Statistical Machine Learning

Christoph Lampert

Institute of Science and Technology
Spring Semester 2015/2016 // Lecture 4

Nonlinear Classifiers

What, if a linear classifier is really not a good choice?

Nonlinear Classifiers

What, if a linear classifier is really not a good choice?

Change the data representation, e.g. Cartesian \rightarrow polar coordinates

Nonlinear Classifiers

Definition (Max-margin Generalized Linear Classifier)

Let $C>0$. Assume a necessarily linearly separable training set

$$
\left.\mathcal{D}=\left\{\left(x^{1}, y^{1}\right), \ldots x^{n}, y^{n}\right)\right\} \subset \mathcal{X} \times \mathcal{Y}
$$

Let $\phi: \mathcal{X} \rightarrow \mathcal{H}$ be a feature map from \mathcal{X} into a Hilbert space \mathcal{H}.
Then we can form a new training set

$$
\mathcal{D}^{\phi}=\left\{\left(\phi\left(x^{1}\right), y^{1}\right), \ldots,\left(\phi\left(x^{n}\right), y^{n}\right)\right\} \subset \mathcal{H} \times \mathcal{Y}
$$

The maximum-(soft)-margin linear classifier in \mathcal{H},

$$
g(x)=\operatorname{sign}\left[\langle w, \phi(x)\rangle_{\mathcal{H}}+b\right]
$$

for $w \in \mathcal{H}$ and $b \in \mathbb{R}$ is called max-margin generalized linear classifier.
It is still linear w.r.t w, but (in general) nonlinear with respect to x.

Example (Polar coordinates)

Left: dataset \mathcal{D} for which no good linear classifier exists. Right: dataset \mathcal{D}^{ϕ} for $\phi: \mathcal{X} \rightarrow \mathcal{H}$ with $\mathcal{X}=\mathbb{R}^{2}$ and $\mathcal{H}=\mathbb{R}^{2}$

$$
\phi(x, y)=\left(\sqrt{x^{2}+y^{2}}, \arctan \frac{y}{x}\right) \quad(\text { and } \phi(0,0)=(0,0))
$$

Example (Polar coordinates)

Left: dataset \mathcal{D} for which no good linear classifier exists. Right: dataset \mathcal{D}^{ϕ} for $\phi: \mathcal{X} \rightarrow \mathcal{H}$ with $\mathcal{X}=\mathbb{R}^{2}$ and $\mathcal{H}=\mathbb{R}^{2}$

$$
\phi(x, y)=\left(\sqrt{x^{2}+y^{2}}, \arctan \frac{y}{x}\right) \quad(\text { and } \phi(0,0)=(0,0))
$$

Any classifier in \mathcal{H} induces a classifier in \mathcal{X}.

Other popular feature mappings, ϕ

Example (d-th degree polynomials)

$$
\phi:\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(1, x_{1}, \ldots, x_{n}, x_{1}^{2}, \ldots, x_{n}^{2}, \ldots, x_{1}^{d}, \ldots, x_{n}^{d}\right)
$$

Resulting classifier: d-th degree polynomial in $x . g(x)=\operatorname{sign} f(x)$ with

$$
f(x)=\langle w, \phi(x)\rangle=\sum_{j} w_{j} \phi(x)_{j}=\sum_{i} a_{i} x_{i}+\sum_{i j} b_{i j} x_{i} x_{j}+\ldots
$$

Example (Distance map)

For a set of prototype $p_{1}, \ldots, p_{N} \in \mathcal{H}$:

$$
\phi: \vec{x} \mapsto\left(e^{-\left\|\vec{x}-\vec{p}_{1}\right\|^{2}}, \ldots, e^{-\left\|\vec{x}-\vec{p}_{N}\right\|^{2}}\right)
$$

Classifier: combine weights from close enough prototypes

$$
g(x)=\operatorname{sign}\langle w, \phi(x)\rangle=\operatorname{sign} \sum_{i=1}^{n} a_{i} e^{-\left\|\vec{x}-\vec{p}_{i}\right\|^{2}} .
$$

(Generalized) Maximum Margin Classifiers - Optimization II

$$
\min _{w \in \mathbb{R}^{d}, b \in \mathbb{R}, \xi \in \mathbb{R}^{n}} \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{n} \xi^{i}
$$

subject to

$$
\begin{aligned}
y^{i}\left\langle w, \phi\left(x^{i}\right)\right\rangle & \geq 1-\xi^{i}, \quad \text { for } i=1, \ldots, n \\
\xi^{i} & \geq 0 . \quad \text { for } i=1, \ldots, n .
\end{aligned}
$$

How to solve numerically?

- off-the-shelf Quadratic Program (QP) solver only for small dimensions and training sets (a few hundred),
- variants of gradient descent, high dimensional data, large training sets (millions)
- by convex duality, for very high dimensional data and not so many examples $(d \gg n)$

(Generalized) Maximum Margin Classifiers - Optimization II

$$
\min _{w \in \mathbb{R}^{d}, b \in \mathbb{R}, \xi \in \mathbb{R}^{n}} \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{n} \xi^{i}
$$

subject to

$$
\begin{aligned}
y^{i}\left(\left\langle w, x^{i}\right\rangle+b\right) & \geq 1-\xi^{i}, \quad \text { for } i=1, \ldots, n \\
\xi^{i} & \geq 0 . \quad \text { for } i=1, \ldots, n .
\end{aligned}
$$

How to solve numerically?

- off-the-shelf Quadratic Program (QP) solver only for small dimensions and training sets (a few hundred),
- variants of gradient descent, high dimensional data, large training sets (millions)
- by convex duality, for very high dimensional data and not so many examples $(d \gg n)$

Subgradient-Based Optimization

$$
\min _{w \in \mathbb{R}^{d}, b \in \mathbb{R}, \xi \in \mathbb{R}^{n}} \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{n} \xi^{i}
$$

subject to

$$
y^{i}\left(\left\langle w, x^{i}\right\rangle+b\right) \geq 1-\xi^{i}, \quad \text { and } \quad \xi^{i} \geq 0, \quad \text { for } i=1, \ldots, n \text {. }
$$

Subgradient-Based Optimization

$$
\min _{w \in \mathbb{R}^{d}, b \in \mathbb{R}, \xi \in \mathbb{R}^{n}} \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{n} \xi^{i}
$$

subject to

$$
y^{i}\left(\left\langle w, x^{i}\right\rangle+b\right) \geq 1-\xi^{i}, \quad \text { and } \quad \xi^{i} \geq 0, \quad \text { for } i=1, \ldots, n .
$$

For any fixed (w, b) we can find the optimal ξ_{1}, \ldots, ξ_{n} :

$$
\xi_{i}=\max \left\{0,1-y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)\right\} .
$$

Subgradient-Based Optimization

$$
\min _{w \in \mathbb{R}^{d}, b \in \mathbb{R}, \xi \in \mathbb{R}^{n}} \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{n} \xi^{i}
$$

subject to

$$
y^{i}\left(\left\langle w, x^{i}\right\rangle+b\right) \geq 1-\xi^{i}, \quad \text { and } \quad \xi^{i} \geq 0, \quad \text { for } i=1, \ldots, n .
$$

For any fixed (w, b) we can find the optimal ξ_{1}, \ldots, ξ_{n} :

$$
\xi_{i}=\max \left\{0,1-y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)\right\} .
$$

Plug into original problem:

$$
\min _{w \in \mathbb{R}^{d}, b \in \mathbb{R}} \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)\right\} .
$$

SVM Training in the Primal

$$
\min _{w \in \mathbb{R}^{d}, b \in \mathbb{R}} \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)\right\} .
$$

- unconstrained optimization problem
- convex
- $\frac{1}{2}\|w\|^{2}$ is convex (differentiable with Hessian $=\mathrm{ld} \succcurlyeq 0$)
- linear/affine functions are convex
- pointwise max over convex functions is convex.
- sum of convex functions is convex.
- not differentiable!

SVM Training in the Primal

$$
\min _{w \in \mathbb{R}^{d}, b \in \mathbb{R}} \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)\right\}
$$

- unconstrained optimization problem
- convex
- $\frac{1}{2}\|w\|^{2}$ is convex (differentiable with Hessian $=\mathrm{ld} \succcurlyeq 0$)
- linear/affine functions are convex
- pointwise max over convex functions is convex.
- sum of convex functions is convex.
- not differentiable!

We can't use gradient descent, since some points have no gradients!

Subgradients

Definition: Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a convex function. A vector $v \in \mathbb{R}^{d}$ is called a subgradient of f at w_{0}, if

$$
f(w) \geq f\left(w_{0}\right)+\left\langle v, w-w_{0}\right\rangle \quad \text { for all } w
$$

Subgradients

Definition: Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a convex function. A vector $v \in \mathbb{R}^{d}$ is called a subgradient of f at w_{0}, if

$$
f(w) \geq f\left(w_{0}\right)+\left\langle v, w-w_{0}\right\rangle \quad \text { for all } w .
$$

Subgradients

Definition: Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a convex function. A vector $v \in \mathbb{R}^{d}$ is called a subgradient of f at w_{0}, if

$$
f(w) \geq f\left(w_{0}\right)+\left\langle v, w-w_{0}\right\rangle \quad \text { for all } w
$$

Subgradients

Definition: Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a convex function. A vector $v \in \mathbb{R}^{d}$ is called a subgradient of f at w_{0}, if

$$
f(w) \geq f\left(w_{0}\right)+\left\langle v, w-w_{0}\right\rangle \quad \text { for all } w
$$

Subgradients

Definition: Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a convex function. A vector $v \in \mathbb{R}^{d}$ is called a subgradient of f at w_{0}, if

$$
f(w) \geq f\left(w_{0}\right)+\left\langle v, w-w_{0}\right\rangle \quad \text { for all } w
$$

A general convex f can have more than one subgradient at a position.

- We write $\nabla f\left(w_{0}\right)$ for the set of subgradients of f at w_{0},
- $v \in \nabla f\left(w_{0}\right)$ indicates that v is a subgradient of f at w_{0}.

Subgradients

- For differentiable f, the gradient $v=\nabla f\left(w_{0}\right)$ is the only subgradient.

- If f_{1}, \ldots, f_{K} are differentiable at w_{0} and

$$
f(w)=\max \left\{f_{1}(w), \ldots, f_{K}(w)\right\}
$$

then $v=\nabla f_{k}\left(w_{0}\right)$ is a subgradient of f at w_{0}, where k any index for which $f_{k}\left(w_{0}\right)=f\left(w_{0}\right)$.

- Subgradients are only well defined for convex functions!

Illustration: Optimization using Gradients

Illustration: Optimization using Gradients

$$
f\left(w_{1}, w_{2}\right)=\left(w_{1}\right)^{2}+2\left(w_{2}\right)^{2} \quad \text { strictly convex, differentiable }
$$

Gradient of a differentiable function is a descent direction:

- for any w_{t} there exists an η such that $f\left(w_{t}+\eta v\right)<f\left(w_{t}\right)$

Illustration: Optimization using Subgradients?

$f\left(w_{1}, w_{2}\right)=\left|w_{1}\right|+2\left|w_{2}\right| \quad$ convex, not differentiable

Illustration: Optimization using Subgradients?

Illustration: Optimization using Subgradients?

Illustration: Optimization using Subgradients?

Illustration: Optimization using Subgradients?

$f\left(w_{1}, w_{2}\right)=\left|w_{1}\right|+2\left|w_{2}\right| \quad$ convex, not differentiable

Illustration: Optimization using Subgradients?

Illustration: Optimization using Subgradients?

$$
f\left(w_{1}, w_{2}\right)=\left|w_{1}\right|+2\left|w_{2}\right| \quad \text { convex, not differentiable }
$$

Subgradient might not be a not a descent direction:

- for w_{t} we might have $f\left(w_{t}+\eta v\right) \geq f\left(w_{t}\right)$ for all $\eta \in \mathbb{R}$

Illustration: Optimization using Subgradients?

$$
f\left(w_{1}, w_{2}\right)=\left|w_{1}\right|+2\left|w_{2}\right| \quad \text { convex, not differentiable }
$$

Subgradient might not be a not a descent direction:

- for w_{t} we might have $f\left(w_{t}+\eta v\right) \geq f\left(w_{t}\right)$ for all $\eta \in \mathbb{R}$
- but: there is an η that brings us closer to the optimum,

$$
\left\|w_{t+1}-w^{*}\right\|<\left\|w_{t}-w^{*}\right\| \quad \text { (Proof: exercise...) }
$$

Subgradient Method (not Descent!)

input step sizes $\eta_{1}, \eta_{2}, \ldots$
1: $w_{1} \leftarrow 0$
2: for $t=1, \ldots, T$ do
3: $\quad v \leftarrow$ a subgradient of \mathcal{L} at w_{t}
4: $\quad w_{t+1} \leftarrow w_{t}-\eta_{t} v$
5: end for
output w_{t} with smallest values $\mathcal{L}\left(w_{t}\right)$ for $t=1, \ldots, T$

Subgradient Method (not Descent!)

input step sizes $\eta_{1}, \eta_{2}, \ldots$
1: $w_{1} \leftarrow 0$
2: for $t=1, \ldots, T$ do
3: $\quad v \leftarrow$ a subgradient of \mathcal{L} at w_{t}
4: $\quad w_{t+1} \leftarrow w_{t}-\eta_{t} v$
5: end for
output w_{t} with smallest values $\mathcal{L}\left(w_{t}\right)$ for $t=1, \ldots, T$
Stepsize rules: how to choose $\eta_{1}, \eta_{2}, \ldots$, ?

- $\eta_{t}=\eta$ constant: will get us (only) close to the optimum
- decrease slowly, but not too slowly: converges to optimum

$$
\sum_{t=1}^{\infty} \eta_{t}=\infty \quad \sum_{t=1}^{\infty}\left(\eta_{t}\right)^{2}<\infty \quad \text { e.g. } \eta_{t}=\frac{\eta}{t+t_{0}}
$$

How to choose overall η ? trial-and-error

- Try different values, see which one decreases the objective (fastest)

Stochastic Optimization

Many objective functions in ML contain a sum over all training exampes:

$$
\begin{aligned}
\mathcal{L}_{\text {LogReg }}(w) & =\sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)\right)\right) \\
\mathcal{L}_{S V M}(w) & =\frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)\right\}
\end{aligned}
$$

Computing the gradient or subgradient scales like $O(n d)$,

- d is the dimensionality of the data
- n is the number of training examples.

Both d and n can be big (millions). What can we do?

- we'll not get rid of $O(d)$, since $w \in \mathbb{R}^{d}$,
- but we can get rid of the scaling with $O(n)$ for each update!

Let

$$
f(w)=\sum_{i=1}^{n} f_{i}(w)
$$

with convex, differentiable f_{1}, \ldots, f_{n}.

Stochastic Gradient Descent

input step sizes $\eta_{1}, \eta_{2}, \ldots$
1: $w_{1} \leftarrow 0$
2: for $t=1, \ldots, T$ do
3: $\quad i \leftarrow$ random index in $1,2, \ldots, n$
4: $\quad v \leftarrow n \nabla f_{i}\left(w_{t}\right)$
5: $\quad w_{t+1} \leftarrow w_{t}-\eta_{t} v$
6: end for
output w_{T}, or average $\frac{1}{T-T_{0}} \sum_{t=T_{0}}^{T} w_{t}$

- Each iteration takes only $O(d)$,
- Gradient is "wrong" is each step, but correct in expectation.
- No line search, since evaluating $f(w-\eta v)$ would be $O(n d)$,
- Objective does not decrease in every step,
- Converges to optimum if η_{t} is square summable, but not summablet. ${ }^{32}$

Let $\quad f(w)=\sum_{i=1}^{n} f_{i}(w), \quad$ with convex f_{1}, \ldots, f_{n}.

Stochastic Subgradient Method

input step sizes $\eta_{1}, \eta_{2}, \ldots$
1: $w_{1} \leftarrow 0$
2: for $t=1, \ldots, T$ do
3: $\quad i \leftarrow$ random index in $1,2, \ldots, n$
4: $\quad v \leftarrow n$ times a subgradient of f_{i} at w_{t}
5: $\quad w_{t+1} \leftarrow w_{t}-\eta_{t} v$
6: end for
output w_{T}, or average $\frac{1}{T-T_{0}} \sum_{t=T_{0}}^{T} w_{t}$

- Each iteration takes only $O(d)$,
- Converges to optimum if η_{t} is square summable, but not summable.
- Even better: pick not completely at random but go in epochs: randomly shuffle dataset, go through all examples, reshuffle, etc.

Stochastic Primal SVMs Training

$$
\mathcal{L}_{S V M}(w, b)=\sum_{i=1}^{n}\left(\frac{1}{2 n}\|w\|^{2}+C \max \left\{0,1-y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)\right\}\right)
$$

input step sizes $\eta_{1}, \eta_{2}, \ldots$ or step size rule, such as $\eta_{t}=\frac{\eta}{t+t_{0}}$
1: $\left(w_{1}, b_{1}\right) \leftarrow(0,0)$

2: for $t=1, \ldots, T$ do

3: \quad pick (x, y) from \mathcal{D} (randomly, or in epochs)
4: if $y\langle x, w\rangle+b \geq 1$ then
5: $\quad w_{t+1} \leftarrow\left(1-\eta_{t}\right) w_{t}$
6: else
7: $\quad w_{t+1} \leftarrow\left(1-\eta_{t}\right) w_{t}+n C \eta_{t} y x$
8: $\quad b_{t+1} \leftarrow \eta_{t} n C y$
9: end if
10: end for
output w_{T}, or average $\frac{1}{T-T_{0}} \sum_{t=T_{0}}^{T} w_{t}$
State-of-the-art in SVM training, but setting stepsizes can be painful. ${ }_{18 / 32}$

SVM Optimization by Dualization

Back to the original formulation

$$
\min _{w \in \mathbb{R}^{d}, b \in \mathbb{R}, \xi \in \mathbb{R}^{n}} \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{n} \xi^{i}
$$

subject to, for $i=1, \ldots, n$,

$$
y^{i}\left(\left\langle w, x^{i}\right\rangle+b\right) \geq 1-\xi^{i}, \quad \text { and } \quad \xi^{i} \geq 0
$$

Convex optimization problem: we can study its dual problem.

General Principle of Dualization

Assume a constrained optimization problem:

$$
\min _{\theta \in \Theta \subset \mathbb{R}^{K}} f(\theta)
$$

subject to

$$
g_{1}(\theta) \leq 0, \quad g_{2}(\theta) \leq 0, \quad \ldots, \quad g_{k}(\theta) \leq 0
$$

General Principle of Dualization

Assume a constrained optimization problem:

$$
\min _{\theta \in \Theta \subset \mathbb{R}^{K}} f(\theta)
$$

subject to

$$
g_{1}(\theta) \leq 0, \quad g_{2}(\theta) \leq 0, \quad \ldots, \quad g_{k}(\theta) \leq 0
$$

We define the Lagrangian, that combines objective and constraints

$$
\mathcal{L}(\theta, \alpha)=f(\theta)+\alpha_{1} g_{1}(\theta)+\cdots+\alpha_{k} g_{k}(\theta)
$$

with Lagrange multipliers, $\alpha_{1}, \ldots, \alpha_{k} \geq 0$. Note:
$\max _{\alpha_{1} \geq 0, \ldots, \alpha_{k} \geq 0} \mathcal{L}(\theta, \alpha)= \begin{cases}f(\theta) & \text { if } g_{1}(\theta) \leq 0, g_{2}(\theta) \leq 0, \ldots, g_{k}(\theta) \leq 0 \\ \infty & \text { otherwise } .\end{cases}$
Any optimal solution, θ, for $\min _{\theta \in \Theta} \max _{\alpha \geq 0} \mathcal{L}(\theta, \alpha)$ is also optimal for the original constrained problem.

General Principle of Dualization

Theorem (Special Case of Slater's Condition)

If f is convex, g_{1}, \ldots, g_{k} are affine functions, and there exists at least one point $\theta \in \operatorname{relint}(\Theta)$ that is feasible (i.e. $g_{i}(\theta) \leq 0$ for $i=1, \ldots, k$). Then

$$
\min _{\theta \in \Theta} \max _{\alpha \geq 0} \mathcal{L}(\theta, \alpha)=\max _{\alpha \geq 0} \min _{\theta \in \Theta} \mathcal{L}(\theta, \alpha)
$$

General Principle of Dualization

Theorem (Special Case of Slater's Condition)

If f is convex, g_{1}, \ldots, g_{k} are affine functions, and there exists at least one point $\theta \in \operatorname{relint}(\Theta)$ that is feasible (i.e. $g_{i}(\theta) \leq 0$ for $i=1, \ldots, k$). Then

$$
\min _{\theta \in \Theta} \max _{\alpha \geq 0} \mathcal{L}(\theta, \alpha)=\max _{\alpha \geq 0} \min _{\theta \in \Theta} \mathcal{L}(\theta, \alpha)
$$

Call $f(\theta)$ the primal and $h(\alpha)=\min _{\theta \in \Theta} \mathcal{L}(\theta, \alpha)$ be the dual function.
The theorem states that minimizing the primal $f(\theta)$ (with constraints given by the g_{k}) is equivalent to maximizing its dual $h(\alpha)$ (with $\alpha \geq 0$).

$$
\min _{\theta \in \mathbb{R}^{K}} f(\theta)=\max _{\alpha \in \mathbb{R}_{+}^{k}} h(\alpha)
$$

Dualizing of the SVM optimization problem

The SVM optimization problem fulfills the conditions of the theorem.

$$
\min _{w \in \mathbb{R}^{d}, b \in \mathbb{R}, \xi \in \mathbb{R}^{n}} \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{n} \xi^{i}
$$

subject to, for $i=1, \ldots, n$,

$$
y^{i}\left(\left\langle w, x^{i}\right\rangle+b\right) \geq 1-\xi^{i}, \quad \text { and } \quad \xi^{i} \geq 0
$$

We can compute its minimal value as $\max _{\alpha \geq 0, \beta \geq 0} h(\alpha, \beta)$ with
$h(\alpha, \beta)=\min _{(w, b)} \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i}+\sum_{i} \alpha_{i}\left(1-\xi_{i}-y^{i}\left(\left\langle w, x^{i}\right\rangle+b\right)-\sum_{i} \beta_{i} \xi_{i}\right.$
(Blackboard...)

Dualizing of the SVM optimization problem

In a minimum w.r.t. (w, b) :

$$
\begin{aligned}
0 & =\frac{\partial}{\partial w} \mathcal{L}(w, b, \xi, \alpha, \beta)=w-\sum_{i} \alpha_{i} y^{i} x^{i} \quad \Rightarrow \quad w=\sum_{i} \alpha_{i} y^{i} x^{i} \\
0 & =\frac{\partial}{\partial b} \mathcal{L}(w, b, \xi, \alpha, \beta)=\sum_{i} \alpha_{i} y^{i} \\
0 & =\frac{\partial}{\partial \xi_{i}} \mathcal{L}(w, b, \xi, \alpha, \beta)=C-\alpha_{i}-\beta_{i}
\end{aligned}
$$

Insert new constraints into objective:

$$
\max _{\alpha \geq 0} \frac{1}{2}\left\|\sum_{i} \alpha_{i} y^{i} x^{i}\right\|^{2}+\sum_{i} \alpha_{i}-\sum_{i} \alpha_{i} y_{i}\left\langle\sum_{j} \alpha_{j} y^{j} x^{j}, x^{i}\right\rangle
$$

SVM Dual Optimization Problem

$$
\max _{\alpha \geq 0}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y^{i} y^{j}\left\langle x^{i}, x^{j}\right\rangle+\sum_{i} \alpha_{i}
$$

subject to $\sum_{i} \alpha_{i} y_{i}=0 \quad$ and $\quad 0 \leq \alpha_{i} \leq C$, for $i=1, \ldots, n$.

- Examples x^{i} with $\alpha_{i} \neq 0$ are called support vectors.
- From the coefficients $\alpha_{1}, \ldots, \alpha_{n}$ we can recover the optimal w :

$$
\begin{aligned}
w & =\sum_{i} \alpha_{i} y^{i} x^{i} \\
b & =1-y^{i}\left\langle x^{i}, w\right\rangle \quad \text { for any } i \text { with } 0<\alpha_{i}<C
\end{aligned}
$$

(more complex rule for b if not such i exists).

- The prediction rule becomes

$$
g(x)=\operatorname{sign}(\langle w, x\rangle+b)=\operatorname{sign}\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\left\langle x_{i}, x\right\rangle+b\right)
$$

SVM Dual Optimization Problem

$$
\max _{\alpha \geq 0}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y^{i} y^{j}\left\langle x^{i}, x^{j}\right\rangle+\sum_{i} \alpha_{i}
$$

subject to

$$
\sum_{i} \alpha_{i} y_{i}=0 \quad \text { and } \quad 0 \leq \alpha_{i} \leq C, \quad \text { for } i=1, \ldots, n
$$

Why solve the dual optimization problem?

- fewer unknowns: $\alpha \in \mathbb{R}^{n}$ instead of $(w, b, \xi) \in \mathbb{R}^{d+1+n}$
- less storage when $d \gg n$:
$\left(\left\langle x^{i}, x^{j}\right\rangle\right)_{i, j} \in \mathbb{R}^{n \times n}$ instead of $\left(x^{1}, \ldots, x^{n}\right) \in \mathbb{R}^{n \times d}$
- Kernelization

Kernelization

Definition (Positive Definite Kernel Function)

Let \mathcal{X} be a non-empty set. A function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is called positive definite kernel function, if the following conditions hold:

- k is symmetric, i.e. $k\left(x, x^{\prime}\right)=k\left(x^{\prime}, x\right)$ for all $x, x^{\prime} \in \mathcal{X}$.
- For any finite set of points $x_{1}, \ldots, x_{n} \in \mathcal{X}$, the kernel matrix

$$
\begin{equation*}
K_{i j}=\left(k\left(x_{i}, x_{j}\right)\right)_{i, j} \tag{1}
\end{equation*}
$$

is positive semidefinite, i.e. for all vectors $t \in \mathbb{R}^{n}$

$$
\begin{equation*}
\sum_{i, j=1}^{n} t_{i} K_{i j} t_{j} \geq 0 \tag{2}
\end{equation*}
$$

Kernelization

Lemma (Kernel function)

Let $\phi: \mathcal{X} \rightarrow \mathcal{H}$ be a feature map into a Hilbert space \mathcal{H}. Then the function

$$
k(x, \bar{x})=\langle\phi(x), \phi(\bar{x})\rangle_{\mathcal{H}}
$$

is a positive definite kernel function.

Proof.

- symmetry: $k(x, \bar{x})=\langle\phi(x), \phi(\bar{x})\rangle_{\mathcal{H}}=\langle\phi(\bar{x}), \phi(x)\rangle_{\mathcal{H}}=k(\bar{x}, x)$
- positive definiteness: $x_{1}, \ldots, x_{n} \in \mathcal{X}$, and arbitrary $t \in \mathbb{R}^{n}$, then

$$
\begin{aligned}
\sum_{i, j=1}^{n} t_{i} k\left(x_{i}, x_{j}\right) t_{j} & =\sum_{i, j=1}^{n} t_{i} t_{j}\left\langle\phi\left(x^{i}\right), \phi\left(x^{j}\right)\right\rangle_{\mathcal{H}} \\
& =\left\langle\sum_{i} t_{i} \phi\left(x^{i}\right), \sum_{j} t_{j} \phi\left(x^{j}\right)\right\rangle_{\mathcal{H}}=\left\|\sum_{i} t_{i} \phi\left(x^{i}\right)\right\|_{\mathcal{H}}^{2} \geq 0 .
\end{aligned}
$$

Theorem (Mercer's Condition)

Let \mathcal{X} be non-empty set. For any positive definite kernel function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, there exists a Hilbert space \mathcal{H} with inner product $\langle\cdot, \cdot\rangle_{\mathcal{H}}$, and a feature $\operatorname{map} \phi: \mathcal{X} \rightarrow \mathcal{H}$ such that

$$
k(x, \bar{x})=\langle\phi(x), \phi(\bar{x})\rangle_{\mathcal{H}} .
$$

Proof. later, in more refined form
Note: \mathcal{H} and ϕ are not unique, e.g.

$$
k(x, \bar{x})=2 x \bar{x}
$$

- $\mathcal{H}_{1}=\mathbb{R}, \phi_{1}(x)=\sqrt{2} x, \quad\left\langle\phi_{1}(x), \phi_{1}(\bar{x})\right\rangle_{\mathcal{H}_{1}}=2 x \bar{x}$
- $\mathcal{H}_{2}=\mathbb{R}^{2}, \phi_{2}(x)=\binom{x}{-x}, \quad\left\langle\phi_{1}(x), \phi_{2}(\bar{x})\right\rangle_{\mathcal{H}_{2}}=2 x \bar{x}$
$\mathcal{H}_{3}=\mathbb{R}^{3}, \phi_{3}(x)=\left(\begin{array}{l}x \\ 0 \\ x\end{array}\right), \quad\left\langle\phi_{3}(x), \phi_{3}(\bar{x})\right\rangle_{\mathcal{H}_{3}}=2 x \bar{x}$, etc.

Definition (Reproducing Kernel Hilbert Space)

Let \mathcal{H} be a Hilbert space of functions $f: \mathcal{X} \rightarrow \mathbb{R}$. A kernel $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is called reproducing kernel, if

$$
f(x)=\langle k(x, \cdot), f(\cdot)\rangle_{\mathcal{H}} \quad \text { for all } f \in \mathcal{H} .
$$

\mathcal{H} is then called a reproducing kernel Hilbert space (RKHS).

Theorem (Moore-Aronszajn Theorem)

Let $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a positive definite kernel on \mathcal{X}. Then there is a unique Hilbert space of functions, $f: \mathcal{X} \rightarrow \mathbb{R}$, for which k is a reproducing kernel.

Proof sketch. One can construct the space explicitly: Set

$$
\mathcal{H}^{\text {pre }}=\operatorname{span}\{k(\cdot, x) \text { for } x \in \mathcal{X}\},
$$

i.e., for every $f \in \mathcal{H}^{\text {pre }}$ exist $x^{1}, \ldots, x^{m} \in \mathcal{X}$ and $\alpha^{1}, \ldots, \alpha^{m} \in \mathbb{R}$, with

$$
f(\cdot)=\sum_{i=1}^{m} \alpha^{i} k\left(\cdot, x^{i}\right) .
$$

We define an inner product as

$$
\langle f, g\rangle=\left\langle\sum_{i} \alpha^{i} k\left(\cdot, x^{i}\right), \sum_{j} \bar{\alpha}^{j} k\left(\cdot, \bar{x}^{j}\right)\right\rangle:=\sum_{i, j} \alpha^{i} \bar{\alpha}^{j} k\left(x^{i}, \bar{x}^{j}\right) .
$$

Make $\mathcal{H}^{\text {pre }}$ into Hilbert space \mathcal{H} by enforcing completeness.
Complete proof: [B. Schölkopf, A. Smola, "Learning with Kernels", 2001].

Let

- $\mathcal{D}=\left\{\left(x^{1}, y^{1}\right), \ldots,\left(x^{n}, y^{n}\right)\right\} \subset \mathcal{X} \times\{ \pm 1\}$ training set
- $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a pos.def. kernel with feature $\operatorname{map} \phi: \mathcal{X} \rightarrow \mathcal{H}$.

Support Vector Machine in Kernelized Form

For any $C>0$, the max-margin classifier for the feature map ϕ is

$$
g(x)=\operatorname{sign} f(x) \quad \text { with } \quad f(x)=\sum_{i} \alpha_{i} k\left(x^{i}, x\right)+b
$$

for coefficients $\alpha_{1}, \ldots, \alpha_{n}$ obtained by solving

$$
\min _{\alpha^{1}, \ldots, \alpha^{n} \in \mathbb{R}}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha^{i} \alpha^{j} y^{i} y^{j} k\left(x^{i}, x^{j}\right)+\sum_{i=1}^{n} \alpha^{i}
$$

subject to $\sum_{i} \alpha_{i} y_{i}=0 \quad$ and $\quad 0 \leq \alpha_{i} \leq C$, for $i=1, \ldots, n$.
Note: we don't need to know ϕ or \mathcal{H}, explicitly. Knowing k is enough.

Useful and Popular Kernel Functions

For $x, \bar{x} \in \mathbb{R}^{d}$:

- $k(x, \bar{x})=\left(1+\left\langle x, x^{\prime}\right\rangle\right)^{p}$ for $p \in \mathbb{N} \quad$ (polynomial kernel)
$f(x)=\sum_{i} \alpha_{i} y^{i} k\left(x^{i}, x\right)=$ polynomial of degree d
- $k(x, \bar{x})=\exp \left(-\lambda\|x-\bar{x}\|^{2}\right)$ for $\lambda>0 \quad$ (Gaussian or RBF kernel)
$f(x)=\sum_{i} \alpha_{i} y^{i} \exp \left(-\lambda\left\|x^{i}-x\right\|^{2}\right)=$ weighted/soft nearest neighbor
For x, \bar{x} histograms with d bins:
- $k(x, \bar{x})=\sum_{j=1}^{d} \min \left(x_{j}, \bar{x}_{j}\right) \quad$ histogram intersection kernel
- $k(x, \bar{x})=\sum_{j=1}^{d} \frac{x_{j} \bar{x}_{j}}{x_{j}+\bar{x}_{j}} \quad \chi^{2}$ kernel
- $k(x, \bar{x})=\exp \left(-\lambda \sum_{j=1}^{d} \frac{\left(x_{j}-\bar{x}_{j}\right)^{2}}{x_{j}+\bar{x}_{j}}\right) \quad$ exponentiated χ^{2} kernel

Generally: interpret kernel function as a similarly measure.

