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Decision Theory (for Supervised Learning Problems)

Goal:

Understand existing algorithms

Develop new algorithms with specific (optimal?) properties
For this, we'll have to rely on mathematics. Forget about the
implementation, data etc... for now.

We treat all quantities of interest as random variables:

input: random variable, X, taking values z € X
(we treat X as if it is continuous, but discrete works analogously)

output: random variable, Y, taking values and y € ).
joint probability distribution/density p(X =z, Y = y).
we write p(z,y) for of p(X =z, Y = y),

p(y|z) instead of p(Y = y|X = x), etc.
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Classification

First first look at classification, Y = {1,..., M}, or Y = {—1,+1}.

’Question: What'’s the best classifier for a fully known problem?‘
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‘Question: What'’s the best classifier for a fully known problem?‘

Definition (Generalization error)

Let ¢: X — Y be a decision rule. The generalization error, R, of ¢ is the
probability of ¢ making a wrong prediction, i.e.

R(C) = Pr(z,y)Np(w,y) {C($) 7& y}
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Classification

First first look at classification, V) = {1,..., M}, or Y = {—1,+1}.

‘Question: What'’s the best classifier for a fully known problem?‘

Definition (Generalization error)

Let ¢: X — Y be a decision rule. The generalization error, R, of ¢ is the
probability of ¢ making a wrong prediction, i.e.

R(C) = Pr(z,y)Np(z,y) {C(Z‘) 7& y}

Definition (Bayes Classifier, Bayes Risk)

The prediction rule that minimizes the generalization error, with

"= argminR(c)

c:X—)Y

is called Bayes classifier. The value R(cBayes) is called the Bayes risk.
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Lemma

The Bayes classifier has the decision rule

c(z) := argmax p(y|z) for any © € X.
yeY

Proof. We show: no classifier has lower generalization error than the
Bayes classifier...
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n binary classification we can write ¢* in closed form:
In binary classificat te c* losed fi

Lemma

For Y = {—1,+1}, the Bayes classifier is given by

N p(z, +1)

C (37) = S1gn [log m],
as well as

f(2) — sion [og 2CFLT)

c*(z) = sig [logp(_llx)].

Proof: Exercise...
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Should we use c¢* to decide for every problem?

c* is optimal when trying to minimize the number of wrong decision.

That's often a good strategy, but not always.

To evaluate a learning task, we use loss function £ : Y x Y — R.
{(y,y) is the loss incurred when predicting ¥ if the correct answer is y.
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Should we use ¢’

* to decide for every problem?

* is optimal when trying to minimize the number of wrong decision
That's often a good strategy, but not always.

C

To evaluate a learning task, we use loss function £ : Y x Y — R.
£(y,y) is the loss incurred when predicting ¥ if the correct answer is y

Example: Doctor’s dilemma

There's a shadow on the X-ray. Should you diagnose cancer?

x: X-ray image. y € {yes,no}: cancer

{(yes,yes) =0 (you did your job well)
{(yes,no) = 1000
{(no, yes) = 1
/(no,no) =

(the cancer gets worse, the patient could die)

(the patient is upset until further test are made)
(you did your job well)

Common: one outcome is rare, but has high loss if mispredicted
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Instead of minimizing the error probability, minimize the expected loss!

Definition

The classifier of minimal expected ¢-risk is given by

c; () = argmin, ey By 52 (Y, Y )-

Lemma

For Y = {—1,+1}, and ¢(y,y) given by the table[" =1 [ a b |,

+1 c d
the risk w.r.t. £ is minimized by the decision rule
1 —
¢ (2) = sign| log H tlog il
or equivalently c¢;(z) = sign[ log p(+1]o) + log — ]
p(—1|z) —a

Proof: Exercise.
7 /30



The generalization error is the risk for 0/1-loss, i.e. £(y,y') = [y # V]

’Question: What's the best classifier for a fully known problem?‘

|Question answered. We have identified the optimal classifiers! |
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Learning from Data

In the real world, p(z,y) is unknown, but we have a training set D.
There's at least 3 approaches:

Given a training set D, we call it

a generative probabilistic approach:
if we use D to build a model p(z, y) of p(z,y), and then define

c(z) := argmax p(z,y) or c¢(z) :=argminEy ;. l(Y,y).
yey yey
a discriminative probabilistic approach:
if we use D to build a model p(y|z) of p(y|z) and define

c(z) := argmax p(y|r) or c(r):=argminEy ;)07 y)-
yey yeY
a decision theoretic approach: if we use D to directly seach for a

classifier ¢ in a hypothesis class H.
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Generative Probabilistic Models

We are given

a training set of examples D = {(2!,y!),..., (2", y™)},
(note: rather a multi-set, elements can occur more than once)

Assumption:

D are independent and identically distributed (i.i.d.) samples from
the unknown distribution p(z, y).

Shorthand notation,
DX .= {z',...,2"}, input part of D,
DY .= {y',...,y"}, output part of D,
D, :={(z%,y") € D:y" =y}, all examples of label y.
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Generative Probabilistic Models

’Let’s use D to form an estimate of p(z, y).‘

There's (at least) three approaches:

parametric estimate:
» fix a model class p(z, y;0),
> estimate parameters 0 such that p(z, y; é) ~ p(z,y).
» the size of 6 is independent of how large D is

non-parametric estimate:

» estimate any p(z,y) ~ p(z, y)
» the number of parameters/complexity of p(z,y) can grow with |D|

hybrids of the two
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Generative Probabilistic Models: Multinomial

If X and ) are finite, we can represent any p(z, y) as a table of values.

To simplify notation, we look at arbitrary z € Z (think: z = (z,y)):

Definition (Empirical estimate)

Let 2%, ..., 2" be samples from p(z), then we call

bale) =2 Y [ =]
=1

the empirical estimate of p(z).
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Generative Probabilistic Models: Multinomial

Theorem (Convergence of the empirical estimate)

Let 2%, 2%,... beiid. samples from p(z). For every possible value z € Z

Pr{ lim pa(z) = p(z) }=1.

Every textbook on statistics: law of large numbers (strong version). [
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The curse of dimensionality

Setting:

Let Z =21 x--- X Z4, i.e. data decomposes into d non-trivial
“features", "attributes", or "dimensions". Let m; := |Z;| > 2 for
j=1,....,d.

Lemma

The number of samples needed to estimate p(z) grows exponentially in
d (unless we made additional assumptions).

Proof.

p(z) has |Z| = H;-izl m; > 2% entries. Without further assumptions, each
entry can be set arbitrarily, independently, except for the one constraint
that they must sum to 1. Each sample influences only one bin, so we
need at least 2¢ — 1 samples (in practice, many times that, of

course). O
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Example (Dating agency table)

TRAINING ‘ eyes ‘ height ‘ handsome ‘ sex ‘ soccer H date?

Apu blue tall yes male no yes
Bernice brown | short yes female no no
Itchy brown | short | no | male | yes || vyes

Could we estimate p(z,y) here?

|X x Y| =96, p(z, y) has 95 free parameters
We have 9 samples.

Most possible combinations we have never seen!
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Example (Dating agency table)

TRAINING ‘ eyes ‘ height ‘ handsome ‘ sex ‘ soccer H date?

Apu blue tall yes male no yes
Bernice brown | short yes female no no
Itchy brown | short | no | male | yes || vyes

Could we estimate p(z,y) here?

|X x Y| =96, p(z, y) has 95 free parameters

We have 9 samples.

Most possible combinations we have never seen!
Bayes classifier from p(z,y): c(r) := argmax,cy p(,y)

P(Apu, yes) = é, p(Apu,no) =0, —  c(Apu) = yes,

p(Jimbo,yes) =0, p(Jimbo,no) =0, — ¢(Jimbo) = 777,

No clue about previously unseen patterns — very little generalization
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Naive Bayes Model

Let X = X} X --- x Xy. The Naive Bayes (NB) estimate of p(z, y) is

d
s (T, y) H 5'3]|?J
where =
p(y) is an estimate of p(y),
Dj(zj|y) are estimates of p(z;|y) for every j=1,...,d.
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Naive Bayes Model

Let X = X} X --- x Xy. The Naive Bayes (NB) estimate of p(z, y) is

d
j=1
where
p(y) is an estimate of p(y),
Dj(zj|y) are estimates of p(z;|y) for every j=1,...,d.

Lemma

The number of free parameters in pyg(x,y) grows linear with d.

0l

pne(z, y) has |YV|[1 + Z;-izl(mj —1)] — 1 degrees of freedom.
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Naive Bayes Classifier

The Naive Bayes classifier is given by

c(z) := argmax pyp(z, y)
yeY

A Naive Bayes classifier needs much fewer examples for 'training’ than
one based on a full probability table.
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yeY

A Naive Bayes classifier needs much fewer examples for 'training’ than
one based on a full probability table.

Even for n — oo, we likely won't have png(z, y) 4 p(z, y)!

So, most likely, the NB model is wrong as a density estimate.
But that doesn’t mean it doesn't work for making decisions!
In fact, NB is very successful, e.g. in Spam filtering (text classification).
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Naive Bayes Classifier

The Naive Bayes classifier is given by

c(z) := argmax pyp(z, y)
yeY

A Naive Bayes classifier needs much fewer examples for 'training’ than
one based on a full probability table.

Even for n — oo, we likely won't have png(z, y) 4 p(z, y)!

So, most likely, the NB model is wrong as a density estimate.
But that doesn’t mean it doesn't work for making decisions!
In fact, NB is very successful, e.g. in Spam filtering (text classification).

"All models are wrong, but some are useful." (George E. P. Box, 1979)
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Parametric models for finite domains

Both models we saw so far are parametric:

For finite z € Z, p(z) is multinomial distribution:
|Z| parameters: 0, for z € Z with p(Z = z) =0,
parameters fulfill
»0.>0
> Zz 02 = 1

Similar for Naive Bayes model:
p(y) is multinomial for y € ), parameter 0, € RV,
> p(y) =0, with0, >0, > 0,=1,
P(zj]y) is multinomial for z; € X;, parameters 67,
> Plzjly) = 0% with 6% >0, >° o 0% =1 forallye)

n .
We set parameters as 0, = 1 3" [z = 2]? Why?
i=1
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Let p(z;0) be a parametric model with parameter 6 € ©.
Let D = {z!,...,2"} bei.i.d. samples from p(z).

There's (at least) two main approaches to set 0:

Maximum Likelihood (ML) Estimation:
Which parameter value makes it most likely that we observed D?

Our = argmax p(z',...,2"0) = argmax [[p(z’;0)

€0 6o ;

Bayesian Parameter Estimation:
Treat 0 as a random variable itself. What's its most likely value given D?

0 Bayes = argmax p(0 | z',...,2")
0O
= argmax p(f)p(z',...,2"0) = argmax P(G)Hp(zi; 0)
0co 0co ;

where p(0) is a prior distribution over the possible parameter values.
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Parameter Estimation: Blackboard

In practice, one almost always uses the log-likelihood, which gives the
same 6 (since log is a monotonous function):

Oy = argmax log H D( z°; ;0) = argmaleogp (z%;0)
i=1 00 =1

and

0Bayes = argmax  log [p(ﬁ) Hp(zi; 9)}
0O i

= argmax logp(f) + Z log p(2'; 6)
0O i

Example on blackboard.
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Laplace smoothing

Definition (Laplace smoothing)

Let 21,..., 2" be i.i.d. samples from p(z). For a > 0 we call

Pn(z) i = ———

oz+Z[[z = z]) (1)

n+|Z|o P

the smoothed empirical estimate of p(z) (with smoothing parameter «).

Bayesian interpretation:
Bayesian estimate of parameters 6, of a multinomial distribution
Prior on 0: symmetric Dirichlet distribution with parameter «

12| N
p(0) = ﬁ [1(6.)*" with B(a) = %

z=1

Laplace’s "rule of succession": o =1. More common: a < 1, e.g. %
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Continuous Data

If X is continuous, p(z,y) is a strange object, mixing continuous and
discrete. Instead of modeling p(z,y), we decompose it:

Let p(z,y) = p(zly)p(y).
p(y) are called class priors,

p(z|y), for y € ), are called class conditional densities.

p(y) is a discrete probability distribution over |)| possible values, i.e.
p(y) >0forallyey, and 3 p(y) =1

For any fixed y € ), p(z|y) is a probability density, i.e.
p(zly) > 0forallz € X, and [ p(z|y) dx=1.
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Gaussian density estimation

Most popular parametric model for continuous data is Gaussian:

For z € RY, let p(z|y; 1, X) = G(z, iy, By) with

1 1 _
G, 1, D) = ————— exp(—5 (o — 1) 55 (@ — ).
(2m)ddet Xy
Given a set D = {(z!,y'),..., (2", y™)}, we estimate all p1,, and 3, for
y € Y using the classical formulas:
1 i 1 i i T
Ny:n* Z z Ey:n* Z (2" — py) (2" — py) (2)
Y Lii= Y i
{iyi=y} {i:y'=y}

Remark: Alternatively, we can assume a fixed XJ,, and estimate only u,, or
estimate a single X for all classes, or set X, = o0, /d and estimate o, etc.

23 /30



Example (Gaussian Model of Height Distribution)

We observe the following situation:
X: height of a person in cm, Y = {(male, female}.
D = {(181,m), (165, %), (161,f), (172,m) ,(175,m), (178, £)}.
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Example (Gaussian Model of Height Distribution)

We observe the following situation:
X: height of a person in cm, Y = {(male, female}.
D = {(181,m), (165, %), (161,f), (172,m) ,(175,m), (178, £)}.

X = Rly SO @(ﬂy) = @QXP(_%@; - :uy)2)-

1 1
pn = 5 (181 + 172 4 175) = 176 o2 = 3(52+42+12) =14
1

1
pe = g(161 4+ 165+ 178) = 168 o2 = =

(72 + 32 +10%) =~ 52.7
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Example (Gaussian Model of Height Distribution)

We observe the following situation:
X: height of a person in cm, Y = {(male, female}.
D = {(181,m), (165,£), (161,£), (172,m) ,(175,m), (178,£)}.

_ 1wl P _ 1 1 2
X =R", so p(x!y) = Wexp(_@(x_ﬂy) )

— male

0.100

0.075]

0.050

0.025

0.000
150 160 170 180 190 200
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Lemma

The classical expressions for estimating ji,, and X, for a Gaussian are the
maximum likelihood estimates for the parameters of p(z|y; u, o).
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Lemma

The classical expressions for estimating (i, and ¥, for a Gaussian are the
maximum likelihood estimates for the parameters of p(z|y; u, o).

Proof. With G(z;u, X)) = W exp{—21(z —p) "=z —p)},
solve iy, = argmax, L(u) for L(p) =log) i, log Gz, X).

LSn i\ Twoi, i d d
=52 (@ —p) (2" — p) — S log2m — - logdet
L(w) 2;:1:(35 14) (¢* — ) — 5 log2m — S log de
Vil(p,2) =Y 27 Ha! —p) = 571 (af — p)

i=1 i=1

H,L(,Y) = -1 <50

1<
LML = szl = V,L(pmr,X) =0 = maximum of £
i=1

> u1 analogously, but requires some matrix derivatives.
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Classification based on Gaussian models

Let f)(x]y;,uy, Ey) = \/WTE;/ exp(—%(ﬂc - My)TEJI(x - ,Uy))~

How to make decisions?

General Bayes classifier:

For two classes, Y = {+1,—1}:

e p(z,+1)
c(z) = sign [log m]

= sign |(z = p1) T (B) @ - p)
det E-i—l
det 2_1

— (&= py1) T (E41) 7@ — py1) — log
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Gaussian Mixture Models (GMMs)

More flexibility by modeling each class as a Mixture of Gaussians

L= K . K
plz|y; 7, 1, X) = Zk:l e G(z; pg, X)) with 1 > 0 and Zk:l T = 1.

27 /30



Gaussian Mixture Models (GMMs)

More flexibility by modeling each class as a Mixture of Gaussians

A L3 K . K
plaly;m @, ) =)~ 7 G(wipp, Bp) with mp>0and Y~ mp = 1.

No closed form for MLE parameters, but popular iterative algorithm:

Expectation-Maximization (EM) algorithm for GMMs

input 2!, ... 2" K
init 7, (i, >
repeat
Yit = TG (2" e D)y Vi = Yaw/ (325 Y47) E-step
T =5 Zl 1 Vik
Mk = n—ﬂk > vinz! M-step(s)
Tk = a2 vak(z — ) (@° — px) T
until convergence
output w,ﬁ,f]
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Non-parametric density estimation

Definition
Let Kj(z) : X — R be a (fixed) kernel function, where h is a bandwidth
parameter. Then

paly) == I{yz = {Zyzy} Kn(x

is called a kernel density estimate (KDE) of p(z|y).

Alternative name: Parzen windows estimate.

Kernel density estimates are non-parametric. The number of terms grows
with the number of examples.
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Example: Kernel density estimate

Example

X: height of a person in cm, Y = {(male, female}.
D = {(181,m), (165, ), (161,£), (172,m) ,(175,m), (178,£)}.

For Kp(z) = ﬁexp(—h%HxHQ) (Gaussian with bandwidth h):

0035 (f(x,181)+1(x, 172) f(x,175))/3 —— 0033 (F(X,161)+f(x,165)+1(x,178))/3 ——
N g — A
[ * \ \

/ \*\ / \ / \\

| ‘

/ | A / \
e\ -1 N
wl v \

. /AN . V \
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Example: Kernel density estimate

Example

X: height of a person in cm, Y = {(male, female}.
D = {(181,m), (165,£), (161,), (172,m) ,(175,m), (178, £)}.

For Kj(z) = o:[|z| < h] (Box kernel):

0.035 0.035
(FO4,I8L) 21X, 172+ F(x,175))/3 —— (FX, 161)+(%, 165)+F(x,178))/3 ——
\r l\ f(x181) —— /‘ /“ '\ f(x,161) ——
/ f(x172) —— \ / f(%,165) ——
003 X \ [ ‘\ (x,175) 0.03 [t/ | (x,178)
/ |
0.025 fioh 0.025
0.02 0.02
0.015 0.015
0.01 0.01
0.005 0.005 .
0 o I A
150 200 150 200




Summary: Generative Models

For generative models, one uses the available data to estimate p(z, y)
either directly, or

through the decomposition p(z,y) = p(z|y)p(y)

Generative models are popular in the natural sciences because they
model all information in the data

reflect the data generation process

But: the suffer from curse of dimensionality!
one either needs a /ot of data,
or, one must hae strong additional assumptions,

or one must resort to a simple (usually wrong) model.
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