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Classifier Training and Evaluation

input data D
input learning method A
split D = Dtrn ∪̇ Dtst disjointly
set aside Dtst to a safe place // do not look at it
g ← A[Dtrn ] // learn a predictor from Dtrn
apply g to Dtst and measure performance Rtst

output performance estimate Rtst

In practice we often want more: not just train a classifier and evaluate it,
but
• select the best algorithm out of multiple ones,
• select the best (hyper)parameters for a training algorithm.

We simulate the classifier evaluation step during the training procedure.
This needs (at least) one additional data split:
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Training and Selecting between Multiple Models

input data D
input set of method A = {A1, . . . ,AK}
split D = Dtrnval ∪̇ Dtst disjointly
set aside Dtst to a safe place (do not look at it)

split Dtrnval = Dtrn ∪̇ Dval disjointly
for all models Ai ∈ A do

gi ← Ai [Dtrn ]
apply gi to Dval and measure performance Eval(Ai)

end for
pick best performing Ai

(optional) gi ← Ai [Dtrnval ] // retrain on larger dataset
apply gi to Dtst and measure performance Rtst

output performance estimate Rtst

How to split? For example 1/3 : 1/3 : 1/3 or 70% : 10% : 20%.
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Discussion.

• Each algorithm is trained on Dtrn and evaluated on disjoint Dval !

• You select a predictor based on Eval (its performance on Dval), only
afterwards Dtst is used. !

• Dtst is used to evaluate the final predictor and nothing else. !

Problems.
• small Dval is bad: Eval could be bad estimate of gA’s true
performance, and we might pick a suboptimal method.

• large Dval is bad: Dtrn is much smaller than Dtrnval , so the classifier
learned on Dtrn might be much worse than necessary.

• retraining the best model on Dtrnval might overcome that, but it
comes at a risk: just because a model worked well when trained on
Dtrn , this does not mean it’ll also work well when trained on Dtrnval .
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Leave-one-out Evaluation (for a single model/algorithm)

input algorithm A
input loss function `
input data D (trnval part only: test part set aside earlier)
for all (x i , yi) ∈ D do

g¬i ← A[ D \ {(x i , yi)} ] // Dtrn is D with i-th example removed
r i ← `(yi , g¬i(x i)) // Dval = {(x i , yi)}, disjoint to Dtrn

end for
output Rloo = 1

n
∑n

i=1 r i (average leave-one-out risk)

Properties.
• Each r i is a unbiased (but noisy) estimate of the risk R(g¬i)
• D \ {(x i , yi)} is almost the same as D, so we can hope that each

g¬i is almost the same as g = A[D].
• Therefore, Rloo can be expected a good estimate of R(g)

Problem: slow, trains n times on n − 1 examples instead of once on n
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Compromise: use fixed number of small Dval

K -fold Cross Validation (CV)

input algorithm A, loss function `, data D (trnval part)
split D =

⋃̇K
k=1Dk into K equal sized disjoint parts

for k = 1, . . . ,K do
g¬k ← A[D \ Dk ]
rk ← 1

|Dk |
∑

(x,y)∈Dk
`(yi , g¬k(x))

end for
output RK -CV = 1

K
∑n

k=1 rk (K -fold cross-validation risk)

Observation.
• for K = |D| same as leave-one-out error.
• approximately k times increase in runtime.
• most common: k = 10 or k = 5.

Problem: training sets overlap, so the error estimates are correlated.
Exception: K = 2
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5× 2 Cross Validation (5× 2-CV)

input algorithm A, loss function `, data D (trnval part)
for k = 1, . . . , 5 do
Split D = D1 ∪̇ D2
g1 ← A[D1],
rk

1 ← evaluate g1 on D2
g2 ← A[D2],
rk

2 ← evaluate g2 on D1
rk ← 1

2(r1
k + r2

k )
end for

output E5×2 = 1
5
∑5

k=1 rk

Observation.
• 5× 2-CV is really the average of 5 runs of 2-fold CV
• very easy to implement: shuffle the data and split into halfs
• within each run the training sets are disjoint and the classifiers g1
and g2 are independent

Problem: training sets are smaller than in 5- or 10-fold CV.
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Unbalanced Classes

If classes are unbalanced accuracy might not tell us much:
• p(y = −1) = 0.99, p(y = +1) = 0.01 → "always no" is 99% correct
• there might not be a better non-constant classifier

Two solutions:
• balancing

I use only subset of the majority class to balance data (5:1, or 1:1)
• reweighting

I multiple loss in optimization with class-dependent constant Cyi ,

1
|D+|

n∑
(xi ,yi)∈D+

`( yi , f (xi) ) + 1
|D−|

n∑
(xi ,yi)∈D−

`( yi , f (xi) ) + Ω(f )

• treat as a retrieval problem
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Classifiers for Information Retrieval Tasks

Some classification tasks are really rather retrieval tasks, e.g.
• database lookup: is an entry x relevant (y = 1) or not (y = −1)?

A typical property:
• prediction is performed on a fixed database
• we have access to all elements of the test set at the same time
• positives (y = 1) are important, negative (y = −1) are a nuisanse
• we don’t need all decisions, a few correct positives is enough

For a classifier g(x) = sign f (x) with f (x) : X → R (e.g., f (x) = 〈w, x〉),
we interpret f (x) as its confidence.

To produce K positive we return the test samples of highest confidence.

Equivalently, we decide by gθ(x) = sign( f (x)− θ ), for the right θ.
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Other Ways to Evaluate Classifiers

Retrieval quality is often measure in terms of precision and recall :

Definition (Precision, Recall, F-Score)

For Y = {±1}, let g : X → Y a decision function and
D = {(x1, y1), . . . , (xn , yn)} ⊂ X × Y be a database.

Then we define

precision(g) = number of test samples with g(x j) = 1 and yj = 1
number of test samples with g(x j) = 1

recall(g) = number of test samples with g(x j) = 1 and yj = 1
number of test samples with yj = 1

F -score(g) = 2 precision(g) · recall(g)
precision(g) + recall(g)
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For different thresholds, θ, we obtain different precision and recall values.

They are summarized by a precision-recall curve:

p
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si
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n
 

recall

• If pressured, summarize into one number: average precision.
• Curve/value depends on class ratio: higher values for more positives
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A similar role in different context:
Receiver Operating Characteristic (ROC) Curve

true-positive-rate(g) = number of samples with g(x j) = 1 and yj = 1
number of samples with yj = 1

false-positive-rate(g) = number of samples with g(x j) = 1 and yj = −1
number of samples with yj = −1

false positive rate
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Significance Using Multiple Datasets

Standard procedure in Machine Learning research:
• develop a new method
• compare it to results of previous methods on standard benchmarks

"HCRF" method is better 1
"Our" method is better 4
both methods are equal 0

Are the differences just due to chance?

• Idea 1: mean/std.err.: 40.6± 20.4 vs. 42.9± 19.8

• Idea 2: sign test (like binomial before): binom_test(1,5)=0.375

• Idea 3: take differences into account, not just the sign
I H0: differences have a symmetric distribution around zero
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Wilcoxon signed rank test
Given: real values a1, . . . , am and b1, . . . , bm

• drop all cases with ai = bi , call the remaining number of pairs k
• compute δi = |ai − bi | and si = sign(ai − bi)
• sort elements from smallest to larges δi

• compute rank, Ri , of each δi , ties get average of covered ranks
• compute statistics (sum of signed ranks)

W =
k∑

i=1
siRi

• compare value to table, Wcritical,k (large k: Gaussian approximation)

"HCRF" vs. "Our" example (5 datasets):
• A = [31.22, 78.89, 20.13, 42.43, 30.13]

B = [27.73, 81.11, 30.12, 43.37, 32.14]
• scipy.stats.wilcoxon( A, B ) = 0.35
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Wilcoxon signed rank test

Given: real values a1, . . . , am and b1, . . . , bm

• mean/std.err.: 96.5± 1.84, mean 2: 99.27± 0.86
• sign test: + : 12 =: 0 − : 0, binom_test(0,12)=0.0005
• signed rank test: wilcoxon(A,B)=0.0022
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Beyond Binary Classification
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Multiclass Classification – One-versus-rest reduction

Classification problems with M classes:
• Training samples {x1, . . . , xn} ⊂ X ,
• Training labels {y1, . . . , yn} ⊂ {1, . . . ,M},
• Task: learn a prediction function f : X → {1, . . . ,M}.

One-versus-rest construction:
• train one binary classifier gc : X → R for each class c:

I all samples with class label c are positive examples
I all other samples are negative examples

• classify by finding maximal response

f (x) = argmax
c=1,...,M

gc(x)

Advantage: easy to implement, parallel, works well in practice

Disadvantage: with many classes, training sets become unbalanced.
no explicit calibration of scores between different gc
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Multiclass Classification – All-versus-all reduction

Classification problems with M classes:
• Training samples {x1, . . . , xn} ⊂ X ,
• Training labels {y1, . . . , yn} ⊂ {1, . . . ,M},
• Task: learn a prediction function f : X → {1, . . . ,M}.

All-versus-all construction:
• train one classifier, gij : X → R, for each pair of classes

1 ≤ i < j ≤ M , in total m(m−1)
2 prediction functions

• classify by voting

f (x) = argmax
m=1,...,M

#{i ∈ {1, . . . ,M} : gm,i(x) > 0},

(writing gj,i = −gi,j for j > i and gj,j = 0)

Advantage: small and balanced training problems, parallel, works well.
Disadvantage: number of classifiers grows quadratically in classes.
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Multiclass Classification – Hierarchical

Classification problems with M classes:
• Training samples {x1, . . . , xn} ⊂ X ,
• Training labels {y1, . . . , yn} ⊂ {1, . . . ,M},
• Task: learn a prediction function f : X → {1, . . . ,M}.

Hierarchical (tree) construction:

• construct binary tree with
classes at leafs
• learn one classifier for each
decision 1 2 3 4 5 6 7

1;2 3;4 5;6

1;2;3;4 5;6;7;

Advantage: at most dlog2 Me classifier evaluation at test time

Disadvantage: not parallel, not robust to mistakes at any stage
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Multiclass Classification – Error Correcting Output Codes

Classification problems with M classes:
• Training samples {x1, . . . , xn} ⊂ X ,
• Training labels {y1, . . . , yn} ⊂ {1, . . . ,M},
• Task: learn a prediction function f : X → {1, . . . ,M}.

Define a binary codeword for each
class

• one classifier for codeword entry
• classify by comparing
predictions to code words
(exact or in some norm)

c1

c2
c3

c4

g1 g8g7g6g5g4g3g2

Advantage: parallel, trade off between speed and robustness

Disadvantage: optimal code design NP-hard
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A Multiclass Support Vector Machines

• X anything, Y = {1, 2, . . . ,M},
• feature map φ : X → H (explicit or implicit via kernel)
• training data {(x1, y1), . . . , (xn , yn)}
• goal: learn functions gi(x) = 〈wi , φ(x)〉 for i = 1, . . . ,M .

Enforce a margin between the correct and highest-ranked incorrect label:

minw,ξ
1
2

M∑
k=1
‖wk‖2 + C

n

n∑
i=1

ξi

subject to, for i = 1, . . . ,n,

〈wyi , φ(x i)〉 ≥ 1 + 〈wk , φ(x i)〉 − ξi , for all k 6= yi .

Prediction: f (x) = argmax
k=1,...,M

〈wk , φ(x)〉

Crammer-Singer Multiclass SVM
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A Multiclass Support Vector Machines

Many different option for multi-class SVMs:

• One-versus-Rest
• One-versus-One
• ECOC
• Crammer-Singer
• . . .

Which one is the best?

None (or all of them)!
• there’s dozens of studies, they all disagree
• use whatever is available
• to implement yourself, One-versus-Rest is most popular, since it’s
simplest
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More Kernel-Methods

Kernels are useful for many other things besides SVMs:

Any algorithm that uses the data only in form
of inner products can be kernelized.

How to kernelize an algorithm:
• Write the algorithms in terms of only inner products.
• Replace all inner products by kernel function evaluations.

The resulting algorithm will do the same as the linear version, but in the
(hidden) feature space H.

Caveat: working in H is not a guarantee for better performance.

A good choice of k and model-selection are important!
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Linear Regression

Given samples xi ∈ Rd and function values yi ∈ R. Find a linear function
f (x) = 〈w, x〉 that approximates the values.

Interpolation error:

ei := (yi − 〈w, xi〉)2

Solve for λ ≥ 0:
minw∈Rn

∑
i

ei + λ‖w‖2 0 1 2 3 4 5 6
0

1

2

3

What about non-linear?

Very popular, because it has a closed form solution!

w = X(λIn + X>X)−1y

with In is the n × n identity matrix, X = (x1, . . . , xn)> is the data
matrix, y = (y1, . . . , yn)> is the target vector.
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Nonlinear Regression

Given xi ∈ X , yi ∈ R, i = 1, . . . ,n, and φ : X → H. Find an appro-
ximating function f (x) = 〈w, φ(x)〉H (non-linear in x, linear in w).
Interpolation error:

ei := (yi − 〈w, φ(xi)〉H)2

Solve for λ ≥ 0:
minw∈Rn

∑
i

ei + λ‖w‖2
0 1 2 3 4 5 6

0

1

2

3

Closed form solution is still valid:

w = Φ(λIn + Φ>Φ)−1y

with In is the n × n identity matrix, Φ = (φ(x1), . . . , φ(xn))>.
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Example: Kernel Ridge Regression

What if H and φ : X → H are given implicitly by kernel function?

We cannot store the closed form solution vector w ∈ H:

w = Φ(λIn + Φ>Φ)−1y

but we can still calculate f : X → R:

f (x) = 〈w, φ(x)〉
= 〈Φ(λIn + Φ>Φ︸ ︷︷ ︸

=K

)−1y, φ(x)〉

= y>(λIn + K )−1κ(x)

where κ(x) =
(
k(x1, x), . . . , k(xn , x)

)>
.

Kernel Ridge Regression
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Nonlinear Regression

Like Least-Squared Regression, (Kernel) Ridge Regression is sensitive to
outliers:
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3

because the quadratic loss function penalized large residue.
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Nonlinear Regression

Support Vector Regression with ε-insensitive loss is more robust:
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Support Vector Regression

Optimization problem similar to support vector machine:

min w∈H,
ξ1,...,ξn∈R+,
ξ′

1,...,ξ
′
n∈R+

‖w‖2 + C
n∑

i=1
(ξi + ξ′i)

subject to

yi − 〈w, φ(xi)〉 ≤ ε+ ξi , for i = 1, . . . ,n,
〈w, φ(xi)〉 − yi ≤ ε+ ξ′i , for i = 1, . . . ,n.

Dualization (or the "Representer Theorem") tell us that w =
∑

j αjφ(xj).
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Support Vector Regression

Optimization problem similar to support vector machine:

minα1,...,αn∈R,
ξ1,...,ξn∈R+,
ξ′

1,...,ξ
′
n∈R+

n∑
i,j=1

αiαj〈φ(xi), φ(xj)〉+ C
n∑

i=1
(ξi + ξ′i)

subject to

yi −
∑

j
αj〈φ(xj), φ(xi)〉 ≤ ε+ ξi , for i = 1, . . . ,n,∑

j
αj〈φ(xj), φ(xi)〉 − yi ≤ ε+ ξ′i , for i = 1, . . . ,n.

Rewrite in terms of kernel evaluations k(x, x ′) = 〈φ(x), φ(x ′)〉.
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Support Vector Regression

Optimization problem similar to support vector machine:

minα1,...,αn∈R,
ξ1,...,ξn∈R+,
ξ′

1,...,ξ
′
n∈R+

n∑
i,j=1

αiαjk(xi , xj) + C
n∑

i=1
(ξi + ξ′i)

subject to

yi −
∑

j
αjk(xj , xi) ≤ ε+ ξi , for i = 1, . . . ,n,∑

j
αjk(xj , xi)− yi ≤ ε+ ξ′i , for i = 1, . . . ,n.

Regression function

f (x) = 〈w, φ(x)〉 =
∑

j
αjk(xj , x)
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Example – Head Pose Estimation

• Detect faces in image
• Compute gradient representation of face region
• Train support vector regression for yaw, tilt (separately)

[Li, Gong, Sherra, Liddell, "Support vector machine based multi-view face detection and recognition", IVC 2004]
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Outlier/Anomaly Detection in Rd

For unlabeled data, we are interested to detect outliers, i.e. samples that
lie far away from most of the other samples.
• For samples x1, . . . , xn find the smallest ball (center c, radius R)

that contains “most” of the samples.
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Outlier/Anomaly Detection in Rd

For unlabeled data, we are interested to detect outliers, i.e. samples that
lie far away from most of the other samples.
• For samples x1, . . . , xn find the smallest ball (center c, radius R)

that contains “most” of the samples.

• Solve

minR∈R,c∈Rn ,ξi∈R+R2 + 1
νn

∑
i
ξi

subject to

‖xi − c‖2 ≤R2 + ξi for i = 1, . . . ,n.

• ν ∈ (0, 1) upper bounds the number of “outliers”.
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Outlier/Anomaly Detection in Arbirary Inputs

Use a kernel k : X × X → R with an implicit feature map φ : X → H.
Do outlier detection for φ(x1), . . . , φ(xn):
• Find the small ball (center c ∈ H, radius R) that contains “most” of

the samples:
• Solve

minR∈R,c∈H,ξi∈R+R2 + 1
νn

∑
i
ξi

subject to

‖φ(xi)− c‖2 ≤R2 + ξi for i = 1, . . . ,n.

• Representer theorem: c =
∑

j αjφ(xj), and everything can be
written using only k(xi , xj).

Support Vector Data Description
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Example – Steganalysis

• Steganography: hide data in other data (e.g. in images)
I e.g.: flip some least significant bits

• Steganalysis: given any data, find out if data is hidden

original with 23300 hidden bits
• compute image statistics (color wavelet coefficients)
• train SVDD with RBF-kernel
• identified outlier images are suspicious candidates

[Lyu, Farid. "Steganalysis using color wavelet statistics and one-class support vector machines", SPIE EI, 2004]
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