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The Holy Grail of Statistical Machine Learning

Inferring the test error

from the training error

Image: http://typemoon.wikia.com/
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The Holy Grail of Statistical Machine Learning

Inferring the test error
from the training error

For every f € H it holds:

E fnf@) < S tuf@) +

—_——
generalization loss training loss

(
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X: input set, Y = {0,1}, (y,v') = [y # ¢, p(z,y): data distribution
H: hypothesis class of finite VC-dimension, VC(H)

Theorem (VC bound - realizable case)

If labels are deterministic with a labeling function f € H, then the

following inequality holds with probability at least 1 — & (over D,, i p)
for all h € H with Rp,, (h) = 0:

1
( log VC(H) + log -

1
m

Theorem (VC bound — general case)

For arbitrary p(z, y) the followmg inequality holds with probability at
least 1 — ¢ (over Dy, 3 "p) for all h € H:

. 8VC(H)log 22 + 8log 3
n VC(H) s
m

m
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Reminder: (soft-margin) support vector machine (SVM):

LA 1
min, Gllwl®+ -3 max{0,1 - yi(w,z)}
7

Theorem (SVM radius/margin bound)

Let ¢(z, y; w) := max{0,1 — y(w, x)} be the hinge loss. Let p be a
distribution on X x Y such that Pr{||z|| < R} =1 and let
H=A{w:|w| < B}. N

Then, with prob. at least 1 — 6 over Dy, g p the following inequality
holds for all w € H.:

1 & 2BR log%
1 < — . 5 R — .
Pr{sign(w, z) # y} ; 1£(xz, yi, w) + T + 5

Almost perfect justification of SVMs:
uniform in w, i.e. holds even for minimizer of r.h.s.
B is a upper bound on ||w|| — small ||w]|| are most promising

dimensionality of x does not show up! also holds for kernels 4/14



Reminder: hard-margin SVM:

min,, ||w||? subject to y;(w,z;) >1fori=1,... n.

Theorem (SVM hard margin bound)

Let p be a distribution on X x Y with Pr{||z|| < R} = 1 for which there
exists w* with Pr{ y(w*,z) < 1} =1 (linearly separable with a margin).
Let wg be the solution to the hard-margin SVM problem. Then, with

prob. at least 1 — § over D,, e p(z,y) the following inequality holds:

Pr{sign(wg, z) # y} < 2}3\%»4“r log(1/9)

2m

Also, with prob. 1 — 6, the following inequality holds

Toa( 108z (151D
Pr{sign{us, 2) # y} < ‘“%S”ﬂ/ LS —

2m

. . . 1 - 1
(stronger versions are possible where r.h.s scales like —- instead of \/_E)>/14



Towards Modern Generalization Bounds

We need more modern measure of complexity than VC dimension:
Z: set (later: Z=X or Z=X x )
p(z): probability distribution over Z
F C{f: Z — R}: set of real valued functions

Let F = {f : Z — R} be a set of real-valued functions and
D ={z,...,2n} a finite set. The empirical Rademacher
complexity of F with respect to D,, is defined as

Rop, (F) = lsup( Zalf 2% )]

feF
where 01,...,0p, are independent binary random variables with
p(+1) = p(— 1) = 1 (called Rademacher variables).

Note: Sfipm is a data-dependent complexity measure (it depends on D,,)
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Intuition: think of o; as random noise. The sup measures how well the
function can correlate to arbitrary values (=memorize random noise).

Example

Let F = {f} (a single function). Then, for any m,

Sip,,(F) = E (1 iaz-f(zi)) = L S Bl =0

o
m =1

Example

Let F = {f: Z — [ B, B]} all bounded functions. Then, when there are
no duplicates in D,

B Ly p_EB—B

A

1 m f Zi)=
Rp,, (F) = Esupser (m wa(%)) =
il

(same argument would work, e.g., for piecewise linear functions)



Example

Let F ={fi,....fx} with f; : X - [-B,B] for i = 1,..., K (finitely
many bounded function). Then

2log K

EAR/D’UL (F) S B
m

Proof: textbook

Example

Let F = {f = w'2z: R — R} with ||w|| < B all linear functions with
bounded slope. If m > d, then 2, ..., 2z, are linearly dependent and sup
can't fit all possible signs —  Pp,, (F) will decrease with m.

(we'll prove a more rigorous statement later)
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Useful properties:

Lemma

For F C RY let F':= {f + fy : f € F} be a translated version for some
fo: X =R . Then, for any m,

Rp,,(F) = Rp,, (F)

Lemma

For F C RY let ' := {\f : f € F} be scaled by a constant \ € R.
Then, for any m,
Rp,,(F') = A\Rp,, (F)

Lemma

For FCRY and¢:R — R let F':= {¢pof:fc F}. Ifis L-Lipschitz
continuous, i.e. |p(t) — ¢(t')| < L|t — t'|, then for any m,

Rp,,(F) < L-Rp,, (F)
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Lemma

Let Z be a Hilbert space (e.g. RY, or given by a kernel). Let
F={f=(w,z): Z — R} be linear functions with ||w| < B.
Let F = {f = (w, z) : X — R} be the set of linear functions with
|lw|| < B. Then for any D, = {z1,...,2m}

o, (F) = = 3 [

If (-,-) is given by a kernel k: X x X — R, then

Rp, (F) = %\/trace(K).

where K € R™*™ s the kernel matrix, ki = k(z;, 2j) = (2, %j).

Proof: blackboard/notes
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Definition

The Rademacher complexity of F is defined as

Rl F) = E [, (F) ]

Note: in general R, is a distribution-dependent quantity (w.r.t. p).

In some cases one can derive convenient upper bounds:

Lemma

Let F = {f = (w, z) : X — R} be linear functions with ||w|| < B and let
p be such that Pr{||z|]| < R} =1 Then

R (F) < BR\/g

Proof: use that Rp, (F) < L /mR? with prob. 1.

Example: kernels of the form e~ (%:%") (e.g. Gaussian) fulfill ||z[|? < 1.
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Slightly more general notation:

loss function ¢ : X x Y x H — R, eg. l(z,y,h)=[h(z) # y],
(z,y,h) = (h(z) —y)*, {(z,y,h) = max{0,1 — yh(z)}, etc.

RE(R) =By ymp Uz, . h), RE (h) = L ST (4, 94, h)

Theorem

Rademacher-based generalization bound Let ¢(z,y, h) < ¢ be a bounded
loss function and for a hypothesis set H C R let F = {foh:h & H}.
Then, with prob. at least 1 — 6, it holds for all h € H.:

log(1/0) -

¢ 50
Rp(h) = Rp,,(h) < 2R, (F) + ¢ o

Proof. blackboard/notes O

12 /14



Example (Hard-margin SVM)

|z|| < R with probability 1

H = {h(z) = (w,z) : |w|| < B} for B that we'll specify later
ramp-loss: ¢(z,y, h) = min{ max{0,1 — y(w,z)}, 1 } € [0,1]
¢ is an upper bounds to the 0/1 error

Pr{h(z) # y} = RY/' (h) < Ry (h)

hard-margin h fulfills y;(w, ;) > 1 for i=1,...,m: R% (h) =0
¢ is 1-Lipschitz, i.e. for F ={foh:h e H}:

Ronl(F) < Rn(H) < B -

B = ||w*|| ensures that hard-margin SVM hg € H.

: 2R[|w*|| | [log(1/0)
With . 1—94: P <
ith prob ) r{hs(z) # y} < NG + o




Example (Soft-margin SVM)

|z|| < R with probability 1
H = {h(z) = (w,z) : ||w|]| < B} for fixed B
hinge loss: ¢(z,y, h) = max{0,1 — y(w,z)} € [0,1+ BR]
¢ is 1-Lipschitz, i.e. for F = {foh:h € H}:
1
R (F) < H(H) < BRY/ =
¢ is an upper bounds to the 0/1 error
Pr{h(z) # y} = Ry/'(h) < Ry (h)
With prob. 1 — ¢ for every w € H:

Pr{sign{w, z) # y} < %Zmax{o7 1— yi(w, 2} + M\;ﬁB + log(1/6)

i=1




