Introduction to Probabilistic Graphical Models

Christoph Lampert

IST Austria (Institute of Science and Technology Austria)

Institute of Science and Technology

Inference in Hidden Markov Models

Hidden Markov Models
Reminder: a hidden Markov model (HMM) consists of

- a discrete Markov chain of hidden (or 'latent') variables $h_{1: T}$
- one observable (continous or discrete) variable v_{i} for each hidden variable h_{i}

We call the HMM stationary if

- the transition distribution $p\left(h_{t+1}=i^{\prime} \mid h_{t}=i\right)$ and the emission distribution $p\left(v_{t}=j \mid h_{t}=i\right)$ do not depend on the position t, but only one the values i, i^{\prime} and j

HMM parameters

Transition Distribution

For a stationary HMM the transition distribution $p\left(h_{t+1} \mid h_{t}\right)$ is defined by the $\mathrm{H} \times \mathrm{H}$ transition matrix

$$
A_{i^{\prime}, i}=p\left(h_{t+1}=i^{\prime} \mid h_{t}=i\right)
$$

and an initial distribution

$$
a_{i}=p\left(h_{1}=i\right)
$$

Emission Distribution

For a stationary HMM and emission distribution $p\left(v_{t} \mid h_{t}\right)$ with discrete states $v_{t} \in\{1, \ldots, V\}$, we define a $V \times H$ emission matrix

$$
B_{i, j}=p\left(v_{t}=i \mid h_{t}=j\right)
$$

For continuous outputs, h_{t} selects one of H possible output distributions $p\left(v_{t} \mid h_{t}\right)$, $h_{t} \in\{1, \ldots, H\}$.

The classical inference problems

Filtering	(Inferring the present)	$p\left(h_{t} \mid v_{1: t}\right)$
Prediction	(Inferring the future) sometimes also	$p\left(h_{t} \mid v_{1: s}\right) \quad$ for $t>s$ $p\left(v_{t} \mid v_{1: s}\right) \quad$ for $t>s$
Smoothing	(Inferring the past)	$p\left(h_{t} \mid v_{1: u}\right) \quad$ for $t<u$
Likelihood		$p\left(v_{1: T}\right)$
Most likely Hidden path	(Viterbi alignment)	$\operatorname{argmax} h_{1: T} p\left(h_{1: T} \mid v_{1: T}\right)$
Learning	(Parameter estimation) $\mathcal{D} \rightarrow A_{i, i^{\prime},}, a_{i}, B_{i, j}$	

The Burglar Scenario
You're asleep upstairs in your house and awoken by noises from downstairs. You realise that a burglar is on the ground floor and attempt to understand where he his from listening to his movements.

The Burglar Scenario

You're asleep upstairs in your house and awoken by noises from downstairs. You realise that a burglar is on the ground floor and attempt to understand where he his from listening to his movements.

The HMM view

- You mentally partition the ground floor into a 5×5 grid.
- For each grid position you know the probability that if someone is in that position the floorboard will creak.
- Similarly you know for each position the probability that someone will bump into something in the dark.
- The floorboard creaking and bumping into objects can occur independently.
- In addition you assume that the burglar will move only one grid square - forwards, backwards, left or right in a single timestep.

Can you infer the burglar's position from the sounds?

The Burglar Scenario: Example

	creaks	n		n	y	n						y
bservations.	bumps	y		n	y	n						y

- latent variable $h_{t} \in\{1, \ldots, 25\}$ denotes the positions on 5×5 grid dark squares means probability 0.9 , light means probability 0.1
- observed variables: $v_{t}=\left(c_{t}, b_{t}\right) \in\{(n, n),(n, y),(y, n),(y, y)\}$
- observed probability factorizes $p(v \mid h)=p(c \mid h) p(b \mid h)$

Burglar

Localising the burglar through time for 10 time steps

Note:

- (b) is computed on-the-fly in every time step
- (c) and (d) are computed offline after all observations are available
https://www.youtube.com/watch?v=4Z3shNPOdQA

Filtering $p\left(h_{t} \mid v_{1: t}\right)$

Filtering $p\left(h_{t} \mid v_{1: t}\right)$

$$
\begin{aligned}
p\left(h_{t}, v_{1: t}\right) & =\sum_{h_{t-1}} p\left(h_{t}, h_{t-1}, v_{1: t-1}, v_{t}\right) \\
& =\sum_{h_{t-1}} p\left(v_{t} \mid v_{1: t}, 1, h_{t}, h_{t-1}\right) p\left(h_{t} \mid v_{1: t-1}, h_{t-1}\right) p\left(v_{1: t-1}, h_{t-1}\right) \\
& =\sum_{h_{t-1}} p\left(v_{t} \mid h_{t}\right) p\left(h_{t} \mid h_{t-1}\right) p\left(h_{t-1}, v_{1: t-1}\right)
\end{aligned}
$$

Filtering $p\left(h_{t} \mid v_{1: t}\right)$

$$
\begin{aligned}
p\left(h_{t}, v_{1: t}\right) & =\sum_{h_{t-1}} p\left(h_{t}, h_{t-1}, v_{1: t-1}, v_{t}\right) \\
& =\sum_{h_{t-1}} p\left(v_{t} \mid v_{1: t-1}, h_{t}, h_{t-1}\right) p\left(h_{t} \mid \underline{v}_{1: t-1}, h_{t-1}\right) p\left(v_{1: t-1}, h_{t-1}\right) \\
& =\sum_{h_{t-1}} p\left(v_{t} \mid h_{t}\right) p\left(h_{t} \mid h_{t-1}\right) p\left(h_{t-1}, v_{1: t-1}\right)
\end{aligned}
$$

Hence if we define $\alpha\left(h_{t}\right) \equiv p\left(h_{t}, v_{1: t}\right)$ the above gives the α-recursion

$$
\alpha\left(h_{t}\right)=\overbrace{p\left(v_{t} \mid h_{t}\right)}^{\text {corrector }} \overbrace{\sum_{h_{t-1}} p\left(h_{t} \mid h_{t-1}\right) \alpha\left(h_{t-1}\right)}^{\text {predictor }}, \quad \text { with } \quad \alpha\left(h_{1}\right)=p\left(h_{1}, v_{1}\right)=p\left(v_{1} \mid h_{1}\right) p\left(h_{1}\right)
$$

Filtering $p\left(h_{t} \mid v_{1: t}\right)$

$$
\begin{aligned}
p\left(h_{t}, v_{1: t}\right) & =\sum_{h_{t-1}} p\left(h_{t}, h_{t-1}, v_{1: t-1}, v_{t}\right) \\
& =\sum_{h_{t-1}} p\left(v_{t} \mid v_{1} t-1, h_{t}, h_{t-1}\right) p\left(h_{t} \mid v_{1} t-1, h_{t-1}\right) p\left(v_{1: t-1}, h_{t-1}\right) \\
& =\sum_{h_{t-1}} p\left(v_{t} \mid h_{t}\right) p\left(h_{t} \mid h_{t-1}\right) p\left(h_{t-1}, v_{1: t-1}\right)
\end{aligned}
$$

Hence if we define $\alpha\left(h_{t}\right) \equiv p\left(h_{t}, v_{1: t}\right)$ the above gives the α-recursion

$$
\alpha\left(h_{t}\right)=\overbrace{p\left(v_{t} \mid h_{t}\right)}^{\text {corrector }} \overbrace{\sum_{h_{t-1}} p\left(h_{t} \mid h_{t-1}\right) \alpha\left(h_{t-1}\right)}^{\text {predictor }}, \quad \text { with } \quad \alpha\left(h_{1}\right)=p\left(h_{1}, v_{1}\right)=p\left(v_{1} \mid h_{1}\right) p\left(h_{1}\right)
$$

Filtered posterior follows by normalization: $p\left(h_{t} \mid v_{1: t}\right)=\frac{p\left(h_{t}, v_{1: t}\right)}{\sum_{\bar{h}_{t}} p\left(\bar{h}_{t}, v_{1: t}\right)}=\frac{\alpha\left(h_{t}\right)}{\sum_{\bar{h}_{t}} \alpha\left(\bar{h}_{t}\right)}$

Likelihood $p\left(v_{1: T}\right)$

Likelihood $p\left(v_{1: T}\right)$

$$
p\left(v_{1: T}\right)=\sum_{h_{T}} p\left(h_{T}, v_{1: T}\right)=\sum_{h_{T}} \alpha\left(h_{T}\right)
$$

Smoothing $p\left(h_{t} \mid v_{1: T}\right)$

Smoothing $p\left(h_{t} \mid v_{1: T}\right)$
To compute the smoothed quantity we consider how h_{t} partitions the series into the past and future:

$$
\begin{aligned}
p\left(h_{t}, v_{1: T}\right) & =p\left(h_{t}, v_{1: t}, v_{t+1: T}\right) \\
& =\underbrace{p\left(h_{t}, v_{1: t}\right)}_{\text {past }} \underbrace{p\left(v_{t+1: T} \mid h_{t}, v_{1: t}\right)}_{\text {future }}=\alpha\left(h_{t}\right) \beta\left(h_{t}\right)
\end{aligned}
$$

Smoothing $p\left(h_{t} \mid v_{1: T}\right)$
To compute the smoothed quantity we consider how h_{t} partitions the series into the past and future:

$$
\begin{aligned}
p\left(h_{t}, v_{1: T}\right) & =p\left(h_{t}, v_{1: t}, v_{t+1: T}\right) \\
& =\underbrace{p\left(h_{t}, v_{1: t}\right)}_{\text {past }} \underbrace{p\left(v_{t+1: T} \mid h_{t}, v_{1: t}\right)}_{\text {future }}=\alpha\left(h_{t}\right) \beta\left(h_{t}\right)
\end{aligned}
$$

Forward. The term $\alpha\left(h_{t}\right)$ is obtained from the 'forward' α recursion.
Backward. The term $\beta\left(h_{t}\right)$ we will obtain using a 'backward' β recursion as we show next.

Smoothing $p\left(h_{t} \mid v_{1: T}\right)$
To compute the smoothed quantity we consider how h_{t} partitions the series into the past and future:

$$
\begin{aligned}
p\left(h_{t}, v_{1: T}\right) & =p\left(h_{t}, v_{1: t}, v_{t+1: T}\right) \\
& =\underbrace{p\left(h_{t}, v_{1: t}\right)}_{\text {past }} \underbrace{p\left(v_{t+1: T} \mid h_{t}, v_{1: t}\right)}_{\text {future }}=\alpha\left(h_{t}\right) \beta\left(h_{t}\right)
\end{aligned}
$$

Forward. The term $\alpha\left(h_{t}\right)$ is obtained from the 'forward' α recursion.
Backward. The term $\beta\left(h_{t}\right)$ we will obtain using a 'backward' β recursion as we show next. The forward and backward recursions are independent and may therefore be run in parallel, with their results combined to obtain the smoothed posterior.

$$
p\left(h_{t} \mid v_{1: T}\right) \equiv \gamma\left(h_{t}\right)=\frac{\alpha\left(h_{t}\right) \beta\left(h_{t}\right)}{\sum_{\bar{h}_{t}} \alpha\left(\bar{h}_{t}\right) \beta\left(\bar{h}_{t}\right)} \quad \text { "Parallel Smoothing" }
$$

The β recursion

$$
\begin{aligned}
p\left(v_{t: T} \mid h_{t-1}\right) & =\sum_{h_{t}} p\left(v_{t}, v_{t+1: T}, h_{t} \mid h_{t-1}\right) \\
& =\sum_{h_{t}} p\left(v_{t} \mid v_{t+1: T}, h_{t}, h_{t-1}\right) p\left(v_{t+1: T}, h_{t} \mid h_{t-1}\right) \\
& =\sum_{h_{t}} p\left(v_{t} \mid h_{t}\right) p\left(v_{t+1: T} \mid h_{t}, h_{t-1}\right) p\left(h_{t} \mid h_{t-1}\right)
\end{aligned}
$$

Defining $\beta\left(h_{t}\right) \equiv p\left(v_{t+1: T} \mid h_{t}\right)$ gives the β-recursion

$$
\beta\left(h_{t-1}\right)=\sum_{h_{t}} p\left(v_{t} \mid h_{t}\right) p\left(h_{t} \mid h_{t-1}\right) \beta\left(h_{t}\right), \quad \text { for } 2 \leq t \leq T \quad \text { and } \quad \beta\left(h_{T}\right)=1
$$

Together the $\alpha-\beta$ recursions are called the Forward-Backward algorithm.

Smoothing $p\left(h_{t} \mid v_{1: T}\right)$

"Correction Smoothing":

$$
p\left(h_{t} \mid v_{1: T}\right)=\sum_{h_{t+1}} p\left(h_{t}, h_{t+1} \mid v_{1: T}\right)=\sum_{h_{t+1}} p\left(h_{t} \mid h_{t+1}, v_{1: t}, v_{t+1: T}\right) p\left(h_{t+1} \mid v_{1: T}\right)
$$

This gives a recursion for $\gamma\left(h_{t}\right) \equiv p\left(h_{t} \mid v_{1: T}\right)$:

$$
\gamma\left(h_{t}\right)=\sum_{h_{t+1}} p\left(h_{t} \mid h_{t+1}, v_{1: t}\right) \gamma\left(h_{t+1}\right)
$$

with $\gamma\left(h_{T}\right) \propto \alpha\left(h_{T}\right)$. The term $p\left(h_{t} \mid h_{t+1}, v_{1: t}\right)$ may be computed using the filtered results $p\left(h_{t} \mid v_{1: t}\right)$:

$$
p\left(h_{t} \mid h_{t+1}, v_{1: t}\right) \propto p\left(h_{t+1}, h_{t} \mid v_{1: t}\right) \propto p\left(h_{t+1} \mid h_{t}\right) p\left(h_{t} \mid v_{1: t}\right)
$$

where the proportionality constant is found by normalisation. This is sequential since we need to first complete the α recursions, after which the γ recursion may begin. This 'corrects' the filtered result. Interestingly, once filtering has been carried out, the evidential states $v_{1: T}$ are not needed during the subsequent γ recursion.

Computing the pairwise marginal $p\left(h_{t}, h_{t+1} \mid v_{1: T}\right)$

To implement the EM algorithm for learning, we require terms such as $p\left(h_{t}, h_{t+1} \mid v_{1: T}\right)$.

$$
\begin{aligned}
p\left(h_{t}, h_{t+1} \mid v_{1: T}\right) & \propto p\left(v_{1: t}, v_{t+1}, v_{t+2: T}, h_{t+1}, h_{t}\right) \\
& =p\left(v_{t+2: T} \mid v_{1}, h_{t+1}, h_{t+1}\right) p\left(v_{1: t}, v_{t+1}, h_{t+1}, h_{t}\right) \\
& =p\left(v_{t+2: T} \mid h_{t+1}\right) p\left(v_{t+1} \mid v_{4 t}, K_{t}, h_{t+1}\right) p\left(v_{1: t}, h_{t+1}, h_{t}\right) \\
& =p\left(v_{t+2: T} \mid h_{t+1}\right) p\left(v_{t+1} \mid h_{t+1}\right) p\left(h_{t+1} \mid v_{: t}, h_{t}\right) p\left(v_{1: t}, h_{t}\right)
\end{aligned}
$$

After rearranging:

$$
p\left(h_{t}, h_{t+1} \mid v_{1: T}\right) \propto \alpha\left(h_{t}\right) p\left(v_{t+1} \mid h_{t+1}\right) p\left(h_{t+1} \mid h_{t}\right) \beta\left(h_{t+1}\right)
$$

Predicting the future hidden variable:

$$
p\left(h_{t+1} \mid v_{1: t}\right)=
$$

Prediction

Predicting the future hidden variable:

$$
p\left(h_{t+1} \mid v_{1: t}\right)=\sum_{h_{t}} p\left(h_{t+1} \mid h_{t}\right) \underbrace{p\left(h_{t} \mid v_{1: t}\right)}_{\text {filtering }}
$$

Prediction

Predicting the future hidden variable:

$$
p\left(h_{t+1} \mid v_{1: t}\right)=\sum_{h_{t}} p\left(h_{t+1} \mid h_{t}\right) \underbrace{p\left(h_{t} \mid v_{1: t}\right)}_{\text {filtering }}
$$

Predicting the future observation The one-step ahead predictive distribution is given by

$$
p\left(v_{t+1} \mid v_{1: t}\right)=
$$

Prediction

Predicting the future hidden variable:

$$
p\left(h_{t+1} \mid v_{1: t}\right)=\sum_{h_{t}} p\left(h_{t+1} \mid h_{t}\right) \underbrace{p\left(h_{t} \mid v_{1: t}\right)}_{\text {filtering }}
$$

Predicting the future observation The one-step ahead predictive distribution is given by

$$
p\left(v_{t+1} \mid v_{1: t}\right)=\sum_{h_{t+1}} p\left(v_{t+1} \mid h_{t+1}\right) \underbrace{p\left(h_{t+1} \mid v_{1: t}\right)}_{\text {prediction }}
$$

Most likely joint state
The most likely path $h_{1: T}$ of $p\left(h_{1: T} \mid v_{1: T}\right)$ is the same as the most likely state of

$$
p\left(h_{1: T}, v_{1: T}\right)=\prod_{t} p\left(v_{t} \mid h_{t}\right) p\left(h_{t} \mid h_{t-1}\right) \quad \text { with } h_{0}=\emptyset
$$

Consider

$$
\begin{aligned}
& \max _{h_{T}} \prod_{t=1}^{T} p\left(v_{t} \mid h_{t}\right) p\left(h_{t} \mid h_{t-1}\right) \\
& =\left\{\prod_{t=1}^{T-1} p\left(v_{t} \mid h_{t}\right) p\left(h_{t} \mid h_{t-1}\right)\right\} \underbrace{\max _{h_{T}} p\left(v_{T} \mid h_{T}\right) p\left(h_{T} \mid h_{T-1}\right)}_{\mu\left(h_{T-1}\right)}
\end{aligned}
$$

The "message" $\mu\left(h_{T-1}\right)$ conveys information from the end of the chain to the penultimate timestep.

Most likely joint state

We can continue in this manner, defining the recursion

$$
\mu\left(h_{t-1}\right)=\max _{h_{t}} p\left(v_{t} \mid h_{t}\right) p\left(h_{t} \mid h_{t-1}\right) \mu\left(h_{t}\right), \quad \text { for } 2 \leq t \leq T \quad \text { and } \quad \mu\left(h_{T}\right)=1
$$

The effect of maximising over h_{2}, \ldots, h_{T} is compressed into a message $\mu\left(h_{1}\right)$ \rightarrow the first entry most likely state, h_{1}^{*}, is given by

$$
h_{1}^{*}=\underset{h_{1}}{\operatorname{argmax}} p\left(v_{1} \mid h_{1}\right) p\left(h_{1}\right) \mu\left(h_{1}\right)
$$

Once computed, backtracking gives the remaining entries:

$$
h_{t}^{*}=\underset{h_{t}}{\operatorname{argmax}} p\left(v_{t} \mid h_{t}\right) p\left(h_{t} \mid h_{t-1}^{*}\right) \mu\left(h_{t}\right)
$$

Learning Hidden Markov Models

Learning HMMs

Setting:

- given: data $\mathcal{V}=\left\{\mathbf{v}^{1}, \ldots, \mathbf{v}^{N}\right\}$ of N sequences, each sequence $\mathbf{v}^{N}=v_{1: T_{N}}^{N}$ is of length T_{n}
- goal: maximum-likelihood of HMM parameters $\theta=(\mathbf{A}, \mathbf{B}, \mathbf{a})$, where
- A is the HMM transition matrix, $p\left(h_{t+1} \mid h_{t}\right)$
- \mathbf{B} is the emission matrix, $p\left(v_{t} \mid h_{t}\right)$
- \mathbf{a} is the vector of initial state probabilities, $p\left(h_{1}\right)$.
- assumption: the sequences are i.i.d. (within sequences, data are still dependent, of course)
- assumption: the number of hidden states H and observable states V is known and finite

Learning HMMs

Setting:

- given: data $\mathcal{V}=\left\{\mathbf{v}^{1}, \ldots, \mathbf{v}^{N}\right\}$ of N sequences, each sequence $\mathbf{v}^{N}=v_{1: T_{N}}^{N}$ is of length T_{n}
- goal: maximum-likelihood of HMM parameters $\theta=(\mathbf{A}, \mathbf{B}, \mathbf{a})$, where
- \mathbf{A} is the HMM transition matrix, $p\left(h_{t+1} \mid h_{t}\right)$
- \mathbf{B} is the emission matrix, $p\left(v_{t} \mid h_{t}\right)$
- \mathbf{a} is the vector of initial state probabilities, $p\left(h_{1}\right)$.
- assumption: the sequences are i.i.d. (within sequences, data are still dependent, of course)
- assumption: the number of hidden states H and observable states V is known and finite

Find θ that maximizes

$$
p\left(\mathbf{v}^{1}, \ldots, \mathbf{v}^{N} ; \theta\right)=\sum_{\mathbf{h}^{1}, \ldots, \mathbf{h}^{N}} p\left(\mathbf{v}^{1}, \ldots, \mathbf{v}^{N}, \mathbf{h}^{1}, \ldots, \mathbf{h}^{N} ; \theta\right)=\prod_{n=1}^{N} \sum_{\mathbf{h}^{n}} p\left(\mathbf{v}^{n}, \mathbf{h}^{n} ; \theta\right)
$$

Learning HMMs

Setting:

- given: data $\mathcal{V}=\left\{\mathbf{v}^{1}, \ldots, \mathbf{v}^{N}\right\}$ of N sequences, each sequence $\mathbf{v}^{N}=v_{1: T_{N}}^{N}$ is of length T_{n}
- goal: maximum-likelihood of HMM parameters $\theta=(\mathbf{A}, \mathbf{B}, \mathbf{a})$, where
- \mathbf{A} is the HMM transition matrix, $p\left(h_{t+1} \mid h_{t}\right)$
- \mathbf{B} is the emission matrix, $p\left(v_{t} \mid h_{t}\right)$
- \mathbf{a} is the vector of initial state probabilities, $p\left(h_{1}\right)$.
- assumption: the sequences are i.i.d. (within sequences, data are still dependent, of course)
- assumption: the number of hidden states H and observable states V is known and finite

Find θ that maximizes

$$
p\left(\mathbf{v}^{1}, \ldots, \mathbf{v}^{N} ; \theta\right)=\sum_{\mathbf{h}^{1}, \ldots, \mathbf{h}^{N}} p\left(\mathbf{v}^{1}, \ldots, \mathbf{v}^{N}, \mathbf{h}^{1}, \ldots, \mathbf{h}^{N} ; \theta\right)=\prod_{n=1}^{N} \sum_{\mathbf{h}^{n}} p\left(\mathbf{v}^{n}, \mathbf{h}^{n} ; \theta\right)
$$

How?

Learning HMMs

Setting:

- given: data $\mathcal{V}=\left\{\mathbf{v}^{1}, \ldots, \mathbf{v}^{N}\right\}$ of N sequences, each sequence $\mathbf{v}^{N}=v_{1: T_{N}}^{N}$ is of length T_{n}
- goal: maximum-likelihood of HMM parameters $\theta=(\mathbf{A}, \mathbf{B}, \mathbf{a})$, where
- A is the HMM transition matrix, $p\left(h_{t+1} \mid h_{t}\right)$
- \mathbf{B} is the emission matrix, $p\left(v_{t} \mid h_{t}\right)$
- \mathbf{a} is the vector of initial state probabilities, $p\left(h_{1}\right)$.
- assumption: the sequences are i.i.d. (within sequences, data are still dependent, of course)
- assumption: the number of hidden states H and observable states V is known and finite

Find θ that maximizes

$$
p\left(\mathbf{v}^{1}, \ldots, \mathbf{v}^{N} ; \theta\right)=\sum_{\mathbf{h}^{1}, \ldots, \mathbf{h}^{N}} p\left(\mathbf{v}^{1}, \ldots, \mathbf{v}^{N}, \mathbf{h}^{1}, \ldots, \mathbf{h}^{N} ; \theta\right)=\prod_{n=1}^{N} \sum_{\mathbf{h}^{n}} p\left(\mathbf{v}^{n}, \mathbf{h}^{n} ; \theta\right)
$$

How? EM-algorithm (for HMMs called Baum-Welch algorithm for historic reasons)

Learning HMMs

Like for GMM, construct a lower bound using a distribution $q\left(\mathbf{h}^{1}, \ldots, \mathbf{h}^{N}\right)$

$$
\begin{aligned}
& \log p\left(\mathbf{v}^{1}, \ldots, \mathbf{v}^{N} ; \theta\right)=\log \sum_{\mathbf{h}^{1}, \ldots, \mathbf{h}^{N}} p\left(\mathbf{v}^{1}, \ldots, \mathbf{v}^{N}, \mathbf{h}^{1}, \ldots, \mathbf{h}^{N} ; \theta\right) \\
& \quad \leq \underset{\left(\mathbf{h}^{1}, \ldots, \mathbf{h}^{N}\right) \sim q}{\mathbb{E}} \log p\left(\mathbf{v}^{1}, \ldots, \mathbf{v}^{N}, \mathbf{h}^{1}, \ldots, \mathbf{h}^{N} ; \theta\right)-\underset{\left(\mathbf{h}^{1}, \ldots, \mathbf{h}^{N}\right) \sim q}{\mathbb{E}} \log q\left(\mathbf{h}^{1}, \ldots, \mathbf{h}^{N}\right)
\end{aligned}
$$

EM algorithm:

initialize θ^{0}

$$
\text { for } \begin{array}{rlrl}
t & =1,2, \ldots, \text { until convergence do } \\
q^{t} & \leftarrow \operatorname{argmax}_{q} G\left(\theta^{t-1}, q\right) & & / / \text { E-step } \\
\theta^{t} & \leftarrow \operatorname{argmax}_{\theta} G\left(\theta, q^{t}\right) & & / / \mathrm{M} \text {-step }
\end{array}
$$

end for

Learning HMMs

Like for GMM, construct a lower bound using a distribution $q\left(\mathbf{h}^{1}, \ldots, \mathbf{h}^{N}\right)$

$$
\begin{aligned}
& \log p\left(\mathbf{v}^{1}, \ldots, \mathbf{v}^{N} ; \theta\right)=\log \sum_{\mathbf{h}^{1}, \ldots, \mathbf{h}^{N}} p\left(\mathbf{v}^{1}, \ldots, \mathbf{v}^{N}, \mathbf{h}^{1}, \ldots, \mathbf{h}^{N} ; \theta\right) \\
& \quad \leq \underset{\left(\mathbf{h}^{1}, \ldots, \mathbf{h}^{N}\right) \sim q}{\mathbb{E}} \log p\left(\mathbf{v}^{1}, \ldots, \mathbf{v}^{N}, \mathbf{h}^{1}, \ldots, \mathbf{h}^{N} ; \theta\right)-\underset{\left(\mathbf{h}^{1}, \ldots, \mathbf{h}^{N}\right) \sim q}{\mathbb{E}} \log q\left(\mathbf{h}^{1}, \ldots, \mathbf{h}^{N}\right)=: G(\theta, q)
\end{aligned}
$$

EM algorithm:

initialize θ^{0}

$$
\begin{array}{rlrl}
\text { for } t & =1,2, \ldots, \text { until convergence do } \\
q^{t} & \leftarrow \operatorname{argmax}_{q} G\left(\theta^{t-1}, q\right) & & / / \text { E-step } \\
\theta^{t} & \leftarrow \operatorname{argmax}_{\theta} G\left(\theta, q^{t}\right) & & / / \mathrm{M} \text {-step }
\end{array}
$$

end for

E-step, Part 1

$$
q \leftarrow \underset{q}{\operatorname{argmax}} G\left(\theta^{t-1}, q\right)
$$

- as for GMMs:

$$
q^{t} \leftarrow p\left(\mathbf{h}^{1}, \ldots, \mathbf{h}^{N} \mid \mathbf{v}^{1}, \ldots, \mathbf{v}^{N} ; \theta^{t-1}\right) \stackrel{i . i . d .}{=} \prod_{n=1}^{N} p\left(\mathbf{h}^{n} \mid \mathbf{v}^{n} ; \theta^{t-1}\right)
$$

E-step, Part 1

$$
q \leftarrow \underset{q}{\operatorname{argmax}} G\left(\theta^{t-1}, q\right)
$$

- as for GMMs:

$$
q^{t} \leftarrow p\left(\mathbf{h}^{1}, \ldots, \mathbf{h}^{N} \mid \mathbf{v}^{1}, \ldots, \mathbf{v}^{N} ; \theta^{t-1}\right) \stackrel{i . i . d .}{=} \prod_{n=1}^{N} \underbrace{p\left(\mathbf{h}^{n} \mid \mathbf{v}^{n} ; \theta^{t-1}\right)}_{=: q^{n}\left(\mathbf{h}^{n}\right)}
$$

E-step, Part 1

$$
q \leftarrow \underset{q}{\operatorname{argmax}} G\left(\theta^{t-1}, q\right)
$$

- as for GMMs:

$$
q^{t} \leftarrow p\left(\mathbf{h}^{1}, \ldots, \mathbf{h}^{N} \mid \mathbf{v}^{1}, \ldots, \mathbf{v}^{N} ; \theta^{t-1}\right) \stackrel{i . i . d .}{=} \prod_{n=1}^{N} \underbrace{p\left(\mathbf{h}^{n} \mid \mathbf{v}^{n} ; \theta^{t-1}\right)}_{=: q^{n}\left(\mathbf{h}^{n}\right)}=\prod_{n=1}^{N} q^{n}\left(\mathbf{h}^{n}\right)
$$

later more...

M-step

M-step

$$
\begin{aligned}
& \underset{\left(\mathbf{h}^{1}, \ldots, \mathbf{h}^{N}\right) \sim q}{\mathbb{E}} \log p\left(\mathbf{v}^{1}, \ldots, \mathbf{v}^{N}, \mathbf{h}^{1}, \ldots, \mathbf{h}^{N} ; \theta\right) \\
& \stackrel{i . i . d .}{=} \underset{\left(\mathbf{h}^{1}, \ldots, \mathbf{h}^{n} \sim q\right.}{\mathbb{E}} \sum_{n=1}^{N} \log p\left(\mathbf{v}^{n}, \mathbf{h}^{n} ; \theta\right)=\sum_{n=1}^{N} \underset{\mathbf{h} \sim q^{n}}{\mathbb{E}} \log p\left(v_{1: T^{n}}^{n}, h_{1: T^{n}} ; \theta\right) \\
& \stackrel{\text { HMM graph }}{=} \sum_{n=1}^{N} \underset{\mathbf{h} \sim q^{n}}{\mathbb{E}} \log \left[p\left(h_{1} ; a\right) \prod_{t=2}^{T^{n}} p\left(h_{t} \mid h_{t-1} ; A\right) \prod_{t=1}^{T^{n}} p\left(v_{t}^{n} \mid h_{t} ; B\right)\right] \\
& =\underbrace{\sum_{n=1}^{N} \underset{\mathbf{h} \sim q^{n}}{\mathbb{E}} \log p\left(h_{1} ; a\right)}_{\mathcal{L}_{\text {initial }}(a)}+\underbrace{\sum_{n=1}^{N} \sum_{t=2}^{T^{n}} \underset{\mathbf{h} \sim q^{n}}{\mathbb{E}} \log p\left(h_{t} \mid h_{t-1} ; A\right)}_{\mathcal{L}_{\text {transition }}(A)}+\underbrace{\sum_{n=1}^{N} \sum_{t=1}^{T^{n}} \underset{\mathbf{h} \sim q^{n}}{\mathbb{E}} \log p\left(v_{t}^{n} \mid h_{t} ; B\right)}_{\mathcal{L}_{\text {emission }}(B)}
\end{aligned}
$$

$$
\mathcal{L}_{\text {initial }}(a)=\sum_{n=1}^{N} \underset{h_{1: T_{n}} \sim q^{n}}{\mathbb{E}} \log p\left(h_{1} ; a\right)=\sum_{n=1}^{N} \underset{h_{1} \sim q^{n}}{\mathbb{E}} \log a_{h_{1}}
$$

a is a discrete probability distribution over H states, i.e. $\sum_{i} a_{i}=1$. Use Langragian:

$$
\begin{aligned}
& \mathfrak{L}(a, \lambda)=\mathcal{L}_{\text {initial }}(a)-\lambda\left(\sum_{i} a_{i}-1\right) \\
& \frac{d \mathcal{L}_{\text {initial }}(a)}{d a_{i}}(a)=\frac{d}{d a_{i}} \sum_{n=1}^{N} \underset{h_{1} \sim q^{n}}{\mathbb{E}} \sum_{i^{\prime}=1}^{H} \llbracket h_{1}=i^{\prime} \rrbracket \log a_{i^{\prime}}=\sum_{n=1}^{N} \underset{h_{1} \sim q^{n}}{\mathbb{E}} \llbracket h_{1}=i \rrbracket \frac{1}{a_{i}}=\frac{1}{a_{i}} \sum_{n=1}^{N} q^{n}\left(h_{1}\right) \\
& 0=\frac{d \mathfrak{L}(a, \lambda)}{d a_{i}}(\hat{a}, \hat{\lambda})=\frac{1}{a_{i}} \sum_{n=1}^{N} q^{n}\left(h_{1}=i\right)-\lambda \quad \rightarrow \quad \hat{a}_{i}=\frac{1}{\hat{\lambda}} \sum_{n=1}^{N} q^{n}\left(h_{1}\right) \\
& 0=\frac{d \mathfrak{L}(a, \lambda)}{d \lambda}(\hat{a}, \hat{\lambda})=-1+\sum_{i=1}^{H} \frac{1}{\hat{\lambda}} \sum_{n=1}^{N} q^{n}\left(h_{1}=i\right)=-1+\sum_{i=1}^{H} \frac{1}{\hat{\lambda}} \rightarrow \hat{\lambda}=n
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{\text {transition }}(A) & =\sum_{n=1}^{N} \sum_{t=2}^{T^{n}} \underset{\mathbf{h} \sim q^{n}}{\mathbb{E}} \log p\left(h_{t} \mid h_{t-1} ; A\right) \\
& =\sum_{n=1}^{N} \sum_{t=2}^{T^{n}} \underset{h_{1: T^{n} \sim q^{n}}}{\mathbb{E}} \sum_{i, i^{\prime}=1}^{H} \llbracket h_{t}=i \wedge h_{t-1}=i^{\prime} \rrbracket \log A_{i, i^{\prime}} \\
& =\sum_{n=1}^{N} \sum_{t=2}^{T^{n}} \sum_{i, i^{\prime}=1}^{H} q^{n}\left(h_{t}=i, h_{t-1}=i^{\prime}\right) \log A_{i, i^{\prime}}
\end{aligned}
$$

Each column of A is a (conditional) distribution over the rows, i.e. $\sum_{i} A_{i, i^{\prime}}=1$ for any $i^{\prime} \in\{1, \ldots, H\}$. We can optimize for any fixed i^{\prime} independently:

$$
\mathfrak{L}(A, \lambda)=\mathcal{L}_{\text {transition }}(A)-\lambda\left(\sum_{i} A_{i, i^{\prime}}-1\right)
$$

$$
\hat{A}_{i, i^{\prime}} \propto \sum_{n=1}^{n} \sum_{t=2}^{T_{n}} q^{n}\left(h_{t}=i, h_{t-1}=i^{\prime}\right) \quad \text { with normalization to make } \hat{A}_{i, i^{\prime}}=1 \text { for each } i^{\prime}
$$

$$
\begin{aligned}
\mathcal{L}_{\text {emission }}(A) & =\sum_{n=1}^{N} \sum_{t=1}^{T^{n}} \underset{\mathbf{h} \sim q^{n}}{\mathbb{E}} \log p\left(v_{t}^{n} \mid h_{t} ; B\right)=\sum_{n=1}^{N} \sum_{t=1}^{T^{n}} \sum_{j=1}^{V} \llbracket v_{t}^{n}=j \rrbracket \underset{h_{1: T^{n} \sim q^{n}}}{\mathbb{E}} \sum_{i=1}^{H} \llbracket h_{t}=i \rrbracket \log B_{j, i} \\
& =\sum_{n=1}^{N} \sum_{t=1}^{T^{n}} \sum_{j=1}^{V} \llbracket v_{t}^{n}=j \rrbracket \sum_{i=1}^{H} q^{n}\left(h_{t}=i\right) \log B_{j, i}
\end{aligned}
$$

Each column of B is a (conditional) distribution over the rows, i.e. $\sum_{j} B_{j, i}=1$ for any $j \in\{1, \ldots, V\}$. We can optimize for any fixed i independently:

$$
\begin{aligned}
\mathfrak{L}(B, \lambda) & =\mathcal{L}_{\text {emission }}(B)-\lambda\left(\sum_{j} B_{j, i}-1\right) \\
\hat{B}_{j, i} & \propto \sum_{n=1}^{n} \sum_{t=1}^{T_{n}} \llbracket v_{t}^{n}=j \rrbracket q^{n}\left(h_{t}=i\right) \quad \text { with normalization to make } \hat{B}_{j, i}=1 \text { for each } i
\end{aligned}
$$

E-step, Part 2

For the M-step we compute:

$$
\hat{a}_{i} \propto \sum_{n=1}^{N} q^{n}\left(h_{1}\right) \quad \hat{A}_{i, i^{\prime}} \propto \sum_{n=1}^{n} \sum_{t=2}^{T_{n}} q^{n}\left(h_{t}=i, h_{t-1}=i^{\prime}\right) \quad \hat{B}_{j, i} \propto \sum_{n=1}^{n} \sum_{t=1}^{T_{n}} \llbracket v_{t}^{n}=j \rrbracket q^{n}\left(h_{t}=i\right)
$$

Of $q^{n}(\mathbf{h})=p\left(\mathbf{h} \mid \mathbf{v}^{n} ; \theta\right)$ we really only need:

- $q^{n}\left(h_{1}\right)=p\left(h_{1} \mid v_{1: T^{n}}^{n} ; \theta\right)$ for a
- $q^{n}\left(h_{t}, h_{t-1}\right)=p\left(h_{t}, h_{t-1} \mid v_{1: T^{n}}^{n} ; \theta\right)$ for A
- $q^{n}\left(h_{t}\right)=p\left(h_{t} \mid v_{1: T^{n}}^{n} ; \theta\right)$ for B

For computing all of these we have derived efficient ways in the previous section.

EM for HMMs: Initialization

EM algorithm:

initialize θ^{0}

$$
\begin{array}{rlrl}
\text { for } t & =1,2, \ldots, \text { until convergence do } \\
& & \\
q^{t} \leftarrow \operatorname{argmax}_{q} G\left(\theta^{t-1}, q\right) & & / / \mathrm{E} \text {-step } \\
\theta^{t} & \leftarrow \operatorname{argmax}_{\theta} G\left(\theta, q^{t}\right) & & / / \mathrm{M} \text {-step }
\end{array}
$$

end for

Parameter initialisation

- EM algorithm converges to a local maximum of the likelihood,
- in general, there is no guarantee that the algorithm will find the global maximum
- often, the initialization determined how good the found solution is
- practical strategy:
- first, train non-temporal mixture model for $p(v)=\sum_{h} p(v \mid h) p(h)$
- initialize a and B from this, and assume independence for A

HMM with Continuous observations

For an HMM with continuous observation \mathbf{v}_{t}, we need a model of $p\left(\mathbf{v}_{t} \mid h_{t}\right)$, i.e. a continuous distribution for each state of h_{t}.

Inference

- filtering, smoothing, etc. remain largely unchanged, as everything is conditioned on $\mathbf{v}_{1: T}$

Learning

- learning requires computing normalization constants w.r.t. v
- depending on the model, this might or might not be tractable

