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Exponential Family Distribution Probabilistic Inference in Factor Graphs

Reminder: Learning from observations

Given: a set of samples, x1, . . . , xN .

Goal: estimate p(x), e.g. by maximum likelihood.

Without further assumption, maximum likelihood learning boils down to counting.

p̂(x) =
1

N

N∑
n=1

Jxn = xK

What, if X is very large?

I most x ∈ X we will never see, the others maybe once. We learn a mixture of δ peaks:

p̂(x) =
1

N

N∑
n=1

δxn=x

I simply assigning the others a fixed small probability (Laplace smoothing) sounds fishy

If X is very large, we want restrict ourselves to a suitable subset of distributions, such that the
available data suffices to estimate a good model out of all. What’s a suitable parameterization?
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Exponential Family Distribution Probabilistic Inference in Factor Graphs

Principle of Parsimoney, aka Occam’s razor

“Pluralitas non est ponenda sine neccesitate.”
William of Ockham

“We are to admit no more causes of natural things than such as are both true and sufficient to
explain their appearances.”

Isaac Newton

“Make everything as simple as possible, but not simpler.”
(paraphrasing) Albert Einstein

“Use the simplest explanation that explains all relevant facts.”
what we’ll use
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Exponential Family Distribution Probabilistic Inference in Factor Graphs

I 1) Define what aspects we consider relevant facts about the data.

I 2) Pick the simplest distribution reflecting that.

Simplicity ≡ Entropy

The simplicity of a distribution p is given by its entropy:

H(p) = −
∑
z∈Z

p(z) log p(z)

A mixture of δ-peaks has low entropy, a uniform distribution has high entropy.

Relevant Facts ≡ Feature Functions

Let φi : Z → R for i = 1, . . . , d denote a set of feature functions that express all properties we
want to be able to model about our data.

For
example:

I the grayvalue of a pixel,

I length of the contour of a shape,

I the time of day an image was taken,

I if a word starts with a capital letter.
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Exponential Family Distribution Probabilistic Inference in Factor Graphs

Maximum Entropy Principle

Let z1, . . . , zN be samples from a distribution d(z). Let φ1, . . . , φD be feature functions, and
denote by µi := 1

N

∑
n φi (z

n) their average over the sample set.
The maximum entropy distribution, p, is the solution to

max
p is a prob.distr.

H(p)

︸ ︷︷ ︸
be as simple as possible

subject to Ez∼p(z){φi (z)} = µi .

︸ ︷︷ ︸
be faithful to what we know

That sounds restrictive. What, if we want to preserve more than the mean, e.g. variance?

Just define a suitable feature function: φ′(z) = φ(z)2
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Exponential Family Distribution Probabilistic Inference in Factor Graphs

Finding the Maximum Entropy Distribution

I Given: samples z1, . . . , zN and feature functions φ1, . . . , φD
I Define: µi := 1

N

∑
n φi (z

n)
I Task: find maximum entropy distribution p(z), i.e. solve

max
p

−
∑
z

p(z) log p(z) subject to Ez∼p(z){φi (z)} = µi for i = 1, . . . , d .

Lagrangian:

L(p, θ, λ) = −
∑
z

p(z) log p(z)−
d∑

i=1

θi
(
Ez∼p(z){φi (z)} − µi

)
− λ
(∑

z

p(z)− 1
)

Solution (see blackboard):

p(z) =
1

Z
exp

( d∑
i=1

θiφi (z)
)

with Z =
∑
z∈Z

exp
( d∑

i=1

θiφi (z)
)

for some values of θ1, . . . , θd (that depend on µ1, . . . , µd , of course)
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Exponential Family Distribution Probabilistic Inference in Factor Graphs

Exponential Family Distribution

For feature functions φ1, . . . , φD , the set of distributions

p(z ; θ) =
1

Z (θ)
exp

( d∑
i=1

θiφi (z)
)

with Z (θ) =
∑
z∈Z

exp
( d∑

i=1

θiφi (z)
)

is called exponential family distribution with features φ1, . . . , φd .

Often, we use vector notation: φ(z) = (φ1(z), . . . , φD(z)) and θ = (θ1, . . . , θD), such that

p(z ; θ) =
1

Z (θ)
exp

( d∑
i=1

θ>φ(z)
)

with Z (θ) =
∑
z∈Z

exp
( d∑

i=1

θ>φ(z)
)

The exponential family distribution makes a natural parameterization for learning.
Given z1, . . . , zn, the best θ1, . . . , θD are unknown, but we know the functional form of p(z).

8 / 27



Exponential Family Distribution Probabilistic Inference in Factor Graphs

Example: Exponential Family Distribution

Example:

I Let Z = R, φ1(z) = z , φ2(z) = z2.

I The exponential family distribution is

p(z) =
1

Z (θ1, θ2)
exp( θ1z + θ2z

2)

=
b2a

Z (a, b)
exp( a

(
z − b

)2
) for a = θ2, b = −θ1

θ2
.

It’s a Gaussian!

I Given examples z1, . . . , zN , we can compute a and b, and derive θ.
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Exponential Family Distribution Probabilistic Inference in Factor Graphs

Example: Exponential Family Distribution

Example:

I Let Z = {1, . . . ,K}, φk(z) = Jz = kK, for k = 1, . . . ,K .

I The exponential family distribution is

p(z) =
1

Z
exp(

∑
i

θiφi (z) )

=


exp(θ1)/Z for z = 1,

exp(θ2)/Z for z = 2,

. . .

exp(θK )/Z for z = K .

with Z = exp(θ1) + · · ·+ exp(θK ).

It’s a Multinomial!
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Exponential Family Distribution Probabilistic Inference in Factor Graphs

Example: Exponential Family Distribution

I Let Z = {0, 1}N×M image grid,

I let φi (z) = zi , for each pixel i ,

I let φ0(z) =
∑

(i ,j)∈EJzi 6= zjK (summing over all 4-neighbor pairs) → boundary length

I The exponential family distribution is

p(z) =
1

Z (θ)
exp(

∑
i

θiφi (z) + θ0φ0(z) )

=
1

Z (θ)
exp(

∑
i

θizi + θ0
∑
i ,j

Jzi 6= zjK )

It’s a Markov Random Field! with unary and pairwise factors.
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Exponential Family Distribution Probabilistic Inference in Factor Graphs

Probabilistic Inference in Factor Graphs
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Exponential Family Distribution Probabilistic Inference in Factor Graphs

Probabilistic Inference

We return to more general graphical models, given by a factor graph:

p(y1, . . . , yn) =
1

Z

∏
F∈F

φF (yF )

=
1

Z
e−E(y) =

1

Z
e−

∑
F∈F EF (yF )

with yF = (yf1 , . . . , yf|F |) for F = (f1, . . . , f|F |)

Z =
∑

y1,...,yn

∏
F∈F

φF (yF )

Inference tasks:
I compute p(yi ) or p(yF ) for some i or F
I compute p(yF |yG ) for some F ,G
I compute Z 13 / 27



Exponential Family Distribution Probabilistic Inference in Factor Graphs

Probabilistic Inference – Overview

I Exact Inference

I Belief Propagation on chains

I Belief Propagation on trees

I Junction tree algorithm

I Approximate Inference

I Loopy Belief Propagation

I Sampling / MCMC (next year)

I Variational Inference / Mean Field (next year)
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Exponential Family Distribution Probabilistic Inference in Factor Graphs

Probabilistic Inference – Belief Propagation

Assume y = (yi , yj , yk , yl), Y = Yi × Yj × Yk × Yl for finite Yi ,Yj ,Yk ,Yl , and p(y) ∝ φ(y)
for φ(y) = φF (yi , yj)φG (yj , yk)φH(yk , yl) compatible with the following factor graph:

Yi Yj Yk Yl

F G H

Task 1: for any y ∈ Y, compute p(y), using

p(y) =
1

Z
φ(y)

Problem: We don’t know Z , and computing it using

Z =
∑
y∈Y

φ(y)

looks expensive (the sum has |Yi | · |Yj | · |Yk | · |Yl | terms).

A lot research has been done on how to efficiently compute (or approximate) Z .
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Exponential Family Distribution Probabilistic Inference in Factor Graphs

Probabilistic Inference – Belief Propagation

Z =
∑
y∈Y

φ(y)

=
∑
yi∈Yi

∑
yj∈Yj

∑
yk∈Yk

∑
yl∈Yl

φF (yi , yj)φG (yj , yk)φH(yk , ym)

=
∑
yi

∑
yj

φF (yi , yj)
∑
yk

φG (yj , yk)
∑
yl

φH(yk , ym)

︸ ︷︷ ︸
rH→Yk

(yk )

=
∑
yi

∑
yj

φF (yi , yj)
∑
yk

φG (yj , yk)rH→Yk
(yk)
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Exponential Family Distribution Probabilistic Inference in Factor Graphs

Probabilistic Inference – Belief Propagation
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Exponential Family Distribution Probabilistic Inference in Factor Graphs

Probabilistic Inference – Belief Propagation

Yi Yj Yk

F G H

rH→Yk
∈ RYk

Yl

Z =
∑
yi

∑
yj

φF (yi , yj)
∑
yk

φG (yj , yk)rH→Yk
(yk)

︸ ︷︷ ︸
rG→Yj

(yj )

=
∑
yi

∑
yj

φF (yi , yj)rG→Yj
(yj)

︸ ︷︷ ︸
rF→Yi

(yi )

=
∑
yi

rF→Yi
(yi )

Total effort for n variables and L states per variable: O(nL2) instead of O(Ln)
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Exponential Family Distribution Probabilistic Inference in Factor Graphs
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Exponential Family Distribution Probabilistic Inference in Factor Graphs

Example: Inference on Trees

1) pick a root (here: i)
2) sort sums such that parents nodes are left of their children

Z =
∑
y∈Y

φ(y)

=
∑
yi∈Yi

∑
yj∈Yj

∑
yk∈Yk

∑
yl∈Yl

∑
ym∈Ym

φF (yi , yj)φG (yj , yk)φH(yk , yl)φI (yk , ym)

=
∑
yi∈Yi

∑
yj∈Yj

φF (yi , yj)
∑
yk∈Yk

φG (yj , yk)

[ ∑
yl∈Yl

φH(yk , yl)
]

︸ ︷︷ ︸
rH→Yk

(yk )

[ ∑
ym∈Ym

φI (yk , ym)
]

︸ ︷︷ ︸
rI→Yk

(yk )
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Exponential Family Distribution Probabilistic Inference in Factor Graphs

Factor Graph Sum-Product Algorithm

“Message”: pair of vectors at each factor graph edge (i ,F ) ∈ E

1) rF→Yi
∈ RYi : factor-to-variable message

rF→Yi
(yi ) =

∑
yF∈YF

φF (yF )
∏

j :(j ,F )∈E\{i}
qYj→F

2) qYi→F ∈ RYi : variable-to-factor message

qYi→F (yi ) =
∏

G :(i ,G)∈E\{F}
rG→Yi

I Algorithm updates messages from root to leafs

(Sum-Product) Belief Propagation
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Exponential Family Distribution Probabilistic Inference in Factor Graphs

Factor Graph Sum-Product Algorithm

I After termination: Z , p(yi ) and p(yF ) can be obtained from the messages

Z =
∑
yroot

∏
F :(root,F )∈E

rF→Yroot(yroot)

p(Yi = yi ) ∝
∏

F :(i ,F )∈E
rF→Yi

(yi )

p(YF = yF ) ∝ e−EF (yF )
∏

i :(i ,F )∈E
qYi→F (yi )

Normalization constants by explicit summation over yi ∈ Yi or yF ∈ YF .
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Exponential Family Distribution Probabilistic Inference in Factor Graphs

Probabilistic Inference

What, if distribution is conditioned on data x = (x1, . . . , xm)?

p(y1, . . . , yn|x1, . . . , xm) =
1

Z (x)

∏
F∈F

φF (yF , xF )

Z (x) =
∑

y1,...,yn

∏
F∈F

φF (yF , xF )

Inference tasks:

I compute Z (x) or p(yi |x) or p(yF |x) for some i or F

Reduce to unconditioned case:

I define new factor graph: F̃ (yF )← F (yF , xF ), Z̃ ← Z (x), . . .

↓

All computation is performed on the new graph. Only its topology (cyclic or not) matters.
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Exponential Family Distribution Probabilistic Inference in Factor Graphs

Example: Pictorial Structures

. . .

Ytop

Yhead

YtorsoYrarm

Yrhnd

Yrleg

Yrfoot Ylfoot

Ylleg

Ylarm

Ylhnd

X

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

F
(1)

top

F
(2)

top,head

I Tree-structured model for articulated pose
(Felzenszwalb and Huttenlocher, 2000), (Fischler and Elschlager, 1973)

I Belief propagation is the state-of-the-art for prediction and inference
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Exponential Family Distribution Probabilistic Inference in Factor Graphs

Example: Pictorial Structures

I Marginal probabilities p(yi |x) give us
I potential positions
I uncertainty

of the body parts.
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Exponential Family Distribution Probabilistic Inference in Factor Graphs

Belief Propagation in Cyclic Graphs?

Belief propagation does not work for graph with cycles.

We can construct equivalent chain/tree models:

General procedure: junction tree algorithm

Problem: exponentially growing state space → BP often gets inefficient
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Exponential Family Distribution Probabilistic Inference in Factor Graphs

Belief Propagation in Cyclic Graphs

Can we do belief propagation even for graphs with cycles? Messages can still be computed:

1) factor-to-variable message rF→Yi
(yi ) =

∑
yF

φF (yF )
∏

j :(j ,F )∈E\{i}
qYj→F

2) variable-to-factor message qYi→F (yi ) =
∏

G :(i ,G)∈E\{F}
rG→Yi

Problem: no leaf–to–root order
→ where to start? when to terminate?

Loopy Belief Propagation (LBP)

I initialize all messages as constant 1

I pass messages using rules of BP until a stop criterion

Yi Yj Yk

Yl Ym Yn

Yo Yp Yq

A B

F G

K L

C D E

H I J
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Exponential Family Distribution Probabilistic Inference in Factor Graphs

Belief Propagation in Cyclic Graphs

Yi Yj Yk

Yl Ym Yn

Yo Yp Yq

A B

F G

K L

C D E

H I J

Yi Yj Yk

Yl Ym Yn

Yo Yp Yq

A B

F G

K L

C D E

H I J

Problems:
I loopy BP might not converge (e.g. messages can oscillate)
I even if it does, the computed probabilities are only approximate.

Several improved schemes exist, some even convergent (but approximate)

(Exact) inference in general graphs is #P-hard.
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