Statistical Machine Learning

Christoph Lampert

Institute of Science and Technology
Spring Semester 2015/2016 // Lecture 6

Classifier Training and Evaluation

input data \mathcal{D}
input learning method A
split $\mathcal{D}=\mathcal{D}_{\text {trn }} \dot{\cup} \mathcal{D}_{t s t}$ disjointly
set aside $\mathcal{D}_{\text {tst }}$ to a safe place // do not look at it
$g \leftarrow A\left[\mathcal{D}_{t r n}\right] \quad / /$ learn a predictor from $\mathcal{D}_{t r n}$
apply g to $\mathcal{D}_{t s t}$ and measure performance $R_{t s t}$
output performance estimate $R_{t s t}$

In practice we often want more: not just train a classifier and evaluate it, but

- select the best algorithm out of multiple ones,
- select the best (hyper)parameters for a training algorithm.

We simulate the classifier evaluation step during the training procedure. This needs (at least) one additional data split:

Training and Selecting between Multiple Models

input data \mathcal{D}
input set of method $\mathcal{A}=\left\{A_{1}, \ldots, A_{K}\right\}$
split $\mathcal{D}=\mathcal{D}_{\text {trnval }} \dot{\cup} \mathcal{D}_{\text {tst }}$ disjointly
set aside $\mathcal{D}_{\text {tst }}$ to a safe place (do not look at it)
split $\mathcal{D}_{\text {trnval }}=\mathcal{D}_{\text {trn }} \cup \dot{\mathcal{D}} \mathcal{D}_{\text {val }}$ disjointly
for all models $A_{i} \in \mathcal{A}$ do
$g_{i} \leftarrow A_{i}\left[\mathcal{D}_{\text {trn }}\right]$
apply g_{i} to $\mathcal{D}_{\text {val }}$ and measure performance $E_{\text {val }}\left(A_{i}\right)$
end for
pick best performing A_{i}
(optional) $g_{i} \leftarrow A_{i}\left[\mathcal{D}_{\text {trnval }}\right] \quad / /$ retrain on larger dataset apply g_{i} to $\mathcal{D}_{\text {tst }}$ and measure performance $R_{t s t}$
output performance estimate $R_{t s t}$
How to split? For example $1 / 3: 1 / 3: 1 / 3$ or $70 \%: 10 \%: 20 \%$.

Discussion.

- Each algorithm is trained on $\mathcal{D}_{\text {trn }}$ and evaluated on disjoint $\mathcal{D}_{\text {val }} \boldsymbol{\checkmark}$
- You select a predictor based on $E_{\text {val }}$ (its performance on $\mathcal{D}_{\text {val }}$), only afterwards $\mathcal{D}_{t s t}$ is used.
- $\mathcal{D}_{t s t}$ is used to evaluate the final predictor and nothing else.

Discussion.

- Each algorithm is trained on $\mathcal{D}_{\text {trn }}$ and evaluated on disjoint $\mathcal{D}_{\text {val }} \checkmark$
- You select a predictor based on $E_{\text {val }}$ (its performance on $\mathcal{D}_{\text {val }}$), only afterwards $\mathcal{D}_{t s t}$ is used.
- $\mathcal{D}_{t s t}$ is used to evaluate the final predictor and nothing else.

Problems.

- small $\mathcal{D}_{\text {val }}$ is bad: $E_{\text {val }}$ could be bad estimate of g_{A} 's true performance, and we might pick a suboptimal method.
- large $\mathcal{D}_{\text {val }}$ is bad: $\mathcal{D}_{\text {trn }}$ is much smaller than $\mathcal{D}_{\text {trnval }}$, so the classifier learned on $\mathcal{D}_{\text {trn }}$ might be much worse than necessary.
- retraining the best model on $\mathcal{D}_{\text {trnval }}$ might overcome that, but it comes at a risk: just because a model worked well when trained on $\mathcal{D}_{\text {trn }}$, this does not mean it'll also work well when trained on $\mathcal{D}_{\text {trnval }}$.

Leave-one-out Evaluation (for a single model/algorithm)

input algorithm A
input loss function ℓ
input data \mathcal{D} (trnval part only: test part set aside earlier)
for all $\left(x^{i}, y^{i}\right) \in \mathcal{D}$ do
$g^{\neg i} \leftarrow A\left[\mathcal{D} \backslash\left\{\left(x^{i}, y^{i}\right)\right\}\right] \quad / / \mathcal{D}_{\text {trn }}$ is \mathcal{D} with i-th example removed
$r^{i} \leftarrow \ell\left(y^{i}, g^{\neg i}\left(x^{i}\right)\right) \quad / / \mathcal{D}_{\text {val }}=\left\{\left(x^{i}, y^{i}\right)\right\}$, disjoint to $\mathcal{D}_{\text {trn }}$
end for
output $R_{\text {loo }}=\frac{1}{n} \sum_{i=1}^{n} r^{i} \quad$ (average leave-one-out risk)

Properties.

- Each r^{i} is a unbiased (but noisy) estimate of the risk $\mathcal{R}\left(g^{\neg i}\right)$
- $\mathcal{D} \backslash\left\{\left(x^{i}, y^{i}\right)\right\}$ is almost the same as \mathcal{D}, so we can hope that each
$g \neg^{i}$ is almost the same as $g=A[\mathcal{D}]$.
- Therefore, $R_{\text {loo }}$ can be expected a good estimate of $\mathcal{R}(g)$

Problem: slow, trains n times on $n-1$ examples instead of once on n

Compromise: use fixed number of small $\mathcal{D}_{\text {val }}$

K-fold Cross Validation (CV)

input algorithm A, loss function ℓ, data \mathcal{D} (trnval part)
split $\mathcal{D}=\dot{U}_{k=1}^{K} \mathcal{D}_{k}$ into K equal sized disjoint parts for $k=1, \ldots, K$ do
$g^{\neg^{k}} \leftarrow A\left[\mathcal{D} \backslash \mathcal{D}_{k}\right]$
$\left.r^{k} \leftarrow \frac{1}{\left|\mathcal{D}_{k}\right|} \sum_{(x, y) \in \mathcal{D}_{k}} \ell\left(y^{i}, g\right\urcorner^{k}(x)\right)$
end for
output $R_{K-\mathrm{CV}}=\frac{1}{K} \sum_{k=1}^{n} r^{k} \quad(K$-fold cross-validation risk)

Observation.

- for $K=|\mathcal{D}|$ same as leave-one-out error.
- approximately k times increase in runtime.
- most common: $k=10$ or $k=5$.

Problem: training sets overlap, so the error estimates are correlated.
Exception: $K=2$

5×2 Cross Validation (5×2-CV)

input algorithm A, loss function ℓ, data \mathcal{D} (trnval part)
for $k=1, \ldots, 5$ do
Split $\mathcal{D}=\mathcal{D}_{1} \dot{\cup} \mathcal{D}_{2}$
$g_{1} \leftarrow A\left[\mathcal{D}_{1}\right]$,
$r_{1}^{k} \leftarrow$ evaluate g_{1} on \mathcal{D}_{2}
$g_{2} \leftarrow A\left[\mathcal{D}_{2}\right]$,
$r_{2}^{k} \leftarrow$ evaluate g_{2} on \mathcal{D}_{1}
$r^{k} \leftarrow \frac{1}{2}\left(r_{k}^{1}+r_{k}^{2}\right)$
end for
output $E_{5 \times 2}=\frac{1}{5} \sum_{k=1}^{5} r^{k}$

Observation.

- 5×2-CV is really the average of 5 runs of 2 -fold CV
- very easy to implement: shuffle the data and split into halfs
- within each run the training sets are disjoint and the classifiers g_{1} and g_{2} are independent
Problem: training sets are smaller than in 5 - or 10 -fold CV.

Unbalanced Classes

If classes are unbalanced accuracy might not tell us much:

- $p(y=-1)=0.99, p(y=+1)=0.01 \rightarrow$ "always no" is 99% correct
- there might not be a better non-constant classifier

Two solutions:

- balancing
- use only subset of the majority class to balance data (5:1, or $1: 1$)
- reweighting
- multiple loss in optimization with class-dependent constant $C_{y_{i}}$,

$$
\frac{1}{\left|\mathcal{D}_{+}\right|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}_{+}}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right)+\frac{1}{\left|\mathcal{D}_{-}\right|} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}_{-}}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right)+\Omega(f)
$$

- treat as a retrieval problem

Classifiers for Information Retrieval Tasks

Some classification tasks are really rather retrieval tasks, e.g.

- database lookup: is an entry x relevant $(y=1)$ or not $(y=-1)$?

A typical property:

- prediction is performed on a fixed database
- we have access to all elements of the test set at the same time
- positives $(y=1)$ are important, negative $(y=-1)$ are a nuisanse
- we don't need all decisions, a few correct positives is enough

For a classifier $g(x)=\operatorname{sign} f(x)$ with $f(x): \mathcal{X} \rightarrow \mathbb{R}$ (e.g., $f(x)=\langle w, x\rangle$), we interpret $f(x)$ as its confidence.

To produce K positive we return the test samples of highest confidence.
Equivalently, we decide by $g_{\theta}(x)=\operatorname{sign}(f(x)-\theta)$, for the right θ.

Other Ways to Evaluate Classifiers

Retrieval quality is often measure in terms of precision and recall:

Definition (Precision, Recall, F-Score)

For $\mathcal{Y}=\{ \pm 1\}$, let $g: \mathcal{X} \rightarrow \mathcal{Y}$ a decision function and $\mathcal{D}=\left\{\left(x^{1}, y^{1}\right), \ldots,\left(x^{n}, y^{n}\right)\right\} \subset \mathcal{X} \times \mathcal{Y}$ be a database.
Then we define

$$
\begin{aligned}
\operatorname{precision}(g) & =\frac{\text { number of test samples with } g\left(x^{j}\right)=1 \text { and } y^{j}=1}{\text { number of test samples with } g\left(x^{j}\right)=1} \\
\text { recall }(g) & =\frac{\text { number of test samples with } g\left(x^{j}\right)=1 \text { and } y^{j}=1}{\text { number of test samples with } y^{j}=1} \\
F \text {-score }(g) & =2 \frac{\text { precision }(g) \cdot \text { recall }(g)}{\operatorname{precision}(g)+\operatorname{recall}(g)}
\end{aligned}
$$

For different thresholds, θ, we obtain different precision and recall values.

They are summarized by a precision-recall curve:

For different thresholds, θ, we obtain different precision and recall values.

They are summarized by a precision-recall curve:

- If pressured, summarize into one number: average precision.
- Curve/value depends on class ratio: higher values for more positives

A similar role in different context:

Receiver Operating Characteristic (ROC) Curve

true-positive-rate $(g)=\frac{\text { number of samples with } g\left(x^{j}\right)=1 \text { and } y^{j}=1}{\text { number of samples with } y^{j}=1}$
false-positive-rate $(g)=\frac{\text { number of samples with } g\left(x^{j}\right)=1 \text { and } y^{j}=-1}{\text { number of samples with } y^{j}=-1}$

A similar role in different context:

Receiver Operating Characteristic (ROC) Curve

$$
\begin{aligned}
& \text { true-positive-rate }(g)=\frac{\text { number of samples with } g\left(x^{j}\right)=1 \text { and } y^{j}=1}{\text { number of samples with } y^{j}=1} \\
& \text { false-positive-rate }(g)=\frac{\text { number of samples with } g\left(x^{j}\right)=1 \text { and } y^{j}=-1}{\text { number of samples with } y^{j}=-1}
\end{aligned}
$$

A similar role in different context:

Receiver Operating Characteristic (ROC) Curve

$$
\begin{aligned}
& \text { true-positive-rate }(g)=\frac{\text { number of samples with } g\left(x^{j}\right)=1 \text { and } y^{j}=1}{\text { number of samples with } y^{j}=1} \\
& \text { false-positive-rate }(g)=\frac{\text { number of samples with } g\left(x^{j}\right)=1 \text { and } y^{j}=-1}{\text { number of samples with } y^{j}=-1}
\end{aligned}
$$

Random classifier: $A U C=0.5$, regardless of class proportions.

Significance Using Multiple Datasets

Standard procedure in Machine Learning research:

- develop a new method
- compare it to results of previous methods on standard benchmarks

	HCRF	Our
SIFT-flow	31.22%	$\mathbf{2 7 . 7 3} \%$
MSRC-21	78.89%	$\mathbf{8 1 . 1 1} \%$
VOC 2008	20.13%	$\mathbf{3 0 . 1 2} \%$
VOC 2009	42.43%	$\mathbf{4 3 . 3 7} \%$
VOC 2010	30.13%	$\mathbf{3 2 . 1 4 \%}$

Are the differences just due to chance?

Significance Using Multiple Datasets

Standard procedure in Machine Learning research:

- develop a new method
- compare it to results of previous methods on standard benchmarks

	HCRF	Our
SIFT-flow	31.22%	$\mathbf{2 7 . 7 3} \%$
MSRC-21	78.89%	$\mathbf{8 1 . 1 1} \%$
VOC 2008	20.13%	$\mathbf{3 0 . 1 2} \%$
VOC 2009	42.43%	$\mathbf{4 3 . 3 7} \%$
VOC 2010	30.13%	$\mathbf{3 2 . 1 4 \%}$

Are the differences just due to chance?

- Idea 1: mean/std.err.: 40.6 ± 20.4 vs. 42.9 ± 19.8

Significance Using Multiple Datasets

Standard procedure in Machine Learning research:

- develop a new method
- compare it to results of previous methods on standard benchmarks

	HCRF	Our
SIFT-flow	31.22%	$\mathbf{2 7 . 7 3} \%$
MSRC-21	78.89%	$\mathbf{8 1 . 1 1} \%$
VOC 2008	20.13%	$\mathbf{3 0 . 1 2} \%$
VOC 2009	42.43%	$\mathbf{4 3 . 3 7} \%$
VOC 2010	30.13%	$\mathbf{3 2 . 1 4 \%}$

"HCRF" method is better	1
"Our" method is better	4
both methods are equal	0

Are the differences just due to chance?

- Idea 1: mean/std.err.: 40.6 ± 20.4 vs. 42.9 ± 19.8
- Idea 2: sign test (like binomial before): binom_test $(1,5)=0.375$

Significance Using Multiple Datasets

Standard procedure in Machine Learning research:

- develop a new method
- compare it to results of previous methods on standard benchmarks

	HCRF	Our
SIFT-flow	31.22%	$\mathbf{2 7 . 7 3} \%$
MSRC-21	78.89%	$\mathbf{8 1 . 1 1} \%$
VOC 2008	20.13%	$\mathbf{3 0 . 1 2} \%$
VOC 2009	42.43%	$\mathbf{4 3 . 3 7} \%$
VOC 2010	30.13%	$\mathbf{3 2 . 1 4 \%}$

"HCRF" method is better	1
"Our" method is better	4
both methods are equal	0

Are the differences just due to chance?

- Idea 1: mean/std.err.: 40.6 ± 20.4 vs. 42.9 ± 19.8
- Idea 2: sign test (like binomial before): binom_test $(1,5)=0.375$
- Idea 3: take differences into account, not just the sign
- H_{0} : differences have a symmetric distribution around zero

Wilcoxon signed rank test

Given: real values a_{1}, \ldots, a_{m} and b_{1}, \ldots, b_{m}

- drop all cases with $a_{i}=b_{i}$, call the remaining number of pairs k
- compute $\delta_{i}=\left|a_{i}-b_{i}\right|$ and $s_{i}=\operatorname{sign}\left(a_{i}-b_{i}\right)$
- sort elements from smallest to larges δ_{i}
- compute rank, R_{i}, of each δ_{i}, ties get average of covered ranks
- compute statistics (sum of signed ranks)

$$
W=\sum_{i=1}^{k} s_{i} R_{i}
$$

compare value to table, $W_{\text {critical, }}$ (large k : Gaussian approximation)
"HCRF" vs. "Our" example (5 datasets):
$\bullet A=[31.22,78.89,20.13,42.43,30.13]$
$B=[27.73,81.11,30.12,43.37,32.14]$

- scipy.stats.wilcoxon $(A, B)=0.35$

Wilcoxon signed rank test

Given: real values a_{1}, \ldots, a_{m} and b_{1}, \ldots, b_{m}

Class ID	Name	Number of samples (training)	Classification rate (\%) Proposed method	
	Proposed method with CA			
2	$10 \mathrm{~K}(\mathrm{FT})$	$900(100)$	99.00	99.50
3	$10 \mathrm{~K}(\mathrm{FB})$	$900(100)$	98.25	100.00
4	$10 \mathrm{~K}(\mathrm{BT})$	$900(100)$	98.25	99.88
5	$10 \mathrm{~K}(\mathrm{BB})$	$900(100)$	97.88	99.75
6	$5 \mathrm{~K}(\mathrm{FT})$	$900(100)$	94.00	100.00
7	$5 \mathrm{~K}(\mathrm{BT})$	$900(100)$	98.38	99.75
8	$5 \mathrm{~K}(\mathrm{BB})$	$900(100)$	94.25	97.00
9	$1 \mathrm{~K}(\mathrm{FT})$	$900(100)$	97.00	98.25
10	$1 \mathrm{~K}(\mathrm{FB})$	$900(100)$	95.13	99.63
11	$1 \mathrm{~K}(\mathrm{BT})$	$900(100)$	93.75	99.75
12	$1 \mathrm{~K}(\mathrm{BB})$	$900(100)$	95.13	99.00

- mean/std.err.: 96.5 ± 1.84, mean 2: 99.27 ± 0.86
- sign test: $+: 12=: 0 \quad-: 0, \quad$ binom_test $(0,12)=0.0005$
- signed rank test: wilcoxon (A,B) $=0.0022$

Beyond Binary Classification

Multiclass Classification - One-versus-rest reduction

Classification problems with M classes:

- Training samples $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathcal{X}$,
- Training labels $\left\{y_{1}, \ldots, y_{n}\right\} \subset\{1, \ldots, M\}$,
- Task: learn a prediction function $f: \mathcal{X} \rightarrow\{1, \ldots, M\}$.

Multiclass Classification - One-versus-rest reduction

Classification problems with M classes:

- Training samples $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathcal{X}$,
- Training labels $\left\{y_{1}, \ldots, y_{n}\right\} \subset\{1, \ldots, M\}$,
- Task: learn a prediction function $f: \mathcal{X} \rightarrow\{1, \ldots, M\}$.

One-versus-rest construction:

- train one binary classifier $g_{c}: \mathcal{X} \rightarrow \mathbb{R}$ for each class c :
- all samples with class label c are positive examples
- all other samples are negative examples
- classify by finding maximal response

$$
f(x)=\underset{c=1}{\operatorname{argmax}} g_{c}(x)
$$

Advantage: easy to implement, parallel, works well in practice
Disadvantage: with many classes, training sets become unbalanced. no explicit calibration of scores between different g_{c}

Multiclass Classification - All-versus-all reduction

Classification problems with M classes:

- Training samples $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathcal{X}$,
- Training labels $\left\{y_{1}, \ldots, y_{n}\right\} \subset\{1, \ldots, M\}$,
- Task: learn a prediction function $f: \mathcal{X} \rightarrow\{1, \ldots, M\}$.

Multiclass Classification - All-versus-all reduction

Classification problems with M classes:

- Training samples $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathcal{X}$,
- Training labels $\left\{y_{1}, \ldots, y_{n}\right\} \subset\{1, \ldots, M\}$,
- Task: learn a prediction function $f: \mathcal{X} \rightarrow\{1, \ldots, M\}$.

All-versus-all construction:

- train one classifier, $g_{i j}: \mathcal{X} \rightarrow \mathbb{R}$, for each pair of classes
$1 \leq i<j \leq M$, in total $\frac{m(m-1)}{2}$ prediction functions
- classify by voting

$$
f(x)=\underset{m=1, \ldots, M}{\operatorname{argmax}} \#\left\{i \in\{1, \ldots, M\}: g_{m, i}(x)>0\right\},
$$

(writing $g_{j, i}=-g_{i, j}$ for $j>i$ and $g_{j, j}=0$)
Advantage: small and balanced training problems, parallel, works well.
Disadvantage: number of classifiers grows quadratically in classes.

Multiclass Classification - Hierarchical

Classification problems with M classes:

- Training samples $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathcal{X}$,
- Training labels $\left\{y_{1}, \ldots, y_{n}\right\} \subset\{1, \ldots, M\}$,
- Task: learn a prediction function $f: \mathcal{X} \rightarrow\{1, \ldots, M\}$.

Hierarchical (tree) construction:

- construct binary tree with classes at leafs
- learn one classifier for each decision

Advantage: at most $\left\lceil\log _{2} M\right\rceil$ classifier evaluation at test time Disadvantage: not parallel, not robust to mistakes at any stage

Multiclass Classification - Error Correcting Output Codes

Classification problems with M classes:

- Training samples $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathcal{X}$,
- Training labels $\left\{y_{1}, \ldots, y_{n}\right\} \subset\{1, \ldots, M\}$,
- Task: learn a prediction function $f: \mathcal{X} \rightarrow\{1, \ldots, M\}$.

Define a binary codeword for each class

- one classifier for codeword entry
- classify by comparing predictions to code words (exact or in some norm)

Advantage: parallel, trade off between speed and robustness
Disadvantage: optimal code design NP-hard

A Multiclass Support Vector Machines

- \mathcal{X} anything, $\mathcal{Y}=\{1,2, \ldots, M\}$,
- feature $\operatorname{map} \phi: \mathcal{X} \rightarrow \mathcal{H}$ (explicit or implicit via kernel)
- training data $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- goal: learn functions $g_{i}(x)=\left\langle w_{i}, \phi(x)\right\rangle$ for $i=1, \ldots, M$.

Enforce a margin between the correct and highest-ranked incorrect label:

$$
\min _{w, \xi} \frac{1}{2} \sum_{k=1}^{M}\left\|w_{k}\right\|^{2}+\frac{C}{n} \sum_{i=1}^{n} \xi^{i}
$$

subject to, for $i=1, \ldots, n$,

$$
\left\langle w_{y^{i}}, \phi\left(x^{i}\right)\right\rangle \geq 1+\left\langle w_{k}, \phi\left(x^{i}\right)\right\rangle-\xi^{i}, \quad \text { for all } k \neq y_{i}
$$

Prediction: $\quad f(x)=\underset{k=1, \ldots, M}{\operatorname{argmax}}\left\langle w_{k}, \phi(x)\right\rangle$
Crammer-Singer Multiclass SVM

A Multiclass Support Vector Machines

Many different option for multi-class SVMs:

- One-versus-Rest
- One-versus-One
- ECOC
- Crammer-Singer

Which one is the best?

A Multiclass Support Vector Machines

Many different option for multi-class SVMs:

- One-versus-Rest
- One-versus-One
- ECOC
- Crammer-Singer
- ...

Which one is the best?

None (or all of them)!

- there's dozens of studies, they all disagree
- use whatever is available
- to implement yourself, One-versus-Rest is most popular, since it's simplest

More Kernel-Methods

Kernels are useful for many other things besides SVMs:

Any algorithm that uses the data only in form of inner products can be kernelized.

How to kernelize an algorithm:

- Write the algorithms in terms of only inner products.
- Replace all inner products by kernel function evaluations.

The resulting algorithm will do the same as the linear version, but in the (hidden) feature space \mathcal{H}.

Caveat: working in \mathcal{H} is not a guarantee for better performance.
A good choice of k and model-selection are important!

Linear Regression

Given samples $x_{i} \in \mathbb{R}^{d}$ and function values $y_{i} \in \mathbb{R}$. Find a linear function $f(x)=\langle w, x\rangle$ that approximates the values.

Interpolation error:

$$
e_{i}:=\left(y_{i}-\left\langle w, x_{i}\right\rangle\right)^{2}
$$

Solve for $\lambda \geq 0$:
$\min _{w \in \mathbb{R}^{n}} \sum_{i} e_{i}+\lambda\|w\|^{2}$

Linear Regression

Given samples $x_{i} \in \mathbb{R}^{d}$ and function values $y_{i} \in \mathbb{R}$. Find a linear function $f(x)=\langle w, x\rangle$ that approximates the values.

Interpolation error:

$$
e_{i}:=\left(y_{i}-\left\langle w, x_{i}\right\rangle\right)^{2}
$$

Solve for $\lambda \geq 0$:

$$
\min _{w \in \mathbb{R}^{n}} \sum_{i} e_{i}+\lambda\|w\|^{2}
$$

Very popular, because it has a closed form solution!

$$
w=X\left(\lambda I_{n}+X^{\top} X\right)^{-1} y
$$

with I_{n} is the $n \times n$ identity matrix, $X=\left(x_{1}, \ldots, x_{n}\right)^{\top}$ is the data matrix, $y=\left(y_{1}, \ldots, y_{n}\right)^{\top}$ is the target vector.

Linear Regression

Given samples $x_{i} \in \mathbb{R}^{d}$ and function values $y_{i} \in \mathbb{R}$. Find a linear function $f(x)=\langle w, x\rangle$ that approximates the values.

Interpolation error:

$$
e_{i}:=\left(y_{i}-\left\langle w, x_{i}\right\rangle\right)^{2}
$$

Solve for $\lambda \geq 0$:

$$
\min _{w \in \mathbb{R}^{n}} \sum_{i} e_{i}+\lambda\|w\|^{2}
$$

Very popular, because it has a closed form solution!

$$
w=X\left(\lambda I_{n}+X^{\top} X\right)^{-1} y
$$

with I_{n} is the $n \times n$ identity matrix, $X=\left(x_{1}, \ldots, x_{n}\right)^{\top}$ is the data matrix, $y=\left(y_{1}, \ldots, y_{n}\right)^{\top}$ is the target vector.

Linear Regression

Given samples $x_{i} \in \mathbb{R}^{d}$ and function values $y_{i} \in \mathbb{R}$. Find a linear function $f(x)=\langle w, x\rangle$ that approximates the values.

Interpolation error:

$$
e_{i}:=\left(y_{i}-\left\langle w, x_{i}\right\rangle\right)^{2}
$$

Solve for $\lambda \geq 0$:

$$
\min _{w \in \mathbb{R}^{n}} \sum_{i} e_{i}+\lambda\|w\|^{2}
$$

Very popular, because it has a closed form solution!

$$
w=X\left(\lambda I_{n}+X^{\top} X\right)^{-1} y
$$

with I_{n} is the $n \times n$ identity matrix, $X=\left(x_{1}, \ldots, x_{n}\right)^{\top}$ is the data matrix, $y=\left(y_{1}, \ldots, y_{n}\right)^{\top}$ is the target vector.

Nonlinear Regression

Given $x_{i} \in \mathcal{X}, y_{i} \in \mathbb{R}, i=1, \ldots, n$, and $\phi: \mathcal{X} \rightarrow \mathcal{H}$. Find an approximating function $f(x)=\langle w, \phi(x)\rangle_{\mathcal{H}} \quad$ (non-linear in x, linear in w). Interpolation error:

$$
e_{i}:=\left(y_{i}-\left\langle w, \phi\left(x_{i}\right)\right\rangle_{\mathcal{H}}\right)^{2}
$$

Solve for $\lambda \geq 0$:

$$
\min _{w \in \mathbb{R}^{n}} \sum_{i} e_{i}+\lambda\|w\|^{2}
$$

Nonlinear Regression

Given $x_{i} \in \mathcal{X}, y_{i} \in \mathbb{R}, i=1, \ldots, n$, and $\phi: \mathcal{X} \rightarrow \mathcal{H}$. Find an approximating function $f(x)=\langle w, \phi(x)\rangle_{\mathcal{H}} \quad$ (non-linear in x, linear in w). Interpolation error:

$$
e_{i}:=\left(y_{i}-\left\langle w, \phi\left(x_{i}\right)\right\rangle_{\mathcal{H}}\right)^{2}
$$

Solve for $\lambda \geq 0$:

$$
\min _{w \in \mathbb{R}^{n}} \sum_{i} e_{i}+\lambda\|w\|^{2}
$$

Closed form solution is still valid:

$$
w=\Phi\left(\lambda I_{n}+\Phi^{\top} \Phi\right)^{-1} y
$$

with I_{n} is the $n \times n$ identity matrix, $\Phi=\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)\right)^{\top}$.

Example: Kernel Ridge Regression

What if \mathcal{H} and $\phi: \mathcal{X} \rightarrow \mathcal{H}$ are given implicitly by kernel function?
We cannot store the closed form solution vector $w \in \mathcal{H}$:

$$
w=\Phi\left(\lambda I_{n}+\Phi^{\top} \Phi\right)^{-1} y
$$

but we can still calculate $f: \mathcal{X} \rightarrow \mathbb{R}$:

$$
\begin{aligned}
f(x) & =\langle w, \phi(x)\rangle \\
& =\langle\Phi(\lambda I_{n}+\underbrace{\Phi^{\top} \Phi}_{=K})^{-1} y, \phi(x)\rangle \\
& =y^{\top}\left(\lambda I_{n}+K\right)^{-1} \kappa(x)
\end{aligned}
$$

where $\kappa(x)=\left(k\left(x_{1}, x\right), \ldots, k\left(x_{n}, x\right)\right)^{\top}$.

Kernel Ridge Regression

Nonlinear Regression

Like Least-Squared Regression, (Kernel) Ridge Regression is sensitive to outliers:

because the quadratic loss function penalized large residue.

Nonlinear Regression

Support Vector Regression with ϵ-insensitive loss is more robust:

Support Vector Regression

Optimization problem similar to support vector machine:

$$
\min _{\substack{w \in \mathcal{H}, \xi_{1}, \ldots, \xi_{n} \in \mathbb{R}^{+}, \xi^{\prime}, \ldots, \xi^{\prime} \in \mathbb{R}^{+}}}\|w\|^{2}+C \sum_{i=1}^{n}\left(\xi_{i}+\xi_{i}^{\prime}\right)
$$

subject to

$$
\begin{array}{ll}
y_{i}-\left\langle w, \phi\left(x_{i}\right)\right\rangle \leq \epsilon+\xi_{i}, & \text { for } i=1, \ldots, n \\
\left\langle w, \phi\left(x_{i}\right)\right\rangle-y_{i} \leq \epsilon+\xi_{i}^{\prime}, & \text { for } i=1, \ldots, n
\end{array}
$$

Dualization (or the "Representer Theorem") tell us that $w=\sum_{j} \alpha_{j} \phi\left(x_{j}\right)$.

Support Vector Regression

Optimization problem similar to support vector machine:

$$
\min _{\substack{\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}, \xi_{1}, \ldots, \xi_{n} \in \mathbb{R}^{+}, \xi_{1}^{\prime}, \ldots, \xi_{n}^{\prime} \in \mathbb{R}^{+}}} \quad \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j}\left\langle\phi\left(x_{i}\right), \phi\left(x_{j}\right)\right\rangle+C \sum_{i=1}^{n}\left(\xi_{i}+\xi_{i}^{\prime}\right)
$$

subject to

$$
\begin{array}{ll}
y_{i}-\sum_{j} \alpha_{j}\left\langle\phi\left(x_{j}\right), \phi\left(x_{i}\right)\right\rangle \leq \epsilon+\xi_{i}, & \text { for } i=1, \ldots, n \\
\sum_{j} \alpha_{j}\left\langle\phi\left(x_{j}\right), \phi\left(x_{i}\right)\right\rangle-y_{i} \leq \epsilon+\xi_{i}^{\prime}, & \text { for } i=1, \ldots, n
\end{array}
$$

Rewrite in terms of kernel evaluations $k\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle$.

Support Vector Regression

Optimization problem similar to support vector machine:

$$
\min _{\substack{\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}, \xi_{1}, \ldots, \xi_{n} \in \mathbb{R}^{+}, \xi_{1}^{\prime}, \ldots, \xi_{n}^{\prime} \in \mathbb{R}^{+}}} \quad \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} k\left(x_{i}, x_{j}\right)+C \sum_{i=1}^{n}\left(\xi_{i}+\xi_{i}^{\prime}\right)
$$

subject to

$$
\begin{array}{ll}
y_{i}-\sum_{j} \alpha_{j} k\left(x_{j}, x_{i}\right) \leq \epsilon+\xi_{i}, & \text { for } i=1, \ldots, n \\
\sum_{j} \alpha_{j} k\left(x_{j}, x_{i}\right)-y_{i} \leq \epsilon+\xi_{i}^{\prime}, & \text { for } i=1, \ldots, n
\end{array}
$$

Regression function

$$
f(x)=\langle w, \phi(x)\rangle=\sum_{j} \alpha_{j} k\left(x_{j}, x\right)
$$

Example - Head Pose Estimation

- Detect faces in image
- Compute gradient representation of face region
- Train support vector regression for yaw, tilt (separately)

(a) Sample frames of a test sequence

(b) Yaw estimation

(c) Tilt estimation
[Li, Gong, Sherra, Liddell, "Support vector machine based multi-view face detection and recognition", IVC 2004]

Outlier/Anomaly Detection in \mathbb{R}^{d}

For unlabeled data, we are interested to detect outliers, i.e. samples that lie far away from most of the other samples.

- For samples x_{1}, \ldots, x_{n} find the smallest ball (center c, radius R) that contains "most" of the samples.

Outlier/Anomaly Detection in \mathbb{R}^{d}

For unlabeled data, we are interested to detect outliers, i.e. samples that lie far away from most of the other samples.

- For samples x_{1}, \ldots, x_{n} find the smallest ball (center c, radius R) that contains "most" of the samples.
- Solve

$$
\min _{R \in \mathbb{R}, c \in \mathbb{R}^{n}, \xi_{i} \in \mathbb{R}^{+}} R^{2}+\frac{1}{\nu n} \sum_{i} \xi_{i}
$$

subject to

$$
\left\|x_{i}-c\right\|^{2} \leq R^{2}+\xi_{i} \quad \text { for } i=1, \ldots, n
$$

- $\nu \in(0,1)$ upper bounds the number of "outliers".

Outlier/Anomaly Detection in Arbirary Inputs

Use a kernel $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ with an implicit feature map $\phi: \mathcal{X} \rightarrow \mathcal{H}$.
Do outlier detection for $\phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)$:

- Find the small ball (center $c \in \mathcal{H}$, radius R) that contains "most" of the samples:
- Solve

$$
\min _{R \in \mathbb{R}, c \in \mathcal{H}, \xi_{i} \in \mathbb{R}^{+}} R^{2}+\frac{1}{\nu n} \sum_{i} \xi_{i}
$$

subject to

$$
\left\|\phi\left(x_{i}\right)-c\right\|^{2} \leq R^{2}+\xi_{i} \quad \text { for } i=1, \ldots, n
$$

- Representer theorem: $c=\sum_{j} \alpha_{j} \phi\left(x_{j}\right)$, and everything can be written using only $k\left(x_{i}, x_{j}\right)$.

Support Vector Data Description

Example - Steganalysis

- Steganography: hide data in other data (e.g. in images)
- e.g.: flip some least significant bits
- Steganalysis: given any data, find out if data is hidden

original

with 23300 hidden bits
- compute image statistics (color wavelet coefficients)
- train SVDD with RBF-kernel
- identified outlier images are suspicious candidates

