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Hidden Markov Models
Reminder: a hidden Markov model (HMM) consists of

» a discrete Markov chain of hidden (or ‘latent’) variables hy.7

» one observable (continous or discrete) variable v; for each hidden variable h;

DY

~
p(hi.7,vi.T) = p(vi|h1)p(h1) HP ve|he)p(he|he—1)
=2

We call the HMM stationary if

» the transition distribution p(h¢11 = i'|hy = i) and the emission distribution
p(ve = j|h: = i) do not depend on the position ¢, but only one the values i, " and j
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HMM parameters

Transition Distribution

For a stationary HMM the transition distribution p(h11|h;) is defined by the H x H transition
matrix

Apri = p(hepr = i'|he = i)

and an initial distribution

aj = p(hl = I)
Emission Distribution
For a stationary HMM and emission distribution p(v¢|h;) with discrete states v¢ € {1,...,V},

we define a V' x H emission matrix
Bij = p(vt = ilh: = j)

For continuous outputs, h; selects one of H possible output distributions p(v¢|h;),
he € {1,...,H}.
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Learning Hida

The classical inference problems

Filtering

Prediction

Smoothing
Likelihood
Most likely Hidden path

Learning

(Inferring the present)  p(h¢|vi¢)

(Inferring the future) p(he|vis) fort>s

sometimes also p(ve|vis) fort>s

(Inferring the past) p(helviy)  fort < u
p(vi:T)

(Viterbi alignment) argmax hy.7p(h1.7|v1.T)

(Parameter estimation) D — A, i1, a;, Bij
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The Burglar Scenario

You're asleep upstairs in your house and awoken by noises from downstairs. You realise that a

burglar is on the ground floor and attempt to understand where he his from listening to his
movements.
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The Burglar Scenario

den Markov Models

You're asleep upstairs in your house and awoken by noises from downstairs. You realise that a

burglar is on the ground floor and attempt to understand where he his from listening to his
movements.

The HMM view

» You mentally partition the ground floor into a 5 X 5 grid.

» For each grid position you know the probability that if someone is in that position the
floorboard will creak.

» Similarly you know for each position the probability that someone will bump into
something in the dark.

» The floorboard creaking and bumping into objects can occur independently.

» In addition you assume that the burglar will move only one grid square — forwards,
backwards, left or right in a single timestep.

Can you infer the burglar's position from the sounds?

6/29



Inference in Hidden Markov Models
0000080000000 0000

The Burglar Scenario: Example

"creaks’ "bumps’
creaks || n |y | n|y|[n|y|y|y|yly
bumps ||y In{n|y|n|y|n|n|y]|y

observations:

» latent variable h; € {1,...,25} denotes the positions on 5 x 5 grid
dark squares means probability 0.9, light means probability 0.1
» observed variables: vi = (¢, bt) € {(n, n),(n,y),(y,n),(y,y)}
» observed probability factorizes p(v|h) = p(c|h)p(b|h) 7720



Burglar

Localising the burglar through time for 10 time steps

(2) Creaks and Bumps v il B EHITHE
(b) Fitering (/v SHNJdNIDEEN
(©) Smoothing p(hilvi.7) SIS N
(d)
(¢)

d) Viterbi argmax,, _ p(hy.7|vi.T) - ! . . . . . . - .
e) True Burglar position hj. - ! - . - . . . - .

Note:

» (b) is computed on-the-fly in every time step

» (c) and (d) are computed offline after all observations are available
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Real-world example

https://www.youtube.com/watch?v=4Z3shNPOdQA


https://www.youtube.com/watch?v=4Z3shNPOdQA
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Filtering p(h¢|v1.¢)

10/29
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Filtering p(h¢|v1.¢)

P(ht, Vl:t) = Z P(hta he—1, vi:t—1, Vt)
he—1

= Z P(thiflz:t{f, htaﬁt—/l)P(htB%f, ht—l)P(Vl:t—h ht—l)

he—1

= Z p(vt|ht)p(ht’ht—l)p(ht—la Vl:t—l)
ht—1

10/29
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Filtering p(h¢|v1.¢)

P(ht, Vl:t) = Z P(hta he—1, vi:t—1, Vt)
he—1

= Z P(thylz:tf‘l’, htaﬁt—/l)P(htB%f, ht—l)P(Vl:t—h ht—l)

he—1

= Z p(vt|ht)p(ht’ht—l)p(ht—la Vl:t—l)
ht—1

Hence if we define a(ht) = p(h¢, vi:¢) the above gives the a-recursion

corrector prEdiCtor
o _
alhe) = p(velhe) Y p(he|be-1)a(he_1), with a(hy) = p(h1,v1) = p(va|h1)p(h1)
he_1

10/29
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Filtering p(h¢|v1.¢)

P(ht, Vl:t) = Z P(hta he—1, vi:t—1, Vt)
he—1

= Z P(thylz:tf‘l’, htaﬁt—/l)P(htB%f, ht—l)P(Vl:t—h ht—l)

he—1

= Z p(vt|ht)p(ht’ht—l)p(ht—la Vl:t—l)
ht—1

Hence if we define a(ht) = p(h¢, vi:¢) the above gives the a-recursion

corrector prEdiCtor
o _
alhe) = p(velhe) Y p(he|be-1)a(he_1), with a(hy) = p(h1,v1) = p(va|h1)p(h1)
he_1

Filtered posterior follows by normalization: p(h¢|vi.¢) =

P(hta_Vlzt) _ Oé(ht)_
> oh P(hesvie) X2, ahe) 020
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Likelihood p(v1.7)
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Likelihood p(v1.7)

p(vi.T) = ZP(hT, Vi.T) = Za(hT)
hr

ht

11/29
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Smoothing p(h¢|vi.7)

12/29
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Smoothing p(h¢|vi.7)

To compute the smoothed quantity we consider how h; partitions the series into the past and
future:

P(ht, Vl:T) = p(htu Vi:t, Vt+1:T)
= P(ht, Vl:t) P(Vt+1:T|ht7 V1:t) = a(ht)ﬁ(ht)
N——

past future

12/29
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Smoothing p(h¢|vi.7)

To compute the smoothed quantity we consider how h; partitions the series into the past and
future:

P(ht, Vl:T) = p(htu Vi:t, Vt+1:T)
= P(ht, Vl:t) P(Vt+1:T|ht7 V1:t) = a(ht)ﬁ(ht)
N——

past future

Forward. The term a(h;) is obtained from the ‘forward’ « recursion.

Backward. The term 3(h;) we will obtain using a ‘backward’ (3 recursion as we show next.

12/29
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Smoothing p(h¢|vi.7)
To compute the smoothed quantity we consider how h; partitions the series into the past and
future:
P(ht, Vl:T) = p(htu Vi:t, Vt+1:T)
= p(ht,vi:t) p(Veg1:7|he, vie) = a(he)B(he)
——

past future

Forward. The term a(h;) is obtained from the ‘forward’ « recursion.
Backward. The term 3(h;) we will obtain using a ‘backward’ (3 recursion as we show next.

The forward and backward recursions are independent and may therefore be run in parallel,
with their results combined to obtain the smoothed posterior.

p(helvi.T) = ~v(he) = M " Parallel Smoothing”

o5, alhe)B(he)

12/29
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The [ recursion

p(Vt:T‘ht—l) = ZP(Vt, Vi41:T, ht|ht—1)
he
= ZP VtLt»kl’f htaﬁ«t—/l)P(Vt-s-l T ht‘ht 1)
= ZP velhe)p Vt+1:T|htaﬁ—t/1)p ht|ht—1)

Defining 5(ht) = p(vi+1.7|ht) gives the [-recursion

B(h:_1) vat]h (helhe—1)B(hy), for2<t<T and B(h7)=1.

Together the o — (3 recursions are called the Forward-Backward algorithm.

13/29
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Smoothing p(h¢|vi.7)

" Correction Smoothing”:

p(helvir) =D plhe, hevalvir) = phel et vie, verrrr)p(hega va )

hti1 heia

This gives a recursion for v(h:) = p(h¢|va.7):

’Y(ht) = Z P(ht‘ht+1, V1:t)7(ht+1)

ht+1

with v(h7) oc a(ht). The term p(h¢|hey1, vi:t) may be computed using the filtered results
p(ht|vi:t):

p(ht|ht+17 Vl:t) X P(ht+1, ht|V1:t) X P(ht+1|ht)P(ht|V1:t)
where the proportionality constant is found by normalisation. This is sequential since we need
to first complete the « recursions, after which the + recursion may begin. This ‘corrects’ the
filtered result. Interestingly, once filtering has been carried out, the evidential states vy.7 are

not needed during the subsequent  recursion.
14 /29
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Computing the pairwise marginal p(h;, hei1|vi.T)

To implement the EM algorithm for learning, we require terms such as p(h, he+1|va:7).

(Vl:t> Vitl, Ver2: T hett, ht)

(Ver2. T Vi e, hev1)P(Vices Vert, hert, he)
(Ver2:T|hev1)P(Ver1 par s, he1)p(viie, hest, he)
P(Vt+2:T|ht+1)P(Vt+1|ht+1)P(ht+1 W7 ht)P(Vl:t, ht)

p(he, heyalviT)

p
p
p

After rearranging:

p(he, heiafvi.T) o< alhe) p(vet1lhes1)p(hes1]he) B(hes1)

15/29
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Prediction

Predicting the future hidden variable:

P(ht+1’V1:t) =

16 /29
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Prediction

Predicting the future hidden variable:

P(hey1|vi:e) ZP het1]ht) (ht|V1 t)

flltermg

16 /29
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Prediction

Predicting the future hidden variable:

p(ht+1’V1:t) = Z p(ht+1‘ht) p(ht|V1:t)
———

he filtering

Predicting the future observation The one-step ahead predictive distribution is given by

P(Vt+1\V1:t) =

16 /29
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Prediction

Predicting the future hidden variable:

p(ht+1’V1:t) = Z p(ht+1‘ht) p(ht|V1:t)
———

he filtering

Predicting the future observation The one-step ahead predictive distribution is given by

P(Vt+1 \ Vl:t) = Z P(Vt+1|ht+1) P(ht+1 | Vlzt)
~—_—

heia prediction

16 /29
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Most likely joint state

The most likely path hy.7 of p(hy.7|vi.7) is the same as the most likely state of

p(hy.7, vi.T) Hp ve|he)p(he|he—1) with hg = 0
Consider

mapr vi|he)p(he|he—1)

{H p(velhe)p(he| he— 1)} max p(vr|hr)p(hT|hT—1)
T

p(hr-1)

The "message” u(ht—_1) conveys information from the end of the chain to the penultimate

timestep.
17/29
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Most likely joint state

We can continue in this manner, defining the recursion

w(he—1) = mhaxp(vt|ht)p(ht|ht,1)u(ht), for2<t<T and pu(ht)=1.

The effect of maximising over hy, ..., ht is compressed into a message 1(hy)
— the first entry most likely state, hj, is given by

hi = argmax p(vi|h1)p(h1)p(h1)

hy

Once computed, backtracking gives the remaining entries:

hi = argmax p(velhe)p(he|ht_1)p(he)

t

18/29
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Learning Hidden Markov Models
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Learning HMMs

Setting:
e _ Iyl N
> given: data V = {v! ... vV} of N sequences,
each sequence vV = lA:ITN is of length T,

» goal: maximum-likelihood of HMM parameters 6 = (A, B,a), where
» A is the HMM transition matrix, p(her1]he)
» B is the emission matrix, p(v;|h;)
» a is the vector of initial state probabilities, p(h;).

» assumption: the sequences are i.i.d. (within sequences, data are still dependent, of course)
» assumption: the number of hidden states H and observable states V' is known and finite

20/29



Infe

in Hidden Markov Models Learning Hidden Markov Models
00 000 0®000000000
Learning HMMs

Setting:
> o - d _ 1 N
given: data V = {v!,... vV} of N sequences,
each sequence vV = lA:ITN is of length T,

» goal: maximum-likelihood of HMM parameters 6 = (A, B,a), where
» A is the HMM transition matrix, p(her1]he)
» B is the emission matrix, p(v¢|ht)
» a is the vector of initial state probabilities, p(h;).

» assumption: the sequences are i.i.d. (within sequences, data are still dependent, of course)
» assumption: the number of hidden states H and observable states V' is known and finite

Find 6 that maximizes

N
p(v',... wMi0) = > p(vh,.vM et Y0 = T D D p(v b 6)

hl ... hN n=1 hn

20/29
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Learning HMMs

Setting:
> o - d _ 1 N
given: data V = {v!,... vV} of N sequences,
each sequence vV = lA:ITN is of length T,

» goal: maximum-likelihood of HMM parameters 6 = (A, B,a), where
» A is the HMM transition matrix, p(her1]he)
» B is the emission matrix, p(v¢|ht)
» a is the vector of initial state probabilities, p(h;).

» assumption: the sequences are i.i.d. (within sequences, data are still dependent, of course)
» assumption: the number of hidden states H and observable states V' is known and finite

Find 6 that maximizes
N
p(vi, ... .wN;60) = Z p(vi, ... ,wN nt . hN ) = HZP(V”,h";H)
hi,...hN n=1 hn

How?
20/29
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Learning HMMs

Setting:
> o - d _ 1 N
given: data V = {v!,... vV} of N sequences,
each sequence vV = lA:ITN is of length T,

» goal: maximum-likelihood of HMM parameters 6 = (A, B,a), where
» A is the HMM transition matrix, p(her1]he)
» B is the emission matrix, p(v¢|ht)
» a is the vector of initial state probabilities, p(h;).

» assumption: the sequences are i.i.d. (within sequences, data are still dependent, of course)
» assumption: the number of hidden states H and observable states V' is known and finite

Find 6 that maximizes
N
p(vi, ... .wN;60) = Z p(vi, ... ,wN nt . hN ) = HZP(V”,h";H)
hi,...hN n=1 hn

How? EMe-algorithm (for HMMs called Baum-Welch algorithm for historic reasons)

20/29
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Learning HMMs

Like for GMM, construct a lower bound using a distribution g(h', ... h"V)

Iogp(vl,...,vN;O) = log Z p(vl,...,vN,hl,...,hN;O)

h,...h
1 N |1 N. 1 N
< (hl,_..;EhN)quogp(v VAN | RN ()| (hl,..,EN)Nq log g(h*,...,h™)
EM algorithm:
initialize 6°
for t =1,2,..., until convergence do
q* < argmax, G(0'" !, q) /] E-step
0t < argmaxy G(0,q") // M-step
end for

21/29
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Learning HMMs

Like for GMM, construct a lower bound using a distribution g(h', ... h"V)

Iogp(vl,...,vN;O) = log Z p(vl,...,vN,hl,...,hN;O)

hi,...h
1 N |1 N. 1 Ny
< (hl,_._;EhN)NqIng(v VAN | RN ()| (hl,..,EN)Nq logg(h*,....,h") =:G(0,q)
EM algorithm:
initialize 6°
for t =1,2,..., until convergence do
q* < argmax, G(0'" !, q) // E-step
0" < argmaxy G(0,q") // M-step
end for

21/29
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E-step, Part 1

q « argmax G(#'1,q)
q

» as for GMMs:

1y i.id. non ot
gt p(ht,..., WYL, N gety P TT p(hfe; 061
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q

» as for GMMs:

1y i.id. non ot
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E-step, Part 1

q « argmax G(#'1,q)
q

» as for GMMs:

_ i.id. ni..n — n(wn
"« p(ht, ... WYt N0t P TT p(h v 00t = T ¢"(h7)

later more...

22/29
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M-step
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E | vi . vV Rt N0
"y og p( )

(hl,...hN)~q
N
iid. h" qZIogpv h™. 9 :ZhiEqnlogp(vf:Tn,hl;-,—n;H)
HMM h
| grap ZhiEqnlog[ hl a Hp ht|ht 1; A Hp |ht, }
N Tn N Tn
—Z IE Iogp (h1;a +ZZ IE Iogp he|he—1; A) +ZZ IE Iogp v/|ht; B)
n=1 t= 2 n=1t= 1
Linitial(a) ‘Ctransition(A) ‘Cemission(B)

sum of independent terms — we can optimize for a, A and B separately
23 /29
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N N
Einitial(a) = h E ., |0g P(hl; 3) = A E . |Og ap,
n—1 1.T,~4q —1 1~q

a is a discrete probability distribution over H states, i.e. > ;a; = 1. Use Langragian:

£(2.3) = Liniial( (Za, - 1)

N N
dﬁmmal B B .
nealZ)a) = o Z Zﬂhl Mogar =3 B I =i =5 > a'(n)
N N
de&(a,\) . < 1 N 1
0 (S:a )(avA)_é_an(hl—/)—)\ — aj = AZq"(hl)
’ " n=1 n=1
H N H
d(a,)) . < LA ) )
0= g)\ )(37)‘)__1+23\Zq(hlzl):—1+ZA — A=n
i=1 n=1 i=1

24 /29
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N T
Etransmon A) ZZ E |ng ht|ht 1, A)

n=1 t= 2
N T H

= E hy =iAhi_1=iTlogA; i
IR SIS
n=1 t=2 =1
N o T"

H
ZZ Z qn(hf = ia htfl = /,) IOgA,'J'/

n=1t=2ji'=1

Each column of A is a (conditional) distribution over the rows, i.e. >, A; » =1 for any
i" €{1,...,H}. We can optimize for any fixed /" independently:

’Q(Av )‘) = *Ctransition(A) - A(Z A,‘7,'/ — 1)

Ajir o ZZ q"(ht = i,he—1 = ') with normalization to make A; ; = 1 for each /'

n=1 t=2 os /o0
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N T" N T" V H
Lemission ZZ E |ng |ht; ZZZ[[VL‘ _J]] E nznhleﬂ IOgij"
1 =1 =1 t=1 j—1 T
N T" V
=y > > Iw —J]]Zq he = i)log Bj,
n=1t=1 j=1

Each column of B is a (conditional) distribution over the rows, i.e. > ;B;; =1 for any
Jj€{1,...,V}. We can optimize for any fixed i independently:

£(B,\) = Lemission(B) — )\(Z B — 1)

n Tp
Bj,i x ZZHV[’ =j]q"(h: = i) with normalization to make Bj,,- =1 for each i
n=1 t=1

26 /29
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E-step, Part 2

For the M-step we compute:

N n T, n T,
é,‘ X an(hl) A,‘7,'/ X ZZ qn(ht = i, ht—l = I'/) éjJ XX ZZ[[V? :j]]qn(ht = I)
n=1 n=1 t=2 n=1 t=1

Of g"(h) = p(h|v"; ) we really only need:
q"(h1) = p(h|vii7»; 0) for a

q"(he, he—1) = p(he, ht—1|V1n:Tn; g) for A
q"(he) = p(he|v{.7n; 0) for B

>

v

>

For computing all of these we have derived efficient ways in the previous section.

27 /29
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EM algorithm:

initialize °
for t =1,2,..., until convergence do
q" < argmax, G(6t71,q) // E-step
0t + argmaxy G(6,q") // M-step
end for

Parameter initialisation

EM algorithm converges to a local maximum of the likelihood,

in general, there is no guarantee that the algorithm will find the global maximum
often, the initialization determined how good the found solution is

vV Yy VYV

practical strategy:

» first, train non-temporal mixture model for p(v) = >, p(v|h)p(h)
» initialize a and B from this, and assume independence for A

in Hidden Markov Models Learning Hidden Markov Models

28 /29
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HMM with Continuous observations

For an HMM with continuous observation v;, we need a model of p(v:|h;), i.e. a continuous
distribution for each state of h;.

Inference

» filtering, smoothing, etc. remain largely unchanged, as everything is conditioned on vi.7

Learning
» learning requires computing normalization constants w.r.t. v

» depending on the model, this might or might not be tractable

29 /29
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