IST Austria: Statistical Machine Learning 2015/16

Christoph Lampert chl@ist.ac.at
TA: Alex Zimin azimin@ist.ac.at
Exercise Sheet 2/5

1 Bayes Classifier

In the lecture we saw that the Bayes classifier is

$$
\begin{equation*}
c^{*}(x):=\operatorname{argmax}_{y \in \mathcal{Y}} p(y \mid x) . \tag{1}
\end{equation*}
$$

a) Which of these decision functions is equivalent to c^{*} ?

- $c_{1}(x):=\operatorname{argmax}_{y} p(x)$
- $c_{3}(x):=\operatorname{argmax}_{y} p(x, y)$
- $c_{2}(x):=\operatorname{argmax}_{y} p(y)$
- $c_{4}(x):=\operatorname{argmax}_{y} p(x \mid y)$

For $\mathcal{Y}=\{-1,+1\}$, we can express the Bayes classifier as $c^{*}(x)=\operatorname{sign}\left[\log \frac{p(+1 \mid x)}{p(-1 \mid x)}\right]$
b) Which of the following expressions are equivalent to c^{*} ?

- $c_{5}(x):=\operatorname{sign}\left[\frac{\log p(x,+1)}{\log p(x,-1)}\right]$
- $c_{9}(x):=\operatorname{sign}[p(+1 \mid x)-p(-1 \mid x)]$
- $c_{6}(x):=\operatorname{sign}[\log p(+1 \mid x)+\log p(-1 \mid x)]$
- $c_{10}(x):=\operatorname{sign}\left[\frac{p(x,+1)}{p(x,-1)}-1\right]$
- $c_{7}(x):=\operatorname{sign}[\log p(+1 \mid x)-\log p(-1 \mid x)]$
- $c_{11}(x):=\operatorname{sign}\left[\frac{\log p(+1 \mid x)}{\log p(-1 \mid x)}-1\right]$
- $c_{8}(x):=\operatorname{sign}[\log p(x,+1)-\log p(x,-1)]$
- $c_{12}(x):=\operatorname{sign}\left[\log \frac{p(x \mid+1)}{p(x \mid-1)}+\log \frac{p(+1)}{p(-1)}\right]$

2 Gaussian Discriminant Analysis

Gaussian Discriminant Analysis (GDA) is an easy-to-compute method for generative probabilistic classification. For a training set $\mathcal{D}=\left\{\left(x^{1}, y^{1}\right), \ldots,\left(x^{n}, y^{n}\right)\right\}$ set

$$
\begin{equation*}
\mu:=\frac{1}{n} \sum_{i=1}^{n} x^{i}, \quad \Sigma:=\frac{1}{n} \sum_{i=1}^{n}\left(x^{i}-\mu\right)\left(x^{i}-\mu\right)^{\top}, \quad \mu_{y}:=\frac{1}{\left|\left\{i: y^{i}=y\right\}\right|} \sum_{\left\{i: y^{i}=y\right\}} x^{i}, \quad \text { for } y \in \mathcal{Y}, \tag{2}
\end{equation*}
$$

and define

$$
\begin{equation*}
p(x \mid y)=\frac{1}{\sqrt{2 \pi \operatorname{det} \Sigma}} \exp \left(-\frac{1}{2}\left(x-\mu_{y}\right)^{\top} \Sigma^{-1}\left(x-\mu_{y}\right)\right) \tag{3}
\end{equation*}
$$

a) Show for binary classification tasks: GDA leads to a linear decision rule, regardless of what $p(y)$ is.
b) GDA is popular when there are many classes but only few examples for each class. Can you imagine why?

3 Robustness of the Perceptron

Look at the dataset with the following three points:

$$
\mathcal{D}=\left\{\left(\binom{2}{1},+1\right),\left(\binom{-1}{-2},-1\right),\left(\binom{a}{b},+1\right)\right\} \subset \mathbb{R}^{2} \times\{ \pm 1\}
$$

- For any $0<\rho \leq 1$, find values for a and b such that the Perceptron algorithm converges to a correct classifier with robustness ρ.
- What's the maximal robustness you can achieve for any choice of a and b ?

4 Perceptron Training as Convex Optimization

The following form of Perceptron training can be interpreted as optimizing a convex, but non-differentiable, objective function by stochastic gradient descent. What is the objective? What is the stepsize rule? Discuss advantages and shortcomings of this interpretation.

```
Algorithm 1 Randomized Perceptron Training
input linearly separable training set \(\mathcal{D}=\left\{\left(x^{1}, y^{1}\right), \ldots,\left(x^{n}, y^{n}\right)\right\} \subset \mathbb{R}^{d} \times\{ \pm 1\}\)
    \(w_{1} \leftarrow 0\)
    for \(t=1, \ldots, T\) do
        \((x, y) \leftarrow\) random example from \(\mathcal{D}\)
        if \(y\left\langle w_{t}, x\right\rangle \leq 0\) then
            \(w_{t+1} \leftarrow w_{t}+y x\)
        else
            \(w_{t+1} \leftarrow w_{t}\)
        end if
    end for
output \(w_{T+1}\)
```


5 Hard-Margin SVM Dual

Compute the dual optimization problem to the hard-margin SVM training problem:

$$
\min _{w \in \mathbb{R}^{d}, b \in \mathbb{R}} \quad \frac{1}{2}\|w\|^{2} \quad \text { subject to } \quad y^{i}\left(\left\langle w, x^{i}\right\rangle+b\right) \geq 1, \quad \text { for } i=1, \ldots, n
$$

6 Missing Proofs

- Let f_{1}, \ldots, f_{K} be differentiable at w_{0} and let $f(w)=\max \left\{f_{1}(w), \ldots, f_{K}(w)\right\}$. Let k be any index with $f_{k}\left(w_{0}\right)=f\left(w_{0}\right)$. Show that any v that is a subgradient of f_{k} at w_{0} is also a subgradient of f at w_{0}.
- Let f be a convex function and denote by w^{*} a minimum of f. Let $w_{t+1}=w_{t}-\eta_{t} v$, where v is a subgradient of the f at w_{t}.
Show: there exists a stepsize η_{t} such that $\left\|w_{t+1}-w^{*}\right\|<\left\|w_{t}-w^{*}\right\|$, except if w_{t} is a minimum already.
- In your above proof, w^{*} can be any minimum of f. Let w_{1}^{*} and w_{2}^{*} be two different minima, then w_{t} will converge towards both of them. Isn't this impossible?
Note: this is not a trivial question: convex functions can have multiple global minima, e.g. $f(w)=0$ has infinitely many.
- Let $g(\alpha)=\max _{\theta \in \Theta} f(\theta)+\sum_{i=1}^{k} \alpha_{i} g_{i}(\theta)$ be the dual function of an optimization problem.

Show: g is always a convex function w.r.t. α, even if the original optimization problem was not convex.

$7 \quad$ Practical Experiments III

- Pick one more training methods from the previous sheet and implement it.
- In addition, implement a linear support vector machine (SVM) with training by the subgradient method.
- What error rates do both methods achieve on the datasets from the previous sheet?
- For the wine data, make a plot of the SVM's objective values and the Euclidean distance to the optimium (after you computed it in an earlier run) after each iteration.

