
Inference in Hidden Markov Models Learning Hidden Markov Models

Introduction to Probabilistic Graphical Models

Christoph Lampert

IST Austria (Institute of Science and Technology Austria)

1 / 29



Inference in Hidden Markov Models Learning Hidden Markov Models

Inference in Hidden Markov Models

2 / 29



Inference in Hidden Markov Models Learning Hidden Markov Models

Hidden Markov Models

Reminder: a hidden Markov model (HMM) consists of

I a discrete Markov chain of hidden (or ‘latent’) variables h1:T

I one observable (continous or discrete) variable vi for each hidden variable hi

v1 v2 v3 v4

h1 h2 h3 h4

p(h1:T , v1:T ) = p(v1|h1)p(h1)
T∏

t=2

p(vt |ht)p(ht |ht−1)

We call the HMM stationary if

I the transition distribution p(ht+1 = i ′|ht = i) and the emission distribution
p(vt = j |ht = i) do not depend on the position t, but only one the values i , i ′ and j
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HMM parameters

Transition Distribution

For a stationary HMM the transition distribution p(ht+1|ht) is defined by the H ×H transition
matrix

Ai ′,i = p(ht+1 = i ′|ht = i)

and an initial distribution
ai = p(h1 = i).

Emission Distribution

For a stationary HMM and emission distribution p(vt |ht) with discrete states vt ∈ {1, . . . ,V },
we define a V × H emission matrix

Bi ,j = p(vt = i |ht = j)

For continuous outputs, ht selects one of H possible output distributions p(vt |ht),
ht ∈ {1, . . . ,H}.
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The classical inference problems

Filtering (Inferring the present) p(ht |v1:t)

Prediction (Inferring the future) p(ht |v1:s) for t > s
sometimes also p(vt |v1:s) for t > s

Smoothing (Inferring the past) p(ht |v1:u) for t < u

Likelihood p(v1:T )

Most likely Hidden path (Viterbi alignment) argmax h1:Tp(h1:T |v1:T )

Learning (Parameter estimation) D → Ai ,i ′ , ai ,Bi ,j
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The Burglar Scenario

You’re asleep upstairs in your house and awoken by noises from downstairs. You realise that a
burglar is on the ground floor and attempt to understand where he his from listening to his
movements.

The HMM view
I You mentally partition the ground floor into a 5× 5 grid.

I For each grid position you know the probability that if someone is in that position the
floorboard will creak.

I Similarly you know for each position the probability that someone will bump into
something in the dark.

I The floorboard creaking and bumping into objects can occur independently.

I In addition you assume that the burglar will move only one grid square – forwards,
backwards, left or right in a single timestep.

Can you infer the burglar’s position from the sounds?

6 / 29



Inference in Hidden Markov Models Learning Hidden Markov Models

The Burglar Scenario

You’re asleep upstairs in your house and awoken by noises from downstairs. You realise that a
burglar is on the ground floor and attempt to understand where he his from listening to his
movements.

The HMM view
I You mentally partition the ground floor into a 5× 5 grid.

I For each grid position you know the probability that if someone is in that position the
floorboard will creak.

I Similarly you know for each position the probability that someone will bump into
something in the dark.

I The floorboard creaking and bumping into objects can occur independently.

I In addition you assume that the burglar will move only one grid square – forwards,
backwards, left or right in a single timestep.

Can you infer the burglar’s position from the sounds?

6 / 29



Inference in Hidden Markov Models Learning Hidden Markov Models

The Burglar Scenario: Example

’creaks’ ’bumps’

observations:
creaks n y n y n y y y y y

bumps y n n y n y n n y y

I latent variable ht ∈ {1, . . . , 25} denotes the positions on 5× 5 grid
dark squares means probability 0.9, light means probability 0.1

I observed variables: vt = (ct , bt) ∈ {(n, n), (n, y), (y , n), (y , y)}
I observed probability factorizes p(v |h) = p(c |h)p(b|h) 7 / 29
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Burglar

Localising the burglar through time for 10 time steps

(a) Creaks and Bumps vt

(b) Filtering p(ht |v1:t)

(c) Smoothing p(ht |v1:T )

(d) Viterbi argmaxh1:T
p(h1:T |v1:T )

(e) True Burglar position h∗1:T

Note:

I (b) is computed on-the-fly in every time step

I (c) and (d) are computed offline after all observations are available

8 / 29



Inference in Hidden Markov Models Learning Hidden Markov Models

Real-world example

https://www.youtube.com/watch?v=4Z3shNPOdQA
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Filtering p(ht |v1:t)

p(ht , v1:t) =
∑
ht−1

p(ht , ht−1, v1:t−1, vt)

=
∑
ht−1

p(vt |���v1:t−1, ht ,��
�ht−1)p(ht |���v1:t−1, ht−1)p(v1:t−1, ht−1)

=
∑
ht−1

p(vt |ht)p(ht |ht−1)p(ht−1, v1:t−1)

Hence if we define α(ht) ≡ p(ht , v1:t) the above gives the α-recursion

α(ht) =

corrector︷ ︸︸ ︷
p(vt |ht)

predictor︷ ︸︸ ︷∑
ht−1

p(ht |ht−1)α(ht−1), with α(h1) = p(h1, v1) = p(v1|h1)p(h1)

Filtered posterior follows by normalization: p(ht |v1:t) =
p(ht , v1:t)∑
h̄t
p(h̄t , v1:t)

=
α(ht)∑
h̄t
α(h̄t)
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Likelihood p(v1:T )

p(v1:T ) =
∑
hT

p(hT , v1:T ) =
∑
hT

α(hT )
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Smoothing p(ht |v1:T )

To compute the smoothed quantity we consider how ht partitions the series into the past and
future:

p(ht , v1:T ) = p(ht , v1:t , vt+1:T )

= p(ht , v1:t)︸ ︷︷ ︸
past

p(vt+1:T |ht , v1:t)︸ ︷︷ ︸
future

= α(ht)β(ht)

Forward. The term α(ht) is obtained from the ‘forward’ α recursion.

Backward. The term β(ht) we will obtain using a ‘backward’ β recursion as we show next.

The forward and backward recursions are independent and may therefore be run in parallel,
with their results combined to obtain the smoothed posterior.

p(ht |v1:T ) ≡ γ(ht) =
α(ht)β(ht)∑
h̄t
α(h̄t)β(h̄t)

”Parallel Smoothing”
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The β recursion

p(vt:T |ht−1) =
∑

ht

p(vt , vt+1:T , ht |ht−1)

=
∑

ht

p(vt |����vt+1:T , ht ,��
�ht−1)p(vt+1:T , ht |ht−1)

=
∑

ht

p(vt |ht)p(vt+1:T |ht ,��
�ht−1)p(ht |ht−1)

Defining β(ht) ≡ p(vt+1:T |ht) gives the β-recursion

β(ht−1) =
∑

ht

p(vt |ht)p(ht |ht−1)β(ht), for 2 ≤ t ≤ T and β(hT ) = 1.

Together the α− β recursions are called the Forward-Backward algorithm.

13 / 29



Inference in Hidden Markov Models Learning Hidden Markov Models

Smoothing p(ht |v1:T )

”Correction Smoothing”:

p(ht |v1:T ) =
∑
ht+1

p(ht , ht+1|v1:T ) =
∑
ht+1

p(ht |ht+1, v1:t ,����vt+1:T )p(ht+1|v1:T )

This gives a recursion for γ(ht) ≡ p(ht |v1:T ):

γ(ht) =
∑
ht+1

p(ht |ht+1, v1:t)γ(ht+1)

with γ(hT ) ∝ α(hT ). The term p(ht |ht+1, v1:t) may be computed using the filtered results
p(ht |v1:t):

p(ht |ht+1, v1:t) ∝ p(ht+1, ht |v1:t) ∝ p(ht+1|ht)p(ht |v1:t)

where the proportionality constant is found by normalisation. This is sequential since we need
to first complete the α recursions, after which the γ recursion may begin. This ‘corrects’ the
filtered result. Interestingly, once filtering has been carried out, the evidential states v1:T are
not needed during the subsequent γ recursion.
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Computing the pairwise marginal p(ht , ht+1|v1:T )

To implement the EM algorithm for learning, we require terms such as p(ht , ht+1|v1:T ).

p(ht , ht+1|v1:T ) ∝ p(v1:t , vt+1, vt+2:T , ht+1, ht)

= p(vt+2:T |(((((
(

v1:t , vt+1, ht , ht+1)p(v1:t , vt+1, ht+1, ht)

= p(vt+2:T |ht+1)p(vt+1|����v1:t , ht , ht+1)p(v1:t , ht+1, ht)

= p(vt+2:T |ht+1)p(vt+1|ht+1)p(ht+1|��v1:t , ht)p(v1:t , ht)

After rearranging:

p(ht , ht+1|v1:T ) ∝ α(ht)p(vt+1|ht+1)p(ht+1|ht)β(ht+1)
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Prediction

Predicting the future hidden variable:

p(ht+1|v1:t) =

∑
ht

p(ht+1|ht) p(ht |v1:t)︸ ︷︷ ︸
filtering

Predicting the future observation The one-step ahead predictive distribution is given by

p(vt+1|v1:t) =
∑
ht+1

p(vt+1|ht+1) p(ht+1|v1:t)︸ ︷︷ ︸
prediction
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Most likely joint state

The most likely path h1:T of p(h1:T |v1:T ) is the same as the most likely state of

p(h1:T , v1:T ) =
∏

t

p(vt |ht)p(ht |ht−1) with h0 = ∅

Consider

max
hT

T∏
t=1

p(vt |ht)p(ht |ht−1)

=

{
T−1∏
t=1

p(vt |ht)p(ht |ht−1)

}
max

hT

p(vT |hT )p(hT |hT−1)︸ ︷︷ ︸
µ(hT−1)

The ”message” µ(hT−1) conveys information from the end of the chain to the penultimate
timestep.
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Most likely joint state

We can continue in this manner, defining the recursion

µ(ht−1) = max
ht

p(vt |ht)p(ht |ht−1)µ(ht), for 2 ≤ t ≤ T and µ(hT ) = 1.

The effect of maximising over h2, . . . , hT is compressed into a message µ(h1)
→ the first entry most likely state, h∗1, is given by

h∗1 = argmax
h1

p(v1|h1)p(h1)µ(h1)

Once computed, backtracking gives the remaining entries:

h∗t = argmax
ht

p(vt |ht)p(ht |h∗t−1)µ(ht)
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Learning Hidden Markov Models
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Learning HMMs

Setting:
I given: data V =

{
v1, . . . , vN

}
of N sequences,

each sequence vN = vN
1:TN

is of length Tn

I goal: maximum-likelihood of HMM parameters θ = (A,B, a), where
I A is the HMM transition matrix, p(ht+1|ht)
I B is the emission matrix, p(vt |ht)
I a is the vector of initial state probabilities, p(h1).

I assumption: the sequences are i.i.d. (within sequences, data are still dependent, of course)
I assumption: the number of hidden states H and observable states V is known and finite

Find θ that maximizes

p(v1, . . . , vN ; θ) =
∑

h1,...,hN

p(v1, . . . , vN ,h1, . . . ,hN ; θ) =
N∏

n=1

∑
hn

p(vn,hn; θ)

How? EM-algorithm (for HMMs called Baum-Welch algorithm for historic reasons)
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Learning HMMs

Like for GMM, construct a lower bound using a distribution q(h1, . . . ,hN)

log p(v1, . . . , vN ; θ) = log
∑

h1,...,hN

p(v1, . . . , vN ,h1, . . . ,hN ; θ)

≤ E
(h1,...,hN )∼q

log p(v1, . . . , vN ,h1, . . . ,hN ; θ)− E
(h1,...,hN )∼q

log q(h1, . . . ,hN)

=: G (θ, q)

EM algorithm:

initialize θ0

for t = 1, 2, . . . , until convergence do
qt ← argmaxq G (θt−1, q) // E-step
θt ← argmaxθ G (θ, qt) // M-step

end for
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E-step, Part 1

q ← argmax
q

G (θt−1, q)

I as for GMMs:

qt ← p(h1, . . . ,hN |v1, . . . , vN ; θt−1)
i .i .d .
=

N∏
n=1

p(hn|vn; θt−1)

︸ ︷︷ ︸
=:qn(hn)

=
N∏

n=1

qn(hn)

later more...
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M-step

E
(h1,...,hN )∼q

log p(v1, . . . , vN ,h1, . . . ,hN ; θ)

i .i .d .
= E

(h1,...,hn∼q

N∑
n=1

log p(vn,hn; θ) =
N∑

n=1

E
h∼qn

log p(vn
1:T n , h1:T n ; θ)

HMM graph
=

N∑
n=1

E
h∼qn

log
[
p(h1; a)

T n∏
t=2

p(ht |ht−1;A)
T n∏
t=1

p(vn
t |ht ;B)

]
=

N∑
n=1

E
h∼qn

log p(h1; a)︸ ︷︷ ︸
Linitial(a)

+
N∑

n=1

T n∑
t=2

E
h∼qn

log p(ht |ht−1;A)︸ ︷︷ ︸
Ltransition(A)

+
N∑

n=1

T n∑
t=1

E
h∼qn

log p(vn
t |ht ;B)︸ ︷︷ ︸

Lemission(B)

sum of independent terms → we can optimize for a,A and B separately
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Linitial(a) =
N∑

n=1

E
h1:Tn∼qn

log p(h1; a) =
N∑

n=1

E
h1∼qn

log ah1

a is a discrete probability distribution over H states, i.e.
∑

i ai = 1. Use Langragian:

L(a, λ) = Linitial(a)− λ
(∑

i

ai − 1
)

dLinitial(a)

dai
(a) =

d

dai

N∑
n=1

E
h1∼qn

H∑
i ′=1

Jh1 = i ′K log ai ′ =
N∑

n=1

E
h1∼qn

Jh1 = iK
1

ai
=

1

ai

N∑
n=1

qn(h1)

0 =
dL(a, λ)

dai
(â, λ̂) =

1

âi

N∑
n=1

qn(h1 = i)− λ → âi =
1

λ̂

N∑
n=1

qn(h1)

0 =
dL(a, λ)

dλ
(â, λ̂) = −1 +

H∑
i=1

1

λ̂

N∑
n=1

qn(h1 = i) = −1 +
H∑

i=1

1

λ̂
→ λ̂ = n
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Ltransition(A) =
N∑

n=1

T n∑
t=2

E
h∼qn

log p(ht |ht−1;A)

=
N∑

n=1

T n∑
t=2

E
h1:T n∼qn

H∑
i ,i ′=1

Jht = i ∧ ht−1 = i ′K logAi ,i ′

=
N∑

n=1

T n∑
t=2

H∑
i ,i ′=1

qn(ht = i , ht−1 = i ′) logAi ,i ′

Each column of A is a (conditional) distribution over the rows, i.e.
∑

i Ai ,i ′ = 1 for any
i ′ ∈ {1, . . . ,H}. We can optimize for any fixed i ′ independently:

L(A, λ) = Ltransition(A)− λ
(∑

i

Ai ,i ′ − 1
)

Âi ,i ′ ∝
n∑

n=1

Tn∑
t=2

qn(ht = i , ht−1 = i ′) with normalization to make Âi ,i ′ = 1 for each i ′
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Lemission(A) =
N∑

n=1

T n∑
t=1

E
h∼qn

log p(vn
t |ht ;B) =

N∑
n=1

T n∑
t=1

V∑
j=1

Jvn
t = jK E

h1:T n∼qn

H∑
i=1

Jht = iK logBj ,i

=
N∑

n=1

T n∑
t=1

V∑
j=1

Jvn
t = jK

H∑
i=1

qn(ht = i) logBj ,i

Each column of B is a (conditional) distribution over the rows, i.e.
∑

j Bj ,i = 1 for any
j ∈ {1, . . . ,V }. We can optimize for any fixed i independently:

L(B, λ) = Lemission(B)− λ
(∑

j

Bj ,i − 1
)

B̂j ,i ∝
n∑

n=1

Tn∑
t=1

Jvn
t = jKqn(ht = i) with normalization to make B̂j ,i = 1 for each i

26 / 29



Inference in Hidden Markov Models Learning Hidden Markov Models

E-step, Part 2

For the M-step we compute:

âi ∝
N∑

n=1

qn(h1) Âi,i ′ ∝
n∑

n=1

Tn∑
t=2

qn(ht = i , ht−1 = i ′) B̂j,i ∝
n∑

n=1

Tn∑
t=1

Jvn
t = jKqn(ht = i)

Of qn(h) = p(h|vn; θ) we really only need:

I qn(h1) = p(h1|vn
1:T n ; θ) for a

I qn(ht , ht−1) = p(ht , ht−1|vn
1:T n ; θ) for A

I qn(ht) = p(ht |vn
1:T n ; θ) for B

For computing all of these we have derived efficient ways in the previous section.
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EM for HMMs: Initialization

EM algorithm:

initialize θ0

for t = 1, 2, . . . , until convergence do
qt ← argmaxq G (θt−1, q) // E-step
θt ← argmaxθ G (θ, qt) // M-step

end for

Parameter initialisation

I EM algorithm converges to a local maximum of the likelihood,

I in general, there is no guarantee that the algorithm will find the global maximum

I often, the initialization determined how good the found solution is
I practical strategy:

I first, train non-temporal mixture model for p(v) =
∑

h p(v |h)p(h)
I initialize a and B from this, and assume independence for A
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HMM with Continuous observations

For an HMM with continuous observation vt , we need a model of p(vt |ht), i.e. a continuous
distribution for each state of ht .

Inference

I filtering, smoothing, etc. remain largely unchanged, as everything is conditioned on v1:T

Learning

I learning requires computing normalization constants w.r.t. v

I depending on the model, this might or might not be tractable
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