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Exercise Sheet 2/5

1 Bayes Classifier

In the lecture we saw that the Bayes classifier is

c∗(x) := argmaxy∈Y p(y|x). (1)

a) Which of these decision functions is equivalent to c∗?

• c1(x) := argmaxy p(x)

• c2(x) := argmaxy p(y)

• c3(x) := argmaxy p(x, y)

• c4(x) := argmaxy p(x|y)

For Y = {−1,+1}, we can express the Bayes classifier as c∗(x) = sign[log p(+1|x)
p(−1|x)

]

b) Which of the following expressions are equivalent to c∗?

• c5(x) := sign[ log p(x,+1)
log p(x,−1)

]

• c6(x) := sign[log p(+1|x) + log p(−1|x)]

• c7(x) := sign[log p(+1|x)− log p(−1|x)]

• c8(x) := sign[log p(x,+1)− log p(x,−1)]

• c9(x) := sign[p(+1|x)− p(−1|x)]

• c10(x) := sign[p(x,+1)
p(x,−1)

− 1]

• c11(x) := sign[ log p(+1|x)
log p(−1|x)

− 1]

• c12(x) := sign[log p(x|+1)
p(x|−1)

+ log p(+1)
p(−1)

]

2 Gaussian Discriminant Analysis

Gaussian Discriminant Analysis (GDA) is an easy-to-compute method for generative probabilistic classification.
For a training set D = {(x1, y1), . . . , (xn, yn)} set

µ :=
1

n

n∑
i=1

xi, Σ :=
1

n

n∑
i=1

(xi − µ)(xi − µ)>, µy :=
1

|{i : yi = y}|
∑
{i:yi=y}

xi, for y ∈ Y , (2)

and define

p(x|y) =
1√

2π det Σ
exp(−1

2
(x− µy)>Σ−1 (x− µy)) (3)

a) Show for binary classification tasks: GDA leads to a linear decision rule, regardless of what p(y) is.
b) GDA is popular when there are many classes but only few examples for each class. Can you imagine why?

3 Robustness of the Perceptron

Look at the dataset with the following three points:

D = { (

(
2
1

)
,+1), (

(
−1
−2

)
,−1), (

(
a
b

)
,+1)} ⊂ R2 × {±1}.

• For any 0 < ρ ≤ 1, find values for a and b such that the Perceptron algorithm converges to a correct
classifier with robustness ρ.

• What’s the maximal robustness you can achieve for any choice of a and b?
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4 Perceptron Training as Convex Optimization

The following form of Perceptron training can be interpreted as optimizing a convex, but non-differentiable,
objective function by stochastic gradient descent. What is the objective? What is the stepsize rule? Discuss
advantages and shortcomings of this interpretation.

Algorithm 1 Randomized Perceptron Training

input linearly separable training set D = {(x1, y1), . . . , (xn, yn)} ⊂ Rd × {±1}
1: w1 ← 0
2: for t = 1, . . . , T do
3: (x, y)← random example from D
4: if y〈wt, x〉 ≤ 0 then
5: wt+1 ← wt + yx
6: else
7: wt+1 ← wt
8: end if
9: end for

output wT+1

5 Hard-Margin SVM Dual

Compute the dual optimization problem to the hard-margin SVM training problem:

min
w∈Rd,b∈R

1

2
‖w‖2 subject to yi(〈w, xi〉+ b) ≥ 1, for i = 1, . . . , n.

6 Missing Proofs

• Let f1, . . . , fK be differentiable at w0 and let f(w) = max{f1(w), . . . , fK(w)}. Let k be any index with
fk(w0) = f(w0). Show that any v that is a subgradient of fk at w0 is also a subgradient of f at w0.

• Let f be a convex function and denote by w∗ a minimum of f . Let wt+1 = wt−ηtv, where v is a subgradient
of the f at wt.

Show: there exists a stepsize ηt such that ‖wt+1 − w∗‖ < ‖wt − w∗‖, except if wt is a minimum already.

• In your above proof, w∗ can be any minimum of f . Let w∗1 and w∗2 be two different minima, then wt will
converge towards both of them. Isn’t this impossible?

Note: this is not a trivial question: convex functions can have multiple global minima, e.g. f(w) = 0 has
infinitely many.

• Let g(α) = maxθ∈Θ f(θ) +
∑k

i=1 αigi(θ) be the dual function of an optimization problem.

Show: g is always a convex function w.r.t. α, even if the original optimization problem was not convex.

7 Practical Experiments III

• Pick one more training methods from the previous sheet and implement it.

• In addition, implement a linear support vector machine (SVM) with training by the subgradient method.

• What error rates do both methods achieve on the datasets from the previous sheet?

• For the wine data, make a plot of the SVM’s objective values and the Euclidean distance to the optimium
(after you computed it in an earlier run) after each iteration.
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