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The Holy Grail of Statistical Machine Learning

Inferring the test error
from the training error

Generalization Bound
For every f ∈ H it holds:

E
(x,y)

`(y, f (x))︸ ︷︷ ︸
generalization loss

≤ 1
n
∑

i
`(yi , f (xi))︸ ︷︷ ︸

training loss

+ ?

Image: http://typemoon.wikia.com/
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X : input set, Y = {0, 1}, `(y, y′) = Jy 6= y′K, p(x, y): data distribution
H: hypothesis class of finite VC-dimension, VC(H)

Theorem (VC bound – realizable case)

If labels are deterministic with a labeling function f ∈ H, then the
following inequality holds with probability at least 1− δ (over Dm

i.i.d.∼ p)
for all h ∈ H with R̂Dm (h) = 0:

Rp(h) ≤ 1
m
(

log VC(H) + log 1
δ

)

Theorem (VC bound – general case)

For arbitrary p(x, y) the following inequality holds with probability at
least 1− δ (over Dm

i.i.d.∼ p) for all h ∈ H:

Rp(h) ≤ R̂m(h) +

√
8VC(H) log 2em

VC(H) + 8 log 4
δ

m
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Reminder: (soft-margin) support vector machine (SVM):

minw
λ

2 ‖w‖
2 + 1

m
∑

i
max{0, 1− yi〈w, xi〉}

Theorem (SVM radius/margin bound)

Let `(x, y; w) := max{0, 1− y〈w, x〉} be the hinge loss. Let p be a
distribution on X × Y such that Pr{ ‖x‖ ≤ R } = 1 and let
H = {w : ‖w‖ ≤ B}.
Then, with prob. at least 1− δ over Dm

i.i.d.∼ p the following inequality
holds for all w ∈ H:

Pr{sign〈w, x〉 6= y} ≤ 1
m

m∑
i=1

`(xi , yi ,w) + 2BR√
m +

√
log 1

δ

2m .

Almost perfect justification of SVMs:
• uniform in w, i.e. holds even for minimizer of r.h.s.
• B is a upper bound on ‖w‖ → small ‖w‖ are most promising
• dimensionality of x does not show up! also holds for kernels 4 / 14



Reminder: hard-margin SVM:
minw ‖w‖2 subject to yi〈w, xi〉 ≥ 1 for i = 1, . . . ,n.

Theorem (SVM hard margin bound)

Let p be a distribution on X ×Y with Pr{ ‖x‖ ≤ R } = 1 for which there
exists w∗ with Pr{ y〈w∗, x〉 ≤ 1} = 1 (linearly separable with a margin).
Let wS be the solution to the hard-margin SVM problem. Then, with
prob. at least 1− δ over Dm

i.i.d.∼ p(x, y) the following inequality holds:

Pr{sign〈wS , x〉 6= y} ≤ 2R‖w∗‖√
m +

√
log(1/δ)

2m

Also, with prob. 1− δ, the following inequality holds

Pr{sign〈wS , x〉 6= y} ≤ 4R‖wS‖√
m +

√
log(4 log2(‖wS‖)

δ )
2m

(stronger versions are possible where r.h.s scales like 1
m instead of 1√

m )5 / 14



Towards Modern Generalization Bounds

We need more modern measure of complexity than VC dimension:
• Z: set (later: Z = X or Z = X × Y)
• p(z): probability distribution over Z
• F ⊆ {f : Z → R}: set of real valued functions

Definition
Let F = {f : Z → R} be a set of real-valued functions and
Dm = {z1, . . . , zm} a finite set. The empirical Rademacher
complexity of F with respect to Dm is defined as

R̂Dm (F) = E
σ

[
sup
f∈F

(
1
m

m∑
i=1

σi f (zi)
)]

where σ1, . . . , σm are independent binary random variables with
p(+1) = p(−1) = 1

2 (called Rademacher variables).

Note: R̂Dm is a data-dependent complexity measure (it depends on Dm)
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Intuition: think of σi as random noise. The sup measures how well the
function can correlate to arbitrary values (=memorize random noise).

Example
Let F = {f } (a single function). Then, for any m,

R̂Dm (F) = E
σ

(
1
m

m∑
i=1

σi f (zi)
)

= 1
m

m∑
i=1

E
σ

[σi ]f (zi) = 0

Example
Let F = {f : Z → [−B,B]} all bounded functions. Then, when there are
no duplicates in D,

R̂Dm (F) = E
σ

supf∈F

(
1
m

m∑
i=1

σi f (zi)
)

f (zi)=Bσi= E
σ

1
m

m∑
i=1

B = E
σ

B = B

(same argument would work, e.g., for piecewise linear functions)
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Example
Let F = {f1, . . . , fK} with fi : X → [−B,B] for i = 1, . . . ,K (finitely
many bounded function). Then

R̂Dm (F) ≤ B

√
2 log K

m

Proof: textbook

Example
Let F = {f = w>z : Rd → R} with ‖w‖ ≤ B all linear functions with
bounded slope. If m > d, then z1, . . . , zm are linearly dependent and sup
can’t fit all possible signs → R̂Dm (F) will decrease with m.

(we’ll prove a more rigorous statement later)
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Useful properties:

Lemma
For F ⊂ RX let F ′ := {f + f0 : f ∈ F} be a translated version for some
f0 : X → R . Then, for any m,

R̂Dm (F ′) = R̂Dm (F)

Lemma
For F ⊂ RX let F ′ := {λf : f ∈ F} be scaled by a constant λ ∈ R.
Then, for any m,

R̂Dm (F ′) = λR̂Dm (F)

Lemma
For F ⊂ RX and φ : R→ R let F ′ := {φ ◦ f : f ∈ F}. If φ is L-Lipschitz
continuous, i.e. |φ(t)− φ(t ′)| ≤ L|t − t ′|, then for any m,

R̂Dm (F ′) ≤ L · R̂Dm (F)
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Lemma
Let Z be a Hilbert space (e.g. Rd , or given by a kernel). Let
F = {f = 〈w, z〉 : Z → R} be linear functions with ‖w‖ ≤ B.
Let F = {f = 〈w, z〉 : X → R} be the set of linear functions with
‖w‖ ≤ B. Then for any Dm = {z1, . . . , zm}

R̂Dm (F) = B
m

√∑
i
‖zi‖2

If 〈·, ·〉 is given by a kernel k : X × X → R, then

R̂Dm (F) = B
m

√
trace(K ).

where K ∈ Rm×m is the kernel matrix, kij = k(zi , zj) = 〈zi , zj〉.

Proof: blackboard/notes
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Definition
The Rademacher complexity of F is defined as

Rm(F) = E
Dm

[ R̂Dm (F) ]

Note: in general Rm is a distribution-dependent quantity (w.r.t. p).

In some cases one can derive convenient upper bounds:
Lemma
Let F = {f = 〈w, z〉 : X → R} be linear functions with ‖w‖ ≤ B and let
p be such that Pr{‖z‖ < R} = 1 Then

Rm(F) ≤ BR
√

1
m

Proof: use that R̂Dm (F) ≤ B
m
√

mR2 with prob. 1.

Example: kernels of the form e−d(x,x′) (e.g. Gaussian) fulfill ‖z‖2 ≤ 1.
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Slightly more general notation:
• loss function ` : X × Y ×H → R, e.g. `(x, y, h) = Jh(x) 6= yK,
`(x, y, h) = (h(x)− y)2, `(x, y, h) = max{0, 1− yh(x)}, etc.

• R`p(h) = E(x,y)∼p `(x, y, h), R̂`Dm (h) = 1
m
∑m

i=1 `(xi , yi , h)

Theorem
Rademacher-based generalization bound Let `(x, y, h) ≤ c be a bounded
loss function and for a hypothesis set H ⊂ RX let F = {` ◦ h : h ∈ H}.
Then, with prob. at least 1− δ, it holds for all h ∈ H:

R`p(h)− R̂`Dm (h) ≤ 2Rm(F) + c

√
log(1/δ)

2m .

Proof. blackboard/notes �
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Example (Hard-margin SVM)

• ‖x‖ ≤ R with probability 1
• H = {h(x) = 〈w, x〉 : ‖w‖ ≤ B} for B that we’ll specify later
• ramp-loss: `(x, y, h) = min{ max{0, 1− y〈w, x〉}, 1 } ∈ [0, 1]
• ` is an upper bounds to the 0/1 error

Pr{h(x) 6= y} = R0/1
p (h) ≤ R`p(h)

• hard-margin h fulfills yi〈w, xi〉 ≥ 1 for i = 1, . . . ,m: R̂`Dm (h) = 0
• ` is 1-Lipschitz, i.e. for F = {` ◦ h : h ∈ H}:

Rm(F) ≤ Rm(H) ≤ BR
√

1
m

• B = ‖w∗‖ ensures that hard-margin SVM hS ∈ H.

With prob. 1− δ: Pr{hS(x) 6= y} ≤ 2R‖w∗‖√
m +

√
log(1/δ)

2m
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Example (Soft-margin SVM)

• ‖x‖ ≤ R with probability 1
• H = {h(x) = 〈w, x〉 : ‖w‖ ≤ B} for fixed B
• hinge loss: `(x, y, h) = max{0, 1− y〈w, x〉} ∈ [0, 1 + BR]
• ` is 1-Lipschitz, i.e. for F = {` ◦ h : h ∈ H}:

Rm(F) ≤ Rm(H) ≤ BR
√

1
m

• ` is an upper bounds to the 0/1 error

Pr{h(x) 6= y} = R0/1
p (h) ≤ R`p(h)

With prob. 1− δ for every w ∈ H:

Pr{sign〈w, x〉 6= y} ≤ 1
m

m∑
i=1

max{0, 1− yi〈w, xi}+ 2RB√
m +

√
log(1/δ)

2m
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