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Decision Theory (for Supervised Learning Problems)

Goal:
• Understand existing algorithms
• Develop new algorithms with specific (optimal?) properties

For this, we’ll have to rely on mathematics. Forget about the
implementation, data etc... for now.

Notation
We treat all quantities of interest as random variables:
• input: random variable, X , taking values x ∈ X
(we treat X as if it is continuous, but discrete works analogously)

• output: random variable, Y , taking values and y ∈ Y.

• joint probability distribution/density p(X = x,Y = y).

• we write p(x, y) for of p(X = x,Y = y),

p(y|x) instead of p(Y = y|X = x), etc.
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Classification

First first look at classification, Y = {1, . . . ,M}, or Y = {−1,+1}.
Question: What’s the best classifier for a fully known problem?

Definition (Generalization error)

Let c : X → Y be a decision rule. The generalization error, R, of c is the
probability of c making a wrong prediction, i.e.

R(c) := Pr(x,y)∼p(x,y) {c(x) 6= y}.

Definition (Bayes Classifier, Bayes Risk)

The prediction rule that minimizes the generalization error, with

c∗ := argmin
c:X→Y

R(c)

is called Bayes classifier. The value R(cBayes) is called the Bayes risk.
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Lemma
The Bayes classifier has the decision rule

c(x) := argmax
y∈Y

p(y|x) for any x ∈ X .

Proof. We show: no classifier has lower generalization error than the
Bayes classifier...
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In binary classification we can write c∗ in closed form:

Lemma
For Y = {−1,+1}, the Bayes classifier is given by

c∗(x) = sign
[
log p(x,+1)

p(x,−1)
]
,

as well as

c∗(x) = sign
[
log p(+1|x)

p(−1|x)
]
.

Proof: Exercise...
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Should we use c∗ to decide for every problem?

• c∗ is optimal when trying to minimize the number of wrong decision.
• That’s often a good strategy, but not always.

Reminder
To evaluate a learning task, we use loss function ` : Y × Y → R.
`(y, ȳ) is the loss incurred when predicting ȳ if the correct answer is y.

Example: Doctor’s dilemma
There’s a shadow on the X-ray. Should you diagnose cancer?

x: X-ray image. y ∈ {yes, no}: cancer

• `(yes, yes) = 0 (you did your job well)
• `(yes, no) = 1000 (the cancer gets worse, the patient could die)
`(no, yes) = 1 (the patient is upset until further test are made)
`(no, no) = 0 (you did your job well)

Common: one outcome is rare, but has high loss if mispredicted
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Instead of minimizing the error probability, minimize the expected loss!

Definition
The classifier of minimal expected `-risk is given by

c∗` (x) := argminy∈Y Eȳ∼p(ȳ|x)`( ȳ, y ).

Lemma

For Y = {−1,+1}, and `(y, ȳ) given by the table
y \ ȳ −1 +1
−1 a b
+1 c d

,

the risk w.r.t. ` is minimized by the decision rule

c∗` (x) = sign[ log p(x,+1)
p(x,−1) + log c − d

b − a ],

or equivalently c∗` (x) = sign[ log p(+1|x)
p(−1|x) + log c − d

b − a ].

Proof: Exercise.
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Observation
The generalization error is the risk for 0/1-loss, i.e. `(y, y′) = Jy 6= y′K.

Question: What’s the best classifier for a fully known problem?

Question answered. We have identified the optimal classifiers!
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Learning from Data

In the real world, p(x, y) is unknown, but we have a training set D.
There’s at least 3 approaches:
Definition
Given a training set D, we call it
• a generative probabilistic approach:

if we use D to build a model p̂(x, y) of p(x, y), and then define

c(x) := argmax
y∈Y

p̂(x, y) or c`(x) := argmin
y∈Y

Eȳ∼p̂(x,ȳ)`( ȳ, y ).

• a discriminative probabilistic approach:
if we use D to build a model p̂(y|x) of p(y|x) and define

c(x) := argmax
y∈Y

p̂(y|x) or c`(x) := argmin
y∈Y

Eȳ∼p̂(ȳ|x)`( ȳ, y ).

• a decision theoretic approach: if we use D to directly seach for a
classifier c in a hypothesis class H.
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Generative Probabilistic Models

Setting
We are given
• a training set of examples D = {(x1, y1), . . . , (xn , yn)},
(note: rather a multi-set, elements can occur more than once)

Assumption:
• D are independent and identically distributed (i.i.d.) samples from
the unknown distribution p(x, y).

Shorthand notation,
• DX := {x1, . . . , xn}, input part of D ,
• DY := {y1, . . . , yn}, output part of D,
• Dy := {(x i , yi) ∈ D : yi = y}, all examples of label y.
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Generative Probabilistic Models

Let’s use D to form an estimate of p(x, y).

Definition
There’s (at least) three approaches:

• parametric estimate:
I fix a model class p(x, y; θ),
I estimate parameters θ̂ such that p(x, y; θ̂) ≈ p(x, y).
I the size of θ is independent of how large D is

• non-parametric estimate:
I estimate any p̂(x, y) ≈ p(x, y)
I the number of parameters/complexity of p̂(x, y) can grow with |D|

• hybrids of the two

11 / 30



Generative Probabilistic Models: Multinomial

If X and Y are finite, we can represent any p(x, y) as a table of values.

To simplify notation, we look at arbitrary z ∈ Z (think: z = (x, y)):

Definition (Empirical estimate)

Let z1, . . . , zn be samples from p(z), then we call

p̂n(z) := 1
n

n∑
i=1

Jz i = zK

the empirical estimate of p(z).
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Generative Probabilistic Models: Multinomial

Theorem (Convergence of the empirical estimate)

Let z1, z2, . . . be i.i.d. samples from p(z). For every possible value z ∈ Z

Pr
{

lim
n→∞

p̂n(z) = p(z)
}

= 1.

Proof.
Every textbook on statistics: law of large numbers (strong version).
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The curse of dimensionality

Setting:
Let Z = Z1 × · · · × Zd , i.e. data decomposes into d non-trivial
"features", "attributes", or "dimensions". Let mj := |Zj | ≥ 2 for
j = 1, . . . , d.

Lemma
The number of samples needed to estimate p̂(z) grows exponentially in
d (unless we made additional assumptions).

Proof.
p̂(z) has |Z| =

∏d
j=1 mj ≥ 2d entries. Without further assumptions, each

entry can be set arbitrarily, independently, except for the one constraint
that they must sum to 1. Each sample influences only one bin, so we
need at least 2d − 1 samples (in practice, many times that, of
course).

14 / 30



Example (Dating agency table)
TRAINING eyes height handsome sex soccer date?

Apu blue tall yes male no yes
Bernice brown short yes female no no

...
Itchy brown short no male yes yes

Could we estimate p(x, y) here?

• |X × Y| = 96, p(x, y) has 95 free parameters
• We have 9 samples.
• Most possible combinations we have never seen!

Bayes classifier from p̂(x, y): c(x) := argmaxy∈Y p̂(x, y)

• p̂(Apu, yes) = 1
9 , p̂(Apu, no) = 0, → c(Apu) = yes,

• p̂(Jimbo, yes) = 0, p̂(Jimbo, no) = 0, → c(Jimbo) = ???,

No clue about previously unseen patterns → very little generalization
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Naive Bayes Model

Definition
Let X = X1 × · · · × Xd . The Naive Bayes (NB) estimate of p(x, y) is

p̂NB(x, y) := p̂(y)
d∏

j=1
p̂j(xj |y),

where
• p̂(y) is an estimate of p(y),
• p̂j(xj |y) are estimates of p(xj |y) for every j = 1, . . . , d.

Lemma
The number of free parameters in pNB(x, y) grows linear with d.

Proof.
pNB(x, y) has |Y|[1 +

∑d
j=1(mj − 1)]− 1 degrees of freedom.
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Naive Bayes Classifier

Definition
The Naive Bayes classifier is given by

c(x) := argmax
y∈Y

p̂NB(x, y)

A Naive Bayes classifier needs much fewer examples for ’training’ than
one based on a full probability table.

Remark
Even for n →∞, we likely won’t have p̂NB(x, y) 6→ p(x, y)!

So, most likely, the NB model is wrong as a density estimate.
But that doesn’t mean it doesn’t work for making decisions!
In fact, NB is very successful, e.g. in Spam filtering (text classification).

"All models are wrong, but some are useful." (George E. P. Box, 1979)
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Parametric models for finite domains
Both models we saw so far are parametric:

For finite z ∈ Z, p(z) is multinomial distribution:
• |Z| parameters: θz for z ∈ Z with p(Z = z) = θz
• parameters fulfill

I θz ≥ 0
I
∑

z θz = 1

Similar for Naive Bayes model:
• p̂(y) is multinomial for y ∈ Y, parameter θy ∈ R|Y|,

I p̂(y) = θy with θy ≥ 0,
∑

y∈Y θy = 1,

• p̂(xj |y) is multinomial for xj ∈ Xj , parameters θj
xj

I p̂(xj |y) = θy
xj

with θy
xj
≥ 0,

∑
xj∈Xj

θy
xj

= 1, for all y ∈ Y

We set parameters as θz = 1
n

n∑
i=1

Jz i = zK? Why?
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Let p̂(z; θ) be a parametric model with parameter θ ∈ Θ.
Let D = {z1, . . . , zn} be i.i.d. samples from p(z).

Definition (Parameter estimation)

There’s (at least) two main approaches to set θ:

Maximum Likelihood (ML) Estimation:
Which parameter value makes it most likely that we observed D?

θML = argmax
θ∈Θ

p(z1, . . . , zn ; θ) = argmax
θ∈Θ

∏
i

p(z i ; θ)

Bayesian Parameter Estimation:
Treat θ as a random variable itself. What’s its most likely value given D?

θBayes = argmax
θ∈Θ

p(θ | z1, . . . , zn)

= argmax
θ∈Θ

p(θ)p(z1, . . . , zn | θ) = argmax
θ∈Θ

p(θ)
∏

i
p(z i ; θ)

where p(θ) is a prior distribution over the possible parameter values.
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Parameter Estimation: Blackboard

Remark
In practice, one almost always uses the log-likelihood, which gives the
same θ (since log is a monotonous function):

θML = argmax
θ∈Θ

log
n∏

i=1
p̂(x i ; θ) = argmax

θ∈Θ

n∑
i=1

log p̂(x i ; θ)

and

θBayes = argmax
θ∈Θ

log
[
p(θ)

∏
i

p(z i ; θ)
]

= argmax
θ∈Θ

log p(θ) +
∑

i
log p(z i ; θ)

Example on blackboard.
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Laplace smoothing

Definition (Laplace smoothing)

Let z1, . . . , zn be i.i.d. samples from p(z). For α ≥ 0 we call

p̂n(z) := 1
n + |Z|α

(
α+

n∑
i=1

Jz i = zK
)

(1)

the smoothed empirical estimate of p(z) (with smoothing parameter α).

Bayesian interpretation:
• Bayesian estimate of parameters θz of a multinomial distribution
• Prior on θ: symmetric Dirichlet distribution with parameter α

p(θ) = 1
B(α)

|Z|∏
z=1

(θz)α−1 with B(α) = Γ(α)|Z|

Γ(α|Z|)

Laplace’s "rule of succession": α = 1. More common: α < 1, e.g. 1
2 .
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Continuous Data

If X is continuous, p(x, y) is a strange object, mixing continuous and
discrete. Instead of modeling p(x, y), we decompose it:

Definition
Let p(x, y) = p(x|y)p(y).
• p(y) are called class priors,
• p(x|y), for y ∈ Y, are called class conditional densities.

Remark
p(y) is a discrete probability distribution over |Y| possible values, i.e.
• p(y) ≥ 0 for all y ∈ Y, and

∑
y p(y) = 1.

For any fixed y ∈ Y, p(x|y) is a probability density, i.e.
• p(x|y) ≥ 0 for all x ∈ X , and

∫
x p(x|y) dx = 1.
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Gaussian density estimation

Most popular parametric model for continuous data is Gaussian:

Definition (Gaussian Density Parameter Estimation)

For x ∈ Rd , let p̂(x|y;µ,Σ) = G(x, µy,Σy) with

G(x, µ,Σ) = 1√
(2π)d det Σy

exp(−1
2(x − µy)>Σ−1

y (x − µy)).

Given a set D = {(x1, y1), . . . , (xn , yn)}, we estimate all µy and Σy for
y ∈ Y using the classical formulas:

µy = 1
ny

∑
{i:yi=y}

x i Σy = 1
ny

∑
{i:yi=y}

(x i − µy)(x i − µy)> (2)

Remark: Alternatively, we can assume a fixed Σy and estimate only µy, or
estimate a single Σ for all classes, or set Σy = σyId and estimate σ, etc.
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Example (Gaussian Model of Height Distribution)

We observe the following situation:
• X : height of a person in cm, Y = {(male, female}.
• D = {(181, m), (165, f), (161, f), (172, m) ,(175, m), (178, f)}.

X = R1, so p̂(x|y) = 1√
2πσ2

y
exp(− 1

2σ2
y
(x − µy)2).

µm = 1
3(181 + 172 + 175) = 176 σ2

m = 1
3(52 + 42 + 12) = 14

µf = 1
3(161 + 165 + 178) = 168 σ2

f = 1
3(72 + 32 + 102) ≈ 52.7
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Lemma
The classical expressions for estimating µy and Σy for a Gaussian are the
maximum likelihood estimates for the parameters of p̂(x|y;µ, σ).

Proof. With G(x;µ,Σ) = 1
(2π det Σ)d/2 exp{−1

2(x − µ)>Σ−1(x − µ)},
solve µML = argmaxµ L(µ) for L(µ) = log

∑n
i=1 log G(x i ;µ,Σ).

L(µ) = 1
2

n∑
i=1

(x i − µ)>Σ−1(x i − µ)− d
2 log 2π − d

2 log det Σ

∇µL(µ,Σ) =
n∑

i=1
Σ−1(x i − µ) = Σ−1

n∑
i=1

(x i − µ)

HµL(µ,Σ) = −Σ−1 4 0

µML = 1
n

n∑
i=1

x i ⇒ ∇µL(µML,Σ) = 0 ⇒ maximum of L

ΣML analogously, but requires some matrix derivatives.
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Classification based on Gaussian models

Let p̂(x|y;µy,Σy) = 1√
(2π)d det Σy

exp(−1
2(x − µy)>Σ−1

y (x − µy)).
How to make decisions?

General Bayes classifier:

c(x) = argmax
y∈Y

{ p̂(y)√
(2π)d det Σy

exp(−1
2(x − µy)>Σ−1

y (x − µy))}

For two classes, Y = {+1,−1}:

c(x) = sign
[
log p(x,+1)

p(x,−1)
]

= sign
[
(x − µ−1)>(Σ−1)−1(x − µ−1)

− (x − µ+1)>(Σ+1)−1(x − µ+1)− log det Σ+1
det Σ−1

]
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Gaussian Mixture Models (GMMs)

More flexibility by modeling each class as a Mixture of Gaussians

p̂(x|y;π, ~µ, ~Σ) =
∑K

k=1
πk G(x;µk ,Σk) with πk ≥ 0 and

∑K
k=1

πk = 1.

No closed form for MLE parameters, but popular iterative algorithm:
Expectation-Maximization (EM) algorithm for GMMs

input x1, . . . , xn , K
init π, ~µ, ~Σ
repeat
γ̂ik = πkG(x i ;µk ,Σk), γik = γ̂ik/(

∑
j γ̂ij) E-step

πk = 1
n
∑n

i=1 γik
µk = 1

nπk

∑
γikx i M-step(s)

Σk = 1
nπk

∑
i γik(x i − µk)(x i − µk)>

until convergence

output π, ~µ, ~Σ
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Non-parametric density estimation

Definition
Let Kh(x) : X → R be a (fixed) kernel function, where h is a bandwidth
parameter. Then

p̂(x|y) := 1
|{yi = y}|

∑
{i:yi=y}

Kh(x − x i)

is called a kernel density estimate (KDE) of p(x|y).

Alternative name: Parzen windows estimate.

Kernel density estimates are non-parametric. The number of terms grows
with the number of examples.
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Example: Kernel density estimate

Example

• X : height of a person in cm, Y = {(male, female}.
• D = {(181, m), (165, f), (161, f), (172, m) ,(175, m), (178, f)}.

For Kh(x) = 1√
2πh2 exp(− 1

h2 ‖x‖2) (Gaussian with bandwidth h):

29 / 30



Example: Kernel density estimate

Example

• X : height of a person in cm, Y = {(male, female}.
• D = {(181, m), (165, f), (161, f), (172, m) ,(175, m), (178, f)}.

For Kh(x) = 1
2h J|x| < hK (Box kernel):

29 / 30



Summary: Generative Models

For generative models, one uses the available data to estimate p(x, y)
• either directly, or
• through the decomposition p(x, y) = p(x|y)p(y)

Generative models are popular in the natural sciences because they
• model all information in the data
• reflect the data generation process

But: the suffer from curse of dimensionality!
• one either needs a lot of data,
• or, one must hae strong additional assumptions,
• or one must resort to a simple (usually wrong) model.
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