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Classifier Training and Evaluation

input data D
input learning method A
split D = Dy, U Dy disjointly
set aside Dy to a safe place // do not look at it
g < A[Dyy) // learn a predictor from Dy,
apply g to D;s and measure performance Ry
output performance estimate Ry

In practice we often want more: not just train a classifier and evaluate it,
but

select the best algorithm out of multiple ones,

select the best (hyper)parameters for a training algorithm.

We simulate the classifier evaluation step during the training procedure.
This needs (at least) one additional data split:
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Training and Selecting between Multiple Models

input data D
input set of method A = {A;,..., Ax}
split D = Dyyppar U Dy disjointly
set aside Dy to a safe place (do not look at it)

split Dyrnval = Dirn U Dy disjointly
for all models A; € A do
gi < Az[Dtrn]
apply g; to D,q and measure performance E,,(A;)
end for
pick best performing A;

(optional) g; < A;[Dymwa] // retrain on larger dataset
apply g; to Dys; and measure performance Ry
output performance estimate Ry

How to split? For example 1/3 : 1/3: 1/3 or 70% : 10% : 20%.
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Discussion.

Each algorithm is trained on Dy, and evaluated on disjoint D, v

You select a predictor based on E,,; (its performance on D,,;), only
afterwards Dyg; is used. v

Dyst is used to evaluate the final predictor and nothing else. v
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Discussion.

Each algorithm is trained on Dy, and evaluated on disjoint D, v

You select a predictor based on E,,; (its performance on D,,;), only

afterwards Dyg; is used. v

Dyst is used to evaluate the final predictor and nothing else. v
Problems.

small D, is bad: E,q; could be bad estimate of g4's true

performance, and we might pick a suboptimal method.

large Dyq is bad: Dy, is much smaller than Dy,ppq1, SO the classifier
learned on Dy, might be much worse than necessary.

retraining the best model on Dy,.,ye; Might overcome that, but it
comes at a risk: just because a model worked well when trained on
Dy, this does not mean it'll also work well when trained on Dyppal-
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Leave-one-out Evaluation (for a single model/algorithm)

input algorithm A
input loss function ¢
input data D (trnval part only: test part set aside earlier)
for all (7%, y%) € D do
gt A D\{(z%,y")}] // Dirn is D with i-th example removed
e Ay, g7 () /] Dyat = {(&, )}, disjoint to Dy
end for
output Ry, = % ", 7t (average leave-one-out risk)

Properties.
Each 7% is a unbiased (but noisy) estimate of the risk R(g™%)

D\ {(z%,y")} is almost the same as D, so we can hope that each
g is almost the same as g = A[D].

Therefore, Rj,, can be expected a good estimate of R(g)

Problem: slow, trains n times on n — 1 examples instead of once on n
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Compromise: use fixed number of small D,

K-fold Cross Validation (CV)

input algorithm A, loss function ¢, data D (trnval part)
split D = Uszle into K equal sized disjoint parts
fork=1,...,K do
g+ A[D\ Dy]
,’,,Ic <~ |D_1k| E(z,y)eDk e(:‘ﬂ» gﬂk(x))
end for

output Rx.cv = % 2321 rk

(K-fold cross-validation risk)

Observation.
for K = |D| same as leave-one-out error.
approximately k times increase in runtime.

most common: k = 10 or k = 5.

Problem: training sets overlap, so the error estimates are correlated.
Exception: K =2
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5 x 2 Cross Validation (5 x 2-CV)

input algorithm A, loss function /¢, data D (trnval part)
fork=1,...,5do
Sp“t 1)2222)1[J1)2
g1 < A[D4],
rf < evaluate g; on Dy
g2 < A[Do],

ré“ < evaluate g5 on D;

rk %(r,% + r,%)
end for
output Esyo =137 1t

Observation.
5 x 2-CV is really the average of 5 runs of 2-fold CV
very easy to implement: shuffle the data and split into halfs
within each run the training sets are disjoint and the classifiers g;
and g9 are independent

Problem: training sets are smaller than in 5- or 10-fold CV.
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Unbalanced Classes

If classes are unbalanced accuracy might not tell us much:
p(y=—1)=0.99, p(y = +1) = 0.01 — "always no" is 99% correct

there might not be a better non-constant classifier

Two solutions:
balancing
» use only subset of the majority class to balance data (5:1, or 1:1)
reweighting
» multiple loss in optimization with class-dependent constant C,,

1 . 1 g
Dy Z é(yi,f(xi))‘Fm Z €y, f(@:)) + QF)
+ (Ii,yi)E'D+ - (If,yi)E'D,

treat as a retrieval problem
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Classifiers for Information Retrieval Tasks

Some classification tasks are really rather retrieval tasks, e.g.

database lookup: is an entry z relevant (y = 1) or not (y = —1)7?
A typical property:

prediction is performed on a fixed database

we have access to all elements of the test set at the same time

positives (y = 1) are important, negative (y = —1) are a nuisanse

we don't need all decisions, a few correct positives is enough

For a classifier g(x) = sign f(z) with f(z) : X — R (e.g., f(z) = (w, z)),
we interpret f(z) as its confidence.

To produce K positive we return the test samples of highest confidence.

Equivalently, we decide by gg(z) = sign(f(z) — @), for the right 6.
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Other Ways to Evaluate Classifiers

Retrieval quality is often measure in terms of precision and recall:

Definition (Precision, Recall, F-Score)

For Y = {£1}, let g: X — Y a decision function and
D ={(z},y'),...,(z",y™)} C X x Y be a database.

Then we define

number of test samples with g(z7) =1 and v/ = 1

ecisio = :
precision(g) number of test samples with g(z’) = 1
number of test samples with g(27) =1 and ¢/ = 1
recall(g) = S
number of test samples with i’ = 1
F-score(g) = precision(g) - recall(g)

precision(g) + recall(g)
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For different thresholds, 8, we obtain different precision and recall values.

They are summarized by a precision-recall curve:
1

0.8

0.6

0.4

precision

0.2

0 0.2 0.4 0.6 0.8 1
recall
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For different thresholds, 8, we obtain different precision and recall values.

They are summarized by a precision-recall curve:
1

0.8

0.6

precision

0.4 0.6
recall

If pressured, summarize into one number: average precision.

Curve/value depends on class ratio: higher values for more positives
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A similar role in different context:

Receiver Operating Characteristic (ROC) Curve

true-positive-rate(g) =

false-positive-rate(g) =

true positive rate

number of samples with g(27) =1 and 3/ =1

number of samples with y/ = 1

0.8¢

0.6

0.4

0.2

number of samples with g(27) = 1 and ¢/ = —1
number of samples with y/ = —1
0 0.2 0.4 0.6 0.8 1

false positive rate
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A similar role in different context:

Receiver Operating Characteristic (ROC) Curve

number of samples with g(x7) = 1 and 3/ = 1

true-positive-rate(g) = ;
7 (9) number of samples with i =1

number of samples with g(27) =1 and ¢/ = —1

false-positive-rate(g) = number of samples with y/ = —1

true positive rate

0.2 0.4 0.6 0.8
false positive rate

Summarize into: area under ROC curve (AUC). 12 a3



A similar role in different context:

Receiver Operating Characteristic (ROC) Curve

number of samples with g(27) =1 and 3 =1

true-positive-rate(g) = -
7 (9) number of samples with ¢/ =1

- number of samples with g(z’) =1 and y/ = —1
false-positive-rate(g) = ) :
number of samples with ¢/ = —1
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Random classifier: AUC = 0.5, regardless of class proportions. 1233



Significance Using Multiple Datasets

Standard procedure in Machine Learning research:
develop a new method
compare it to results of previous methods on standard benchmarks

| [ HCRF | Our |

SIFT-flow 31.22% | 27.73%
MSRC-21 78.89% | 8L11%
VOC 2008 | 20.13 % | 30.12%
VOC 2009 | 42,43 % | 43.37%
VOC 2010 | 30.13 % | 32.14%

Are the differences just due to chance?
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Significance Using Multiple Datasets

Standard procedure in Machine Learning research:
develop a new method
compare it to results of previous methods on standard benchmarks

| [ HCRF | Our |

SIFT-flow 31.22% | 27.73%
MSRC-21 78.89% | 8L11%
VOC 2008 | 20.13 % | 30.12%
VOC 2009 | 42,43 % | 43.37%
VOC 2010 | 30.13 % | 32.14%

Are the differences just due to chance?

Idea 1: mean/std.err.: 40.6 +20.4 vs. 42.9 +19.8
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Significance Using Multiple Datasets

Standard procedure in Machine Learning research:
develop a new method
compare it to results of previous methods on standard benchmarks

| [ HCRF | Our |
SIFT-flow | 31.22% | 27.73% | | "HCRF" method is better | 1
MSRC-21 | 78.89% | 8L.11% | | "Our" method is better

VOC 2009 | 42,43 % | 43.37%
VOC 2010 | 30.13 % | 32.14%

Are the differences just due to chance?

Idea 1: mean/std.err.: 40.6 +20.4 vs. 42.9 +19.8

Idea 2: sign test (like binomial before): binom_test(1,5)=0.375
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Significance Using Multiple Datasets

Standard procedure in Machine Learning research:

develop a new method
compare it to results of previous methods on standard benchmarks

| [ HCRF | Our |
SIFT-flow | 31.22% | 27.73% | [ "HCRF" method is better | 1
MSRC-21 | 78.89% | 8L.11% | | "Our" method is better
VOC 2008 | 2013 % | 30.12% | [both methods are equal | 0

VOC 2009 | 42,43 % | 43.37%
VOC 2010 | 30.13 % | 32.14%

Are the differences just due to chance?

Idea 1: mean/std.err.: 40.6 +20.4 vs. 42.9 +19.8
Idea 2: sign test (like binomial before): binom_test(1,5)=0.375

Idea 3: take differences into account, not just the sign
» Hy: differences have a symmetric distribution around zero
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Wilcoxon signed rank test

Given: real values ay,...,a, and by,..., b,
drop all cases with a; = b;, call the remaining number of pairs &
compute d; = |a; — b;| and s; = sign(a; — b;)
sort elements from smallest to larges d;
compute rank, R;, of each ¢;, ties get average of covered ranks

compute statistics (sum of signed ranks)

compare value to table, Weyiticar,x (large k: Gaussian approximation)

"HCRF" vs. "Our" example (5 datasets):
A = [31.22,78.89,20.13, 42.43, 30.13]
B = [27.73,81.11, 30.12, 43.37, 32.14]
scipy.stats.wilcoxon( A, B ) = 0.35
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Wilcoxon signed rank test

Given: real values aq,...,a, and by, ..., by,
| Classification rate (%)
Class Name Number of samples
D (training) Proposed Proposed
method  |method with CA
1 10K (FT) 900 (100) 99.00 99.50
2 10K (FB) 900 (100) 98.25 100.00
3 10K (BT) 900 (100) 98.25 99.88
4 10K (BB) 900 (100) 97.88 99.75
5 5K (FT) 900 (100) 94.00 100.00
6 | S5K(FB) 900 (100) 98.38 99.75
7 | 5K (BT) 900 (100) 94.25 97.00
8 5K (BB) 900 (100) 97.00 98.25
9 1K (FT) 900 (100) 95.13 99.63
10 | 1K (FB) 900 (100) 93.75 99.75
11 [ 1IK(BT) 900 (100) 94.13 99.00
12 | 1IK(BB) 900 (100) 95.75 98.75

mean/std.err.: 96.5 + 1.84, mean 2: 99.27 £ 0.86
sign test: +:12 =:0 —:0, binom_test(0,12)=0.0005
signed rank test: wilcoxon(A,B)=0.0022
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Beyond Binary Classification
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Multiclass Classification — One-versus-rest reduction

Classification problems with )M classes:
Training samples {zy,...,z,} C X,
Training labels {y1,...,yn} C {1,..., M},
Task: learn a prediction function f: X — {1,..., M}.
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Multiclass Classification — One-versus-rest reduction

Classification problems with )M classes:
Training samples {zy,...,z,} C X,
Training labels {y1,...,yn} C {1,..., M},
Task: learn a prediction function f: X — {1,..., M}.

One-versus-rest construction:

train one binary classifier g. : X — R for each class c:

» all samples with class label ¢ are positive examples
> all other samples are negative examples

classify by finding maximal response

f(z) = argmax g.(z)
c=1,....M

Advantage: easy to implement, parallel, works well in practice

Disadvantage: with many classes, training sets become unbalanced.

no explicit calibration of scores between different ¢,
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Multiclass Classification — All-versus-all reduction

Classification problems with )M classes:

Training samples {x1,...,z,} C X,
Training labels {y1,...,yn} C {1,..., M},
Task: learn a prediction function f: X — {1,..., M}.
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Multiclass Classification — All-versus-all reduction

Classification problems with )M classes:

Training samples {x1,...,z,} C X,
Training labels {y1,...,yn} C {1,..., M},
Task: learn a prediction function f: X — {1,..., M}.

All-versus-all construction:
train one classifier, g; : X — R, for each pair of classes
1<i<j<M,in total ™=
classify by voting
f(z) =argmax #{iec {1,...,M}: gy i(z) > 0},

m=1,...,

prediction functions

(writing gj; = —g;; for > ¢ and g; ; = 0)

Advantage: small and balanced training problems, parallel, works well.

Disadvantage: number of classifiers grows quadratically in classes.
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Multiclass Classification — Hierarchical

Classification problems with M classes:
Training samples {z1,...,z,} C X,
Training labels {y1,...,yn} C {1,..., M},
Task: learn a prediction function f: X — {1,..., M}.

Hierarchical (tree) construction: <D o

construct binary tree with

classes at leafs OO

learn one classifier for each

decision e e e ° e e e

Advantage: at most [log, M| classifier evaluation at test time

Disadvantage: not parallel, not robust to mistakes at any stage
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Multiclass Classification — Error Correcting Output Codes

Classification problems with M classes:
Training samples {1,...,z,} C X,
Training labels {y1,...,yn} C {1,..., M},
Task: learn a prediction function f: X — {1,..., M}.

Define a binary codeword for each

class G G Gs Gs G5 G5 Gr Gs

e [ 1 |mmmm
one(I:aSS| ier for cc.> eword entry HE | [HE | |
classify by comparing Cs D..DD..D

(] [m] [m] |

C

A%

predictions to code words
(exact or in some norm)

Advantage: parallel, trade off between speed and robustness

Disadvantage: optimal code design NP-hard
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A Multiclass Support Vector Machines

X anything, Y ={1,2,..., M},
feature map ¢ : X — H (explicit or implicit via kernel)

training data {(xlv y1)7 R (xna yn)}
goal: learn functions g;(z) = (w;, ¢(x)) for i =1,..., M.

Enforce a margin between the correct and highest-ranked incorrect label:
M n
] 1 5 C ;
minge o Y fupl? + = ¢
23 )

subject to, for i =1,...,n,

(wyi, $(a')) > 1+ (wg, p(x)) — &, for all k # .

Prediction:  f(z) = argmax (wy, ¢(z))
k=1,...,M

Crammer-Singer Multiclass SVM
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A Multiclass Support Vector Machines

Many different option for multi-class SVMs:

One-versus-Rest
One-versus-One
ECOC

Crammer-Singer

Which one is the best?
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A Multiclass Support Vector Machines

Many different option for multi-class SVMs:

One-versus-Rest
One-versus-One
ECOC

Crammer-Singer

Which one is the best?

None (or all of them)!
there's dozens of studies, they all disagree
use whatever is available

to implement yourself, One-versus-Rest is most popular, since it's
simplest
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More Kernel-Methods

Kernels are useful for many other things besides SVMs:

Any algorithm that uses the data only in form
of inner products can be kernelized.

How to kernelize an algorithm:
Write the algorithms in terms of only inner products.

Replace all inner products by kernel function evaluations.

The resulting algorithm will do the same as the linear version, but in the
(hidden) feature space H.

Caveat: working in H is not a guarantee for better performance.

A good choice of k£ and model-selection are important!
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Linear Regression

Given samples z; € R and function values y; € R. Find a linear function
f(z) = (w, ) that approximates the values.

Interpolation error: 3 °*
[ N ]
[ ]
e = (yi — (w, z;))? ’ vo
1 o®
Solve for A > 0: o
minweanei‘i‘)\HwHQ R R BT B
i
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Linear Regression

Given samples z; € R and function values y; € R. Find a linear function
f(z) = (w, ) that approximates the values.

Interpolation error: 3
o 2 2
e = (yi — (w, 7))
1 o,
Solve for A > 0: °
mincgn Z e; + Aljwl|® ST
i

Very popular, because it has a closed form solution!
w=X\,+X"X)y

with I, is the n x n identity matrix, X = (x1,...,2,)" is the data
matrix, ¥ = (y1,...,¥yn) | is the target vector.
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Linear Regression

Given samples z; € R and function values y; € R. Find a linear function
f(z) = (w, ) that approximates the values.

Interpolation error:

€; .

Solve for A > 0:

(yi — (w, 7))

3

2 2

1

0

mincgn Z e+ )\H’WHQ o1 2 3 4 5
v What about non-linear?

Very popular, because it has a closed form solution!
w=X\,+X"X)y

with I, is the n x n identity matrix, X = (x1,...,2,)" is the data

matrix, ¥ = (y1,...,¥yn) | is the target vector.
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Nonlinear Regression

Given ; € X, y; R, i=1,...,n,and ¢ : X — H. Find an appro-

ximating function f(z) = (w, ¢(z))y (non-linear in z, linear in w).
Interpolation error:
3 o*°
2 [ ]
ei := (yi = (w, 9(2:))) 2 o
[ ]
[ ]
Solve for A > 0: 1 ....
min ,cprn Z ei + A|w||? oleee®q®®®
P 01 2 35 4 5 6
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Nonlinear Regression

Given ; € X, y; R, i=1,...,n,and ¢ : X — H. Find an appro-
ximating function f(z) = (w, ¢(z))y (non-linear in z, linear in w).

Interpolation error:

e = (yi — (w, d(z:))3)” 2

Solve for A > 0: 1
min,ern Y €; + Aljw|]?
i

o

Closed form solution is still valid:
w=®\, + 0 D)1y

with I,, is the n x n identity matrix, ® = (¢(z1),...,¢(z,))".
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Example: Kernel Ridge Regression

What if H and ¢ : X — H are given implicitly by kernel function?

We cannot store the closed form solution vector w € H:
w=®\, + 0 D)1y
but we can still calculate f: X — R:

f(z) = (w, ¢(z))

= (@A, +272) "y, 6(2)
=K
=y (M, + K) 7 (2)

where k(z) = (k(xl, z), ..., k(a:n,x))T.

| Kernel Ridge Regression
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Nonlinear Regression

Like Least-Squared Regression, (Kernel) Ridge Regression is sensitive to

outliers:

because the quadratic loss function penalized large residue.
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Nonlinear Regression

Support Vector Regression with e-insensitive loss is more robust:

3 3
2 2
1 1
r r
0 0 ‘ >
. i
-3 —2 -1 0 1 2 _> -3 -2 -1 0 1 2
3r 3t
2 2 °
1 1
of o .
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Support Vector Regression

Optimization problem similar to support vector machine:

n
min ey, Jw]|*+ C> (& + &)
&1,,En€ERT, i=1

subject to

yi — (w,0(xz)) <e+ &, fori=1,...,n,
(w, ¢(x:)) — yi < e+ &, fori=1,....,n

Dualization (or the "Representer Theorem") tell us that w = 3, a;d(z;).
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Support Vector Regression

Optimization problem similar to support vector machine:

n n
minal,...,anER, Z aiaj<¢(xi)7 ¢($])> +C Z(gl + g;)
517"'7£TL€R+7 7:7]:1 i=1
e ln ERT

subject to

vi— >, ai(d(), d(w)) Sc+ &, fori=1,...m,
Zj aj(p(zj), o)) — yi < €+ &, fori=1,...,n.

Rewrite in terms of kernel evaluations k(z,z") = (¢(z), d(2')).
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Support Vector Regression

Optimization problem similar to support vector machine:

n n
ming, . a.cr, O @ijk(zi, z) + CY (& +&))
£1,.,6n€RT, =1 i=1
éivv&;be]RJr

subject to

yi_zjajk($ja$i)§€+€i, fori=1,...,n,
D cik(z, ) —y et &, fori=1,....n.

Regression function

F(@) = (w,6(2)) = 3, ajk(a, 2
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Example — Head Pose Estimation

Detect faces in image
Compute gradient representation of face region
Train support vector regression for yaw, tilt ( separately)

(a) Sample frames of a test sequence

100} s £ g

& oy I AN v N
/\/\JA 4 \JW

€0 “t
w0
2

T R e e e e b oW ® ®m & wow no® » W

frame ame
(b) Yaw estimation (c) Tilt estimation

[Li, Gong, Sherra, Liddell, "Support vector machine based multi-view face detection and recognition", IVC 2004]
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Outlier/Anomaly Detection in R¢

For unlabeled data, we are interested to detect outliers, i.e. samples that
lie far away from most of the other samples.

For samples i, ..., z, find the smallest ball (center ¢, radius R)
that contains “most” of the samples.
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Outlier/Anomaly Detection in R¢

For unlabeled data, we are interested to detect outliers, i.e. samples that
lie far away from most of the other samples.

For samples 1, ..., z, find the smallest ball (center ¢, radius R)
that contains “most” of the samples.

Solve

1
. 2
mlnRER,CERnyfiERJFR + on Z &i
i

subject to
||z — CH2 §R2+§i fori=1,...,n.

v € (0,1) upper bounds the number of “outliers”.
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Outlier/Anomaly Detection in Arbirary Inputs

Use a kernel k£ : X x X — R with an implicit feature map ¢ : X — H.
Do outlier detection for ¢(x1), ..., ¢(x,):

Find the small ball (center ¢ € #, radius R) that contains “most” of
the samples:

Solve

1
. 2
mlnRER,CGH,£i€R+R + n Z 3
i

subject to
|p(z;) — c||* <R*+ & fori=1,...,n.

Representer theorem: ¢ = 3", a;¢(z;), and everything can be
written using only k(z;, z;).

Support Vector Data Description
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Example — Steganalysis

Steganography: hide data in other data (e.g. in images)
» e.g.: flip some least significant bits

Steganalysis: given any data, find out if data is hidden

original with 23300 hidden bits
compute image statistics (color wavelet coefficients)
train SVDD with RBF-kernel
identified outlier images are suspicious candidates

[Lyu, Farid. "Steganalysis using color wavelet statistics and one-class support vector machines", SPIE El, 2004]
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