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Kernelization

Definition (Positive Definite Kernel Function)

Let X be a non-empty set. A function k : X × X → R is called positive
definite kernel function, if the following conditions hold:
• k is symmetric, i.e. k(x, x ′) = k(x ′, x) for all x, x ′ ∈ X .
• For any finite set of points x1, . . . , xn ∈ X , the kernel matrix

Kij = (k(xi , xj))i,j (1)

is positive semidefinite, i.e. for all vectors t ∈ Rn

n∑
i,j=1

tiKijtj ≥ 0. (2)
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Kernelization

Lemma (Kernel function)

Let φ : X → H be a feature map into a Hilbert space H. Then the
function

k(x, x̄) =
〈
φ(x), φ(x̄)

〉
H

is a positive definite kernel function.

Proof.
• symmetry: k(x, x̄) = 〈φ(x), φ(x̄)〉H = 〈φ(x̄), φ(x)〉H = k(x̄, x)

• positive definiteness: x1, . . . , xn ∈ X , and arbitrary t ∈ Rn , then
n∑

i,j=1
tik(xi , xj)tj =

n∑
i,j=1

titj〈φ(x i), φ(x j)〉H

=
〈∑

i
tiφ(x i),

∑
j

tjφ(x j)
〉
H

=
∥∥∥∑

i
tiφ(x i)

∥∥∥2

H
≥ 0.

�
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Theorem (Mercer’s Condition)

Let X be non-empty set. For any positive definite kernel function
k : X × X → R, there exists a Hilbert space H with inner product
〈· , ·〉H, and a feature map φ : X → H such that

k(x, x̄) =
〈
φ(x), φ(x̄)

〉
H.

Proof. later, in more refined form

Note: H and φ are not unique, e.g.
k(x, x̄) = 2xx̄

• H1 = R, φ1(x) =
√

2x, 〈φ1(x), φ1(x̄)〉H1 = 2xx̄

• H2 = R2, φ2(x) =
(

x
−x

)
, 〈φ1(x), φ2(x̄)〉H2 = 2xx̄

• H3 = R3, φ3(x) =

x
0
x

, 〈φ3(x), φ3(x̄)〉H3 = 2xx̄, etc.
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Definition (Reproducing Kernel Hilbert Space)

Let H be a Hilbert space of functions f : X → R. A kernel
k : X × X → R is called reproducing kernel, if

f (x) = 〈k(x, ·), f (·)〉H for all f ∈ H.

H is then called a reproducing kernel Hilbert space (RKHS).

Theorem (Moore-Aronszajn Theorem)

Let k : X × X → R be a positive definite kernel on X . Then there is a
unique Hilbert space of functions, f : X → R, for which k is a
reproducing kernel.
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Proof sketch. One can construct the space explicitly: Set

Hpre = span{ k(·, x) for x ∈ X },

i.e., for every f ∈ Hpre exist x1, . . . , xm ∈ X and α1, . . . , αm ∈ R, with

f (·) =
m∑

i=1
αik(·, x i).

We define an inner product as

〈f , g〉 =
〈∑

i
αik(·, x i),

∑
j
ᾱjk(·, x̄ j)

〉
:=
∑
i,j
αi ᾱjk(x i , x̄ j).

Make Hpre into Hilbert space H by enforcing completeness.

Complete proof: [B. Schölkopf, A. Smola, "Learning with Kernels", 2001].
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Let
• D = {(x1, y1), . . . , (xn , yn) } ⊂ X × {±1} training set
• k : X × X → R be a pos.def. kernel with feature map φ : X → H.

Support Vector Machine in Kernelized Form
For any C > 0, the max-margin classifier for the feature map φ is

g(x) = sign f (x) with f (x) =
∑

i
αik(x i , x) + b,

for coefficients α1, . . . , αn obtained by solving

min
α1,...,αn∈R

−1
2

n∑
i,j=1

αiαjyiyjk(x i , x j) +
n∑

i=1
αi

subject to
∑

i
αiyi = 0 and 0 ≤ αi ≤ C , for i = 1, . . . ,n.

Note: we don’t need to know φ or H, explicitly. Knowing k is enough.
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Useful and Popular Kernel Functions

For x, x̄ ∈ Rd :
• k(x, x̄) = (1 + 〈x, x ′〉)p for p ∈ N (polynomial kernel)

f (x) =
∑

i αiyik(x i , x) = polynomial of degree d

• k(x, x̄) = exp(−λ‖x − x̄‖2) for λ > 0 (Gaussian or RBF kernel)

f (x) =
∑

i αiyi exp(−λ‖x i − x‖2) = weighted/soft nearest neighbor

For x, x̄ histograms with d bins:
• k(x, x̄) =

∑d
j=1 min(xj , x̄j) histogram intersection kernel

• k(x, x̄) =
∑d

j=1
xj x̄j

xj+x̄j
χ2 kernel

• k(x, x̄) = exp
(
− λ

∑d
j=1

(xj−x̄j)2

xj+x̄j

)
exponentiated χ2 kernel

Generally: interpret kernel function as a similarly measure.
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Constructing Kernels

Checking if a given function k : X × X → R is a kernel can be hard.
• k(x, x̄) = tanh(1 + 〈x, x̄〉) ?
• k(x, x̄) = exp( − edit distance between two strings x and x̄ ) ?
• k(x, x̄) = 1− ‖x − x̄‖2 ?

Easier: construct functions that are garanteed to be kernels:

Construct explicitly:
• any φ : X → Rm induces a kernel k(x, x̄) = 〈φ(x), φ(x̄)〉.

in particular any f : X → R, k(x, x̄) = f (x)f (x̄)

Construction from other kernels:
• If k is a kernel and α ∈ R+, then k + α and αk are kernels.

• if k1, k2 are kernels, then k1 + k2 and k1 · k2 are kernels.

• if k is a kernel, then exp(k) is a kernel.
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Optimizing the SVM Dual (kernelized)

How to solve the QP

max
α1,...,αn∈R

−1
2

n∑
i,j=1

αiαjyiyjk(x i , x j) +
n∑

i=1
αi

subject to
∑

i
αiyi = 0 and 0 ≤ αi ≤ C , for i = 1, . . . ,n.

Observations:
• Kernel matrix K (with entries kij = k(x i , x j)) might be too big to

fit into memory.

• In the optimum, many of the αi are 0 and do not contribute.
If we knew which ones, we would save a lot of work
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Optimizing the SVM Dual (kernelized)

Working set training [Osuna 1997]

1: S = ∅
2: repeat
3: α← solve QP with variables αi for i ∈ S and αi = 0 for i 6∈ S
4: for i = 1 . . . ,n do
5: if if i ∈ S and αi = 0 then remove i from S
6: if if i 6∈ S and αi not optimal then add i to S
7: end for
8: until convergence

Advantages:
• objective value increases monotonously
• converges to global optimum

Disadvantages:
• each step is computationally costly, since S can become large
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Sequential Minimal Optimization (SMO) [Platt 1998]

1: α← 0
2: repeat
3: pick index i such that αi is not optimal
4: pick index j 6= i arbitrarily (usually based on some heuristic)
5: αi , αj ← solve QP for αi , αj and all other αk fixed
6: until convergence

Advantages:
• convergences monotonously to global optimum
• each step optimizes a subproblem of smallest possible size:
2 unknowns (1 doesn’t work because of constraint

∑
i αiyi = 0)

• subproblems have a closed-form solution
• we can get away without storing complete kernel matrix

Disadvantages:
• many iterations are required
• many kernel values k(x i , x j) are computed more than once

(unless K is stored as matrix)
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SVMs Without Bias Term

For optimization, the bias term is an annoyance
• In primal optimization, it often requires a different stepsize.
• In dual optimization, sometimes not straight-forward to recover.
• It couples the dual variables by an equality constraint:

∑
i αiyi = 0.

We can get rid of the bias by the augmentation trick.

Original:
• f (x) = 〈w, x〉Rd + b, with w ∈ Rd , b ∈ R.

New augmented:
• linear: f (x) = 〈w̃, x̃〉Rd+1 , with w̃ = (w, b), x̃ = (x, 1).

• generalized: f (x) = 〈w̃, φ̃(x)〉H̃ with w̃ = (w, b), φ̃(x) = (φ(x), 1).

• kernelize: k̃(x, x̄) = 〈φ̃(x), φ̃(x̄)〉H̃ = k(x, x̄) + 1.
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SVMs Without Bias Term – Optimization

SVM without bias term – primal optimization problem

min
w∈Rd ,ξ∈Rn

1
2‖w‖

2 + C
n∑

i=1
ξi

subject to, for i = 1, . . . ,n,

yi〈w, x i〉 ≥ 1− ξi , and ξi ≥ 0.

Difference: no b variable to optimize over

SVM without bias term – dual optimization problem

max
α

−1
2
∑
i,j
αiαjyiyj k(x i , x j) +

∑
i
αi

subject to, 0 ≤ αi ≤ C , for i = 1, . . . ,n.

Difference: no constraint
∑

i yiαi = 0.
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Linear SVM Optimization in the Dual

Stochastic Coordinate Dual Ascent

α← 0.
for t = 1, . . . ,T do

i ← random index (uniformly random or in epochs)
solve QP w.r.t. αi with all αj for j 6= i fixed.

end for
return α

Properties:
• converges monotonically to global optimum
• each subproblem has smallest possible size: 1-dimensional

Open Problem:
• how to make each step efficient?
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SVM Optimization in the Dual

What’s the complexity of the update step? Derive an explicit expression:
Original problem: maxα∈[0,C ]n −1

2
∑

i,j αiαjyiyj k(x i , x j) +
∑

i αi

When all αj except αi are fixed: maxαi∈[0,C ] F(αi), with

F(αi) = −1
2α

2
i k(x i , x i) + αi

(
1− yi ∑

j 6=i
αjyj k(x i , x j)

)
+ const.

∂

∂αi
F(αi) = −αik(x i , x i) +

(
1− yi ∑

j 6=i
αjyj k(x i , x j)

)
+ const.

αopt
i = αi +

1− yi ∑n
j=1 αjyj k(x i , x j)
k(x i , x i) , αi =


0 if αopt

i < 0,
C if αopt

i > C ,
αopt

i otherwise.

(except if k(x i , x i) = 0, but then k(x i , x j) = 0, so αi has no influence)

Observation: each update has complexity O(n) kernel evaluations
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(Generalized) Linear SVM Optimization in the Dual

Let k(x, x̄) = 〈φ(x), φ(x̄)〉Rd for explicitly known φ : X → Rd .

αopt
i = αi +

1− yi ∑
j αjyj k(x i , x j)

k(x i , x i) ,

remember w =
∑

j αjyjφ(x j)

= αi + 1− yi〈w, φ(x i)〉
‖φ(x i)‖2 ,

• each update takes O(d), independent of n
I 〈w, φ(x i)〉 takes at most O(d) for explicit w ∈ Rd , φ(x i) ∈ Rd

I we must also take care that w remains up to date (also at most O(d))
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(Generalized) Linear SVM Optimization in the Dual

SCDA for (Generalized) Linear SVMs [Hsieh, 2008]

initialize α← 0, w ← 0
for t = 1, . . . ,T do

i ← random index (uniformly random or in epochs)
δ ← 1−yi〈w,φ(xi)〉

‖φ(xi)‖2

αi ←


0, if αi + δ < 0,
C , if αi + δ > C ,
αi + δ, otherwise.

w ← w + δyiφ(x i)
end for
return α, w

Properties:
• converges monotonically to global optimum
• complexity of each step is independent of n
• resembles stochastic gradient method, but automatic step size
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Practical Interlude:
Doing Machine Learning Experiments
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You’ve trained a new predictor, g : X → Y, and you want to tell the
world how good it is. How to measure this?

Reminder:
• The average loss on the training set, 1

|Dtrn |
∑

(x,y)∈Dtrn `(y, g(x))
tells us (almost) nothing about the future loss.
Reporting it would be misleading as best.
• The relevant quantity is the expected risk,

R(g) = E(x,y)∼p(x,y) `(y, g(x))

which unfornately we cannot compute, since p(x, y) is unknown.
• If we have data Dtst

i.i.d.∼ p(x, y), we have,
1
|Dtst |

∑
(x,y)∈Dtst

`(y, g(x)) |Dtst |→∞−→ E(x,y)∼p(x,y) `(y, g(x))

• Problem: samples `(y, g(x)) must be independent, otherwise law of
large numbers doesn’t hold.
• Make sure that g is independent of Dtst .
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Classifier Training (idealized)

input training data Dtrn
input learning procedure A

g ← A[D] (apply A with D as training set)
output resulting classifier g : X → Y

Classifier Evaluation

input trained classifier g : X → Y
input test data Dtst
apply g to Dtst and measure performance Rtst

output performance estimate Rtst

Remark: In commercial applications, this is realistic:
• given some training set one builds a single system,
• one deploys it to the customers,
• the customers use it on their own data, and complain if disappointed

In research, one typically has no customer, but only a fixed amount of
data to work with, so one simulates the above protocol.
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Classifier Training and Evaluation

input data D
input learning method A
split D = Dtrn ∪̇ Dtst disjointly
set aside Dtst to a safe place // do not look at it
g ← A[Dtrn ] // learn a predictor from Dtrn
apply g to Dtst and measure performance Rtst

output performance estimate Rtst

Remark. Dtst should be as small as possible, to keep Dtrn as big as
possible, but large enough to be convincing.

• sometimes: 50%/50% for small datasets
• more often: 80% training data, 20% test data
• for large datasets: 90% training, 10% test data.
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Significance of Results

How to tell if reported differences are due to chance?

Accuracy on a Single Dataset
• two-sample significance tests
• paired significance tests

Multiple Datasets
• non-parametric paired significance tests

23 / 27



Significance of Results

How to tell if reported differences are due to chance?

Accuracy on a Single Dataset
• two-sample significance tests
• paired significance tests

Multiple Datasets
• non-parametric paired significance tests

23 / 27



Test on a Single Dataset

Two classifiers are evaluated on the same test set.
• classifier 1 has error rate e1 ∈ [0, 1]
• classifier 2 has error rate e2 ∈ [0, 1]

Are these significantly different, or due to chance?

Impossible to tell, unless we know how many test samples!

How many examples do you guess? Okay, that’s a start...
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Error bars

• true error rate of classifier f is p ∈ [0, 1] → Bernoulli
• estimate from m test samples: p̂ = 1

m
∑

iJf (xi) 6= yiK
• variance of estimate from m test samples: V = 1

m p̂(1− p̂)
• report mean ± standard error of the mean: p̂ ±

√
p̂(1−p̂)

m

Not particularly convincing... but also not a proper test.
Could be formalized to...
Two-sample test
We observe two sets of samples S1,S2 (the losses of each method). Are
both sampled from the same underlying distribution?

...but ignores that that we evalute two systems on the same test set.
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Paired test
For a sequence of experiments we always observe two sets of outcomes
A,B. Are the differences between them due to chance?

2× 2 contingency table:
g is right g is wrong

f is right a b
f is wrong c d

binomial test: ignore a and d, analyze b and c.
• null hypothesis: f and g are equally good. we’d expect b ≈ c
• probability of seeing (b, c) split or more extreme in b + c differences:

p-value = 2 1
2b+c

min(b,c)∑
i=0

(
b + c

i

)

• scipy.stats.binom_test( min(b,c), n=b+c, p=0.5 )

Example:
891 0

4 5
887 5

9 0
8910 0

45 45
8865 45

90 0
p ≈ 0.25 p ≈ 0.85 p ≈ 10−13 p ≈ 0.0003
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Caveats

Remark: Dtst and Dtrn must be truly independent
• No overlapping data between Dtrn and Dtst

• No hidden dependence (e.g. time series, same patient/animals, . . . )

• Do not use Dtst for anything except the very last step.

• Do not look at Dtst! Even if the learning algorithm doesn’t see it,
you looking at it can and will influence your model design or
parameter selection (human overfitting).

• In particular, this applies to datasets that come with predefined set
of test data, such as MNIST, PASCAL VOC, ImageNet, etc.

In practice we often want more: not just evaluate classifiers, but
• select the best algorithm or parameters amongst multiple ones

We simulate the classifier evaluation step during the training procedure.
This needs (at least) one additional data split:
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