Statistical Machine Learning

Christoph Lampert

IST AUSTRIA

Spring Semester 2015/2016 // Lecture 6

Classifier Training and Evaluation

 $\begin{array}{ll} \text{input data } \mathcal{D} \\ \text{input learning method } A \\ \text{split } \mathcal{D} = \mathcal{D}_{trn} \stackrel{.}{\cup} \mathcal{D}_{tst} \text{ disjointly} \\ \text{set aside } \mathcal{D}_{tst} \text{ to a safe place} & // \text{ do not look at it} \\ g \leftarrow A[\mathcal{D}_{trn}] & // \text{ learn a predictor from } \mathcal{D}_{trn} \\ \text{apply } g \text{ to } \mathcal{D}_{tst} \text{ and measure performance } R_{tst} \\ \\ \text{output performance estimate } R_{tst} \end{array}$

In practice we often want more: not just train a classifier and evaluate it, but

- select the best algorithm out of multiple ones,
- select the best (hyper)parameters for a training algorithm.

We simulate the classifier evaluation step during the training procedure. This needs (at least) one additional data split:

Training and Selecting between Multiple Models

input data \mathcal{D} **input** set of method $\mathcal{A} = \{A_1, \ldots, A_K\}$ split $\mathcal{D} = \mathcal{D}_{traval} \cup \mathcal{D}_{tst}$ disjointly set aside \mathcal{D}_{tst} to a safe place (do not look at it) split $\mathcal{D}_{trnval} = \mathcal{D}_{trn} \cup \mathcal{D}_{val}$ disjointly for all models $A_i \in \mathcal{A}$ do $q_i \leftarrow A_i[\mathcal{D}_{trn}]$ apply g_i to \mathcal{D}_{val} and measure performance $E_{val}(A_i)$ end for pick best performing A_i (optional) $q_i \leftarrow A_i[\mathcal{D}_{trnval}]$ // retrain on larger dataset apply q_i to \mathcal{D}_{tst} and measure performance R_{tst} **output** performance estimate R_{tst}

How to split? For example 1/3 : 1/3 : 1/3 or 70% : 10% : 20%.

Discussion.

- Each algorithm is trained on \mathcal{D}_{trn} and evaluated on disjoint \mathcal{D}_{val} 🗸
- You select a predictor based on E_{val} (its performance on \mathcal{D}_{val}), only afterwards \mathcal{D}_{tst} is used. \checkmark
- \mathcal{D}_{tst} is used to evaluate the final predictor and nothing else. \checkmark

Discussion.

- Each algorithm is trained on \mathcal{D}_{trn} and evaluated on disjoint \mathcal{D}_{val} 🗸
- You select a predictor based on E_{val} (its performance on \mathcal{D}_{val}), only afterwards \mathcal{D}_{tst} is used. \checkmark
- \mathcal{D}_{tst} is used to evaluate the final predictor and nothing else. \checkmark

Problems.

- small \mathcal{D}_{val} is bad: E_{val} could be bad estimate of g_A 's true performance, and we might pick a suboptimal method.
- large \mathcal{D}_{val} is bad: \mathcal{D}_{trn} is much smaller than \mathcal{D}_{trnval} , so the classifier learned on \mathcal{D}_{trn} might be much worse than necessary.
- retraining the best model on \mathcal{D}_{trnval} might overcome that, but it comes at a risk: just because a model worked well when trained on \mathcal{D}_{trn} , this does not mean it'll also work well when trained on \mathcal{D}_{trnval} .

Leave-one-out Evaluation (for a single model/algorithm)

input algorithm A input loss function ℓ input data \mathcal{D} (trnval part only: test part set aside earlier) for all $(x^i, y^i) \in \mathcal{D}$ do $g^{\neg i} \leftarrow A[\mathcal{D} \setminus \{(x^i, y^i)\}] //\mathcal{D}_{trn}$ is \mathcal{D} with *i*-th example removed $r^i \leftarrow \ell(y^i, g^{\neg i}(x^i)) //\mathcal{D}_{val} = \{(x^i, y^i)\}$, disjoint to \mathcal{D}_{trn} end for output $R_{loo} = \frac{1}{n} \sum_{i=1}^{n} r^i$ (average leave-one-out risk)

Properties.

- Each r^i is a unbiased (but noisy) estimate of the risk $\mathcal{R}(g^{\neg i})$
- $\mathcal{D} \setminus \{(x^i, y^i)\}$ is almost the same as \mathcal{D} , so we can hope that each $g^{\neg i}$ is almost the same as $g = A[\mathcal{D}]$.
- Therefore, R_{loo} can be expected a good estimate of $\mathcal{R}(g)$

Problem: slow, trains n times on n-1 examples instead of once on n

Compromise: use fixed number of small \mathcal{D}_{val}

K-fold Cross Validation (CV)

input algorithm A, loss function ℓ , data \mathcal{D} (trnval part) split $\mathcal{D} = \bigcup_{k=1}^{K} \mathcal{D}_k$ into K equal sized disjoint parts for $k = 1, \dots, K$ do $g^{\neg k} \leftarrow A[\mathcal{D} \setminus \mathcal{D}_k]$ $r^k \leftarrow \frac{1}{|\mathcal{D}_k|} \sum_{(x,y) \in \mathcal{D}_k} \ell(y^i, g^{\neg k}(x))$ end for output $R_{K\text{-CV}} = \frac{1}{K} \sum_{k=1}^n r^k$ (K-fold cross-validation risk)

Observation.

- for $K = |\mathcal{D}|$ same as leave-one-out error.
- approximately k times increase in runtime.
- most common: k = 10 or k = 5.

Problem: training sets overlap, so the error estimates are correlated. Exception: K = 2

5×2 Cross Validation (5×2 -CV)

input algorithm A, loss function ℓ , data \mathcal{D} (trnval part) for k = 1, ..., 5 do Split $\mathcal{D} = \mathcal{D}_1 \dot{\cup} \mathcal{D}_2$ $g_1 \leftarrow A[\mathcal{D}_1],$ $r_1^k \leftarrow$ evaluate g_1 on \mathcal{D}_2 $g_2 \leftarrow A[\mathcal{D}_2],$ $r_2^k \leftarrow$ evaluate g_2 on \mathcal{D}_1 $r^k \leftarrow \frac{1}{2}(r_k^1 + r_k^2)$ end for output $E_{5 \times 2} = \frac{1}{5} \sum_{k=1}^5 r^k$

Observation.

- 5×2 -CV is really the average of 5 runs of 2-fold CV
- very easy to implement: shuffle the data and split into halfs
- within each run the training sets are disjoint and the classifiers g_1 and g_2 are independent

Problem: training sets are smaller than in 5- or 10-fold CV.

If classes are *unbalanced* accuracy might not tell us much:

- p(y=-1)=0.99, $p(y=+1)=0.01 \rightarrow$ "always no" is 99% correct
- there might not be a better non-constant classifier

Two solutions:

- balancing
 - ▶ use only subset of the majority class to balance data (5:1, or 1:1)
- reweighting
 - multiple loss in optimization with class-dependent constant C_{y_i} ,

$$\frac{1}{|\mathcal{D}_{+}|} \sum_{(x_{i}, y_{i}) \in \mathcal{D}_{+}}^{n} \ell(y_{i}, f(x_{i})) + \frac{1}{|\mathcal{D}_{-}|} \sum_{(x_{i}, y_{i}) \in \mathcal{D}_{-}}^{n} \ell(y_{i}, f(x_{i})) + \Omega(f)$$

• treat as a retrieval problem

Some classification tasks are really rather retrieval tasks, e.g.

• database lookup: is an entry x relevant (y = 1) or not (y = -1)?

A typical property:

- prediction is performed on a fixed database
- we have access to all elements of the test set at the same time
- positives (y = 1) are important, negative (y = -1) are a nuisanse
- we don't need all decisions, a few correct positives is enough

For a classifier $g(x) = \operatorname{sign} f(x)$ with $f(x) : \mathcal{X} \to \mathbb{R}$ (e.g., $f(x) = \langle w, x \rangle$), we interpret f(x) as its *confidence*.

To produce K positive we return the test samples of highest confidence. Equivalently, we decide by $g_{\theta}(x) = \operatorname{sign}(f(x) - \theta)$, for the right θ . Retrieval quality is often measure in terms of *precision* and *recall*:

Definition (Precision, Recall, F-Score)

For $\mathcal{Y} = \{\pm 1\}$, let $g : \mathcal{X} \to \mathcal{Y}$ a decision function and $\mathcal{D} = \{(x^1, y^1), \dots, (x^n, y^n)\} \subset \mathcal{X} \times \mathcal{Y}$ be a *database*.

Then we define

$$precision(g) = \frac{number of test samples with g(x^{j}) = 1 \text{ and } y^{j} = 1}{number of test samples with g(x^{j}) = 1}$$
$$recall(g) = \frac{number of test samples with g(x^{j}) = 1 \text{ and } y^{j} = 1}{number of test samples with y^{j} = 1}$$
$$F\text{-score}(g) = 2\frac{precision(g) \cdot recall(g)}{precision(g) + recall(g)}$$

For different thresholds, θ , we obtain different precision and recall values.

For different thresholds, θ , we obtain different precision and recall values.

- If pressured, summarize into one number: average precision.
- Curve/value depends on class ratio: higher values for more positives

A similar role in different context:

Receiver Operating Characteristic (ROC) Curve

$$\begin{aligned} & \textit{true-positive-rate}(g) = \frac{\textit{number of samples with } g(x^j) = 1 \textit{ and } y^j = 1 \\ & \textit{number of samples with } y^j = 1 \\ & \textit{false-positive-rate}(g) = \frac{\textit{number of samples with } g(x^j) = 1 \textit{ and } y^j = -1 \\ & \textit{number of samples with } y^j = -1 \end{aligned}$$

A similar role in different context:

Receiver Operating Characteristic (ROC) Curve

$$true-positive-rate(g) = \frac{number of samples with g(x^{j}) = 1 \text{ and } y^{j} = 1}{number of samples with y^{j} = 1}$$
$$false-positive-rate(g) = \frac{number of samples with g(x^{j}) = 1 \text{ and } y^{j} = -1}{number of samples with y^{j} = -1}$$

Summarize into: area under ROC curve (AUC).

A similar role in different context:

Receiver Operating Characteristic (ROC) Curve

$$true-positive-rate(g) = \frac{number of samples with g(x^{j}) = 1 \text{ and } y^{j} = 1}{number of samples with y^{j} = 1}$$
$$false-positive-rate(g) = \frac{number of samples with g(x^{j}) = 1 \text{ and } y^{j} = -1}{number of samples with y^{j} = -1}$$

Random classifier: AUC = 0.5, regardless of class proportions.

Standard procedure in Machine Learning research:

- develop a new method
- compare it to results of previous methods on standard benchmarks

	HCRF	Our
SIFT-flow	31.22%	27.73%
MSRC-21	78.89%	81.11%
VOC 2008	20.13 %	30.12%
VOC 2009	42.43 %	43.37%
VOC 2010	30.13 %	32.14%

Are the differences just due to chance?

Standard procedure in Machine Learning research:

- develop a new method
- compare it to results of previous methods on standard benchmarks

	HCRF	Our
SIFT-flow	31.22%	27.73%
MSRC-21	78.89%	81.11%
VOC 2008	20.13 %	30.12%
VOC 2009	42.43 %	43.37%
VOC 2010	30.13 %	32.14%

Are the differences just due to chance?

• Idea 1: mean/std.err.: 40.6 ± 20.4 vs. 42.9 ± 19.8

Standard procedure in Machine Learning research:

- develop a new method
- compare it to results of previous methods on standard benchmarks

	HCRF	Our
SIFT-flow	31.22%	27.73%
MSRC-21	78.89%	81.11%
VOC 2008	20.13 %	30.12%
VOC 2009	42.43 %	43.37%
VOC 2010	30.13 %	32.14%

"HCRF" method is better	1
"Our" method is better	
both methods are equal	

Are the differences just due to chance?

- Idea 1: mean/std.err.: 40.6 ± 20.4 vs. 42.9 ± 19.8
- Idea 2: sign test (like binomial before): binom_test(1,5)=0.375

Standard procedure in Machine Learning research:

- develop a new method
- compare it to results of previous methods on standard benchmarks

	HCRF	Our
SIFT-flow	31.22%	27.73%
MSRC-21	78.89%	81.11%
VOC 2008	20.13 %	30.12%
VOC 2009	42.43 %	43.37%
VOC 2010	30.13 %	32.14%

"HCRF" method is better	1
"Our" method is better	
both methods are equal	

Are the differences just due to chance?

- Idea 1: mean/std.err.: 40.6 ± 20.4 vs. 42.9 ± 19.8
- Idea 2: sign test (like binomial before): binom_test(1,5)=0.375
- Idea 3: take differences into account, not just the sign
 - ► *H*₀: differences have a symmetric distribution around zero

Wilcoxon signed rank test

Given: real values a_1, \ldots, a_m and b_1, \ldots, b_m

- drop all cases with $a_i = b_i$, call the remaining number of pairs k
- compute $\delta_i = |a_i b_i|$ and $s_i = \operatorname{sign}(a_i b_i)$
- sort elements from smallest to larges δ_i
- compute rank, R_i , of each δ_i , ties get average of covered ranks
- compute statistics (sum of signed ranks)

$$W = \sum_{i=1}^{k} s_i R_i$$

• compare value to table, $W_{critical,k}$ (large k: Gaussian approximation)

"HCRF" vs. "Our" example (5 datasets):

•
$$A = [31.22, 78.89, 20.13, 42.43, 30.13]$$

 $B = [27.73, 81.11, 30.12, 43.37, 32.14]$

• scipy.stats.wilcoxon(A, B) = 0.35

Wilcoxon signed rank test

Given: real values a_1, \ldots, a_m and b_1, \ldots, b_m

Class ID Name		Number of samples (training)	Classification rate (%)	
	Name		Proposed method	Proposed method with CA
1	10K (FT)	900 (100)	99.00	99.50
2	10K (FB)	900 (100)	98.25	100.00
3	10K (BT)	900 (100)	98.25	99.88
4	10K (BB)	900 (100)	97.88	99.75
5	5K (FT)	900 (100)	94.00	100.00
6	5K (FB)	900 (100)	98.38	99.75
7	5K (BT)	900 (100)	94.25	97.00
8	5K (BB)	900 (100)	97.00	98.25
9	1K (FT)	900 (100)	95.13	99.63
10	1K (FB)	900 (100)	93.75	99.75
11	1K (BT)	900 (100)	94.13	99.00
12	1K (BB)	900 (100)	95.75	98.75

• mean/std.err.: 96.5 ± 1.84 , mean 2: 99.27 ± 0.86

• sign test: +: 12 =: 0 -: 0, binom_test(0,12)=0.0005

signed rank test: wilcoxon(A,B)=0.0022

Beyond Binary Classification

Multiclass Classification – One-versus-rest reduction

Classification problems with M classes:

- Training samples $\{x_1, \ldots, x_n\} \subset \mathcal{X}$,
- Training labels $\{y_1, \ldots, y_n\} \subset \{1, \ldots, M\},$
- Task: learn a prediction function $f : \mathcal{X} \to \{1, \dots, M\}$.

Classification problems with M classes:

- Training samples $\{x_1, \ldots, x_n\} \subset \mathcal{X}$,
- Training labels $\{y_1, \ldots, y_n\} \subset \{1, \ldots, M\},$
- Task: learn a prediction function $f : \mathcal{X} \to \{1, \dots, M\}$.

One-versus-rest construction:

- train one binary classifier $g_c : \mathcal{X} \to \mathbb{R}$ for each class c:
 - all samples with class label c are positive examples
 - all other samples are negative examples
- classify by finding maximal response

$$f(x) = \underset{c=1,\dots,M}{\operatorname{argmax}} g_c(x)$$

Advantage: easy to implement, parallel, works well in practice

Disadvantage: with many classes, training sets become unbalanced. no explicit *calibration* of scores between different g_c

Multiclass Classification – All-versus-all reduction

Classification problems with M classes:

- Training samples $\{x_1, \ldots, x_n\} \subset \mathcal{X}$,
- Training labels $\{y_1, \ldots, y_n\} \subset \{1, \ldots, M\},$
- Task: learn a prediction function $f : \mathcal{X} \to \{1, \dots, M\}$.

Classification problems with M classes:

- Training samples $\{x_1, \ldots, x_n\} \subset \mathcal{X}$,
- Training labels $\{y_1, \ldots, y_n\} \subset \{1, \ldots, M\},$
- Task: learn a prediction function $f : \mathcal{X} \to \{1, \dots, M\}$.

All-versus-all construction:

• train one classifier, $g_{ij} : \mathcal{X} \to \mathbb{R}$, for each pair of classes $1 \leq i < j \leq M$, in total $\frac{m(m-1)}{2}$ prediction functions

classify by voting

$$f(x) = \underset{m=1,\dots,M}{\operatorname{argmax}} \ \#\{i \in \{1,\dots,M\} : g_{m,i}(x) > 0\},\$$

(writing $g_{j,i} = -g_{i,j}$ for j > i and $g_{j,j} = 0$)

Advantage: small and balanced training problems, parallel, works well. **Disadvantage**: number of classifiers grows quadratically in classes.

Multiclass Classification – Hierarchical

Classification problems with M classes:

- Training samples $\{x_1, \ldots, x_n\} \subset \mathcal{X}$,
- Training labels $\{y_1, \ldots, y_n\} \subset \{1, \ldots, M\},$
- Task: learn a prediction function $f : \mathcal{X} \to \{1, \dots, M\}$.

Hierarchical (tree) construction:

- construct binary tree with classes at leafs
- learn one classifier for each decision

Advantage: at most $\lceil \log_2 M \rceil$ classifier evaluation at test time **Disadvantage**: not parallel, not robust to mistakes at any stage

Multiclass Classification – Error Correcting Output Codes

Classification problems with M classes:

- Training samples $\{x_1, \ldots, x_n\} \subset \mathcal{X}$,
- Training labels $\{y_1, \ldots, y_n\} \subset \{1, \ldots, M\},$
- Task: learn a prediction function $f : \mathcal{X} \to \{1, \dots, M\}$.

Define a binary codeword for each class

- one classifier for codeword entry
- classify by comparing predictions to code words (exact or in some norm)

Advantage: parallel, trade off between speed and robustness Disadvantage: optimal code design NP-hard

A Multiclass Support Vector Machines

•
$$\mathcal{X}$$
 anything, $\mathcal{Y} = \{1, 2, \dots, M\}$,

- feature map $\phi: \mathcal{X}
 ightarrow \mathcal{H}$ (explicit or implicit via kernel)
- training data $\{(x_1, y_1), \ldots, (x_n, y_n)\}$
- goal: learn functions $g_i(x) = \langle w_i, \phi(x) \rangle$ for $i = 1, \dots, M$.

Enforce a margin between the correct and highest-ranked incorrect label:

$$\min_{w,\xi} \frac{1}{2} \sum_{k=1}^{M} \|w_k\|^2 + \frac{C}{n} \sum_{i=1}^{n} \xi^i$$

subject to, for $i = 1, \ldots, n$,

$$\langle w_{y^i}, \phi(x^i) \rangle \ge 1 + \langle w_k, \phi(x^i) \rangle - \xi^i, \text{ for all } k \neq y_i.$$

Prediction: $f(x) = \underset{k=1,...,M}{\operatorname{argmax}} \langle w_k, \phi(x) \rangle$

Crammer-Singer Multiclass SVM

A Multiclass Support Vector Machines

Many different option for multi-class SVMs:

- One-versus-Rest
- One-versus-One
- ECOC
- Crammer-Singer
- . . .

Which one is the best?

Many different option for multi-class SVMs:

- One-versus-Rest
- One-versus-One
- ECOC
- Crammer-Singer

• . . .

Which one is the best?

None (or all of them)!

- there's dozens of studies, they all disagree
- use whatever is available
- to implement yourself, One-versus-Rest is most popular, since it's simplest

Kernels are useful for many other things besides SVMs:

Any algorithm that uses the data only in form of **inner products** can be *kernelized*.

How to *kernelize* an algorithm:

- Write the algorithms in terms of only inner products.
- Replace all inner products by kernel function evaluations.

The resulting algorithm will do the same as the linear version, but in the (hidden) feature space \mathcal{H} .

Caveat: working in \mathcal{H} is not a guarantee for better performance.

A good choice of k and model-selection are important!

Given samples $x_i \in \mathbb{R}^d$ and function values $y_i \in \mathbb{R}$. Find a linear function $f(x) = \langle w, x \rangle$ that approximates the values.

Interpolation error:

$$e_i := (y_i - \langle w, x_i \rangle)^2$$

Solve for $\lambda \ge 0$: $\min_{w \in \mathbb{R}^n} \sum_i e_i + \lambda \|w\|^2$

Given samples $x_i \in \mathbb{R}^d$ and function values $y_i \in \mathbb{R}$. Find a linear function $f(x) = \langle w, x \rangle$ that approximates the values.

Interpolation error:

Very popular, because it has a closed form solution!

$$w = X(\lambda I_n + X^{\top}X)^{-1}y$$

with I_n is the $n \times n$ identity matrix, $X = (x_1, \ldots, x_n)^\top$ is the data matrix, $y = (y_1, \ldots, y_n)^\top$ is the target vector.

Given samples $x_i \in \mathbb{R}^d$ and function values $y_i \in \mathbb{R}$. Find a linear function $f(x) = \langle w, x \rangle$ that approximates the values.

Interpolation error:

$$e_i := (y_i - \langle w, x_i \rangle)^2$$

Solve for $\lambda \ge 0$: $\min_{w \in \mathbb{R}^n} \sum_i e_i + \lambda \|w\|^2$

Very popular, because it has a closed form solution!

$$w = X(\lambda I_n + X^{\top}X)^{-1}y$$

with I_n is the $n \times n$ identity matrix, $X = (x_1, \ldots, x_n)^\top$ is the data matrix, $y = (y_1, \ldots, y_n)^\top$ is the target vector.

Given samples $x_i \in \mathbb{R}^d$ and function values $y_i \in \mathbb{R}$. Find a linear function $f(x) = \langle w, x \rangle$ that approximates the values.

Interpolation error:

$$e_i := (y_i - \langle w, x_i \rangle)^2$$

Solve for $\lambda \ge 0$: $\min_{w \in \mathbb{R}^n} \sum_i e_i + \lambda \|w\|^2$

Very popular, because it has a closed form solution!

$$w = X(\lambda I_n + X^{\top}X)^{-1}y$$

with I_n is the $n \times n$ identity matrix, $X = (x_1, \ldots, x_n)^\top$ is the data matrix, $y = (y_1, \ldots, y_n)^\top$ is the target vector.

Given $x_i \in \mathcal{X}$, $y_i \in \mathbb{R}$, i = 1, ..., n, and $\phi : \mathcal{X} \to \mathcal{H}$. Find an approximating function $f(x) = \langle w, \phi(x) \rangle_{\mathcal{H}}$ (non-linear in x, linear in w).

Interpolation error:

$$e_i := (y_i - \langle w, \phi(x_i) \rangle_{\mathcal{H}})^2$$

Solve for $\lambda \ge 0$: $\min_{w \in \mathbb{R}^n} \sum_i e_i + \lambda \|w\|^2$

Given $x_i \in \mathcal{X}$, $y_i \in \mathbb{R}$, i = 1, ..., n, and $\phi : \mathcal{X} \to \mathcal{H}$. Find an approximating function $f(x) = \langle w, \phi(x) \rangle_{\mathcal{H}}$ (non-linear in x, linear in w).

Interpolation error:

$$e_i := (y_i - \langle w, \phi(x_i) \rangle_{\mathcal{H}})^2$$

Solve for $\lambda \ge 0$: $\min_{w \in \mathbb{R}^n} \sum_i e_i + \lambda ||w||^2$ Closed form solution is still valid:

$$w = \Phi(\lambda I_n + \Phi^{\top} \Phi)^{-1} y$$

with I_n is the $n \times n$ identity matrix, $\Phi = (\phi(x_1), \dots, \phi(x_n))^\top$.

Example: Kernel Ridge Regression

What if \mathcal{H} and $\phi : \mathcal{X} \to \mathcal{H}$ are given implicitly by kernel function?

We cannot store the closed form solution vector $w \in \mathcal{H}$:

$$w = \Phi(\lambda I_n + \Phi^\top \Phi)^{-1} y$$

but we can still calculate $f : \mathcal{X} \to \mathbb{R}$:

$$\begin{split} f(x) &= \langle w, \phi(x) \rangle \\ &= \langle \Phi(\lambda I_n + \underbrace{\Phi^{\top} \Phi}_{=K})^{-1} y, \phi(x) \rangle \\ &= y^{\top} (\lambda I_n + K)^{-1} \kappa(x) \end{split}$$
 where $\kappa(x) = \left(k(x_1, x), \dots, k(x_n, x) \right)^{\top}.$

Kernel Ridge Regression

Like Least-Squared Regression, (Kernel) Ridge Regression is sensitive to outliers:

because the quadratic loss function penalized large residue.

Nonlinear Regression

Support Vector Regression with ϵ -insensitive loss is more robust:

Optimization problem similar to support vector machine:

$$\min_{\substack{w \in \mathcal{H}, \\ \xi_1, \dots, \xi_n \in \mathbb{R}^+, \\ \xi'_1, \dots, \xi'_n \in \mathbb{R}^+}} \|w\|^2 + C \sum_{i=1}^n (\xi_i + \xi'_i)$$

subject to

$$y_i - \langle w, \phi(x_i) \rangle \le \epsilon + \xi_i,$$
 for $i = 1, ..., n$,
 $\langle w, \phi(x_i) \rangle - y_i \le \epsilon + \xi'_i,$ for $i = 1, ..., n$.

Dualization (or the "Representer Theorem") tell us that $w = \sum_j \alpha_j \phi(x_j)$.

Optimization problem similar to support vector machine:

$$\min_{\substack{\alpha_1,\dots,\alpha_n \in \mathbb{R}, \\ \xi_1,\dots,\xi_n \in \mathbb{R}^+, \\ \xi'_1,\dots,\xi'_n \in \mathbb{R}^+}} \sum_{i,j=1}^n \alpha_i \alpha_j \langle \phi(x_i), \phi(x_j) \rangle + C \sum_{i=1}^n (\xi_i + \xi'_i)$$

subject to

$$\begin{split} y_i - \sum_j \alpha_j \langle \phi(x_j), \phi(x_i) \rangle &\leq \epsilon + \xi_i, \qquad \text{for } i = 1, \dots, n, \\ \sum_j \alpha_j \langle \phi(x_j), \phi(x_i) \rangle - y_i &\leq \epsilon + \xi'_i, \qquad \text{for } i = 1, \dots, n. \end{split}$$

Rewrite in terms of kernel evaluations $k(x, x') = \langle \phi(x), \phi(x') \rangle$.

Support Vector Regression

Optimization problem similar to support vector machine:

$$\min_{\substack{\alpha_1,\dots,\alpha_n \in \mathbb{R}, \\ \xi_1,\dots,\xi_n \in \mathbb{R}^+, \\ \xi'_1,\dots,\xi'_n \in \mathbb{R}^+}} \sum_{i,j=1}^n \alpha_i \alpha_j k(x_i, x_j) + C \sum_{i=1}^n (\xi_i + \xi'_i)$$

subject to

$$y_i - \sum_j \alpha_j k(x_j, x_i) \le \epsilon + \xi_i, \quad \text{for } i = 1, \dots, n,$$
$$\sum_j \alpha_j k(x_j, x_i) - y_i \le \epsilon + \xi'_i, \quad \text{for } i = 1, \dots, n.$$

Regression function

$$f(x) = \langle w, \phi(x) \rangle = \sum_{j} \alpha_{j} k(x_{j}, x)$$

Example – Head Pose Estimation

- Detect faces in image
- Compute gradient representation of face region
- Train support vector regression for yaw, tilt (separately)

Pose Estimation: Yaw Pose Estimation: Tilt 180 160 140 120 100 -40 20 20 0. 100 20 30 10 60 france (b) Yaw estimation (c) Tilt estimation

[Li, Gong, Sherra, Liddell, "Support vector machine based multi-view face detection and recognition", IVC 2004]

For unlabeled data, we are interested to detect *outliers*, i.e. samples that lie far away from most of the other samples.

• For samples x_1, \ldots, x_n find the smallest ball (center c, radius R) that contains "most" of the samples.

For unlabeled data, we are interested to detect *outliers*, i.e. samples that lie far away from most of the other samples.

• For samples x_1, \ldots, x_n find the smallest ball (center c, radius R) that contains "most" of the samples.

Solve

$$\min_{R \in \mathbb{R}, c \in \mathbb{R}^n, \xi_i \in \mathbb{R}^+} R^2 + \frac{1}{\nu n} \sum_i \xi_i$$

subject to

$$||x_i - c||^2 \le R^2 + \xi_i$$
 for $i = 1, \dots, n$.

• $\nu \in (0,1)$ upper bounds the number of "outliers".

Outlier/Anomaly Detection in Arbirary Inputs

Use a kernel $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with an implicit feature map $\phi : \mathcal{X} \to \mathcal{H}$. Do outlier detection for $\phi(x_1), \ldots, \phi(x_n)$:

- Find the small ball (center c ∈ H, radius R) that contains "most" of the samples:
- Solve

$$\min_{R \in \mathbb{R}, c \in \mathcal{H}, \xi_i \in \mathbb{R}^+} R^2 + \frac{1}{\nu n} \sum_i \xi_i$$

subject to

$$\|\phi(x_i) - c\|^2 \le R^2 + \xi_i$$
 for $i = 1, \dots, n$.

• Representer theorem: $c = \sum_j \alpha_j \phi(x_j)$, and everything can be written using only $k(x_i, x_j)$.

Support Vector Data Description

Example – Steganalysis

- Steganography: hide data in other data (e.g. in images)
 - e.g.: flip some least significant bits
- Steganalysis: given any data, find out if data is hidden

original

with 23300 hidden bits

- compute image statistics (color wavelet coefficients)
- train SVDD with RBF-kernel
- identified outlier images are suspicious candidates