+1)

b) When we reach a local optimum of G (θ, q), is this also a local optimum of log(x ; θ)?

to do

29 / 31
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Derivation of the EM algorithm for GMMs

Step 1: q ← argmaxq G (θ, q)
I do the maths, or see from bound that q(z) = p(z |x ; θ) is optimal choice

q(z) = p(z |x ; θ) =
∏
i

p(h|vi ; θ)

p(h = k |v = vi ) =
πkgk(vi )∑K
k=1 πkgk(vi )

= γik M-step

Step 2: θ ← argmaxθ′ G (θ′, q)

argmax
θ′

G (θ′, q) = argmax
θ′

Ez∼q log p(x , z ; θ)− Ez∼q log q(z)

= argmax
θ′

∑
i

γik log πkgk(vi ; θ)

Maximize the log-likelihood of Gaussians with γik -weighted samples: E-step!
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Variational Inference

Lower bound derivation of EM is example of a large class of variational algorithms:

I to handle a difficult distribution p, approximate it by a tractable distribution q (or a
sequence of such distributions)

I typically, q is not arbitrary, but taken from a tractable parametric class, e.g.
I Gaussian distributions
I distributions that factorize: q(z) = q(z1) . . . q(zn)
I ...

I if either step is hard, we don’t have to solve it exactly, as long as G (θ, z) is improved

Currently very active area in machine learning, in particular for Bayesian
handling of graphical models.

Further read: [Martin Wainwright, Michael Jordan. ”Graphical Models, Ex-
ponential Families, and Variational Inference”, Foundations and Trends in
Machine Learning 2008]

31 / 31



Parameter Estimation BN Maximum Likelihood Learning with latent variables

Variational Inference

Lower bound derivation of EM is example of a large class of variational algorithms:

I to handle a difficult distribution p, approximate it by a tractable distribution q (or a
sequence of such distributions)

I typically, q is not arbitrary, but taken from a tractable parametric class, e.g.
I Gaussian distributions
I distributions that factorize: q(z) = q(z1) . . . q(zn)
I ...

I if either step is hard, we don’t have to solve it exactly, as long as G (θ, z) is improved

Currently very active area in machine learning, in particular for Bayesian
handling of graphical models.

Further read: [Martin Wainwright, Michael Jordan. ”Graphical Models, Ex-
ponential Families, and Variational Inference”, Foundations and Trends in
Machine Learning 2008]

31 / 31


	Parameter Estimation
	BN Maximum Likelihood
	Learning with latent variables

