Statistical Machine Learning

Christoph Lampert

Institute of Science and Technology

IST AUSTRIA

Spring Semester 2015/2016 // Lecture 11

Representation Learning

Task: *nearest-neighbor classification*, or *information retrieval* What distance to use? Euclidean might not be the best... Task: nearest-neighbor classification, or information retrieval

What distance to use? Euclidean might not be the best...

Metric Learning

Given data $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\} \subset \mathcal{X} \times \mathcal{Y}$, find a distance function, $d(x, \bar{x}) : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, such that

$$d(x_i, x_j)$$
 small \Leftrightarrow $y_i = y_j$

Special case: Mahalanobis Metric Learning

For $\mathcal{X} \subset \mathbb{R}^d$, parameterize

$$d_M^2(x,\bar{x}) = (x-\bar{x})^\top M(x-\bar{x})$$

and learn positive (semi-)definite $M \in \mathbb{R}^{d \times d}$.

Relevant Component Analysis (RCA)

Given group
$$X^1 = \{x_1^1, \dots, x_{n^1}^1\}, \dots, X^K = \{x_1^K, \dots, x_{n^K}^K\}$$

(e.g. $X^k = \{x_i : y_i = k\}$ all example of each label). Solve

$$\min_{M \geq 0} \sum_{k=1}^K \sum_{i=1}^{n^k} d_M^2(x_i^k, m^k) \text{ subject to } \det M \geq 1.$$
with $m^k = \frac{1}{n^k} \sum_{i=1}^{n^k} x_i^k.$

- pull examples of same class together
- but prevent overall volume from shrinking to 0

Disadvantages:

- optimizing over all positive definite matrices is hard
- enforces low *average distance*, but outliers might exist that hurt *k*-NN performance

Large Margin Nearest Neighbor (LMNN)

Given data $\{(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)\}\subset \mathcal{X} imes\mathcal{Y}$, solve

$$\min_{M \succeq 0, \xi \ge 0} \quad \sum_{i,j=1}^n d_M^2(x_i, x_j) + \sum_{i,j,l} \xi_{ijl}$$

subject to, for all i,j,l with $y_i=y_j\neq y_l$,

$$d_M^2(x_i, x_l) - d_M^2(x_i, x_j) \ge 1 - \xi_{ijk}$$

- pull examples together,
- but enforce examples of different classes to have larger distance from each other than examples of same class
- convex optimization problem

Disadvantages:

• optimizing over all positive definite matrices is still hard

Distance Learning, Alternative Views

Minimizing a function over the set of all positive definite matrices:

- difficult, since matrix entries must fulfill many constraints of high order (e.g. $\det M \ge 0$)
- but: set is convex, so no danger of getting stuck in local optima

Distance Learning, Alternative Views

Minimizing a function over the set of all positive definite matrices:

- difficult, since matrix entries must fulfill many constraints of high order (e.g. $\det M \ge 0$)
- but: set is convex, so no danger of getting stuck in local optima

Alternative: parameterize $M = L^{\top}L$ with $L \in \mathbb{R}^{m \times n}$

- simpler, since ${\cal M}$ automatically positive definite for any ${\cal L}$
- enforcing a low rank on M is easy, since $\mathrm{rank}(M) \leq m$
- but: non-convex objective, only local optimum might be found

Distance Learning, Alternative Views

Minimizing a function over the set of all positive definite matrices:

- difficult, since matrix entries must fulfill many constraints of high order (e.g. det M ≥ 0)
- but: set is convex, so no danger of getting stuck in local optima

Alternative: parameterize $M = L^{\top}L$ with $L \in \mathbb{R}^{m \times n}$

- simpler, since M automatically positive definite for any L
- enforcing a low rank on M is easy, since $\operatorname{rank}(M) \leq m$
- but: non-convex objective, only local optimum might be found

Other interpretation: learn a representation, $x \mapsto Lx$, because

$$d_M^2(x,\bar{x}) = (x-\bar{x})^\top M(x-\bar{x}) = (x-\bar{x})^\top L^\top L(x-\bar{x}) = (Lx-L\bar{x})^\top (Lx-L\bar{x}) = d_{Eucl}^2 (Lx,L\bar{x})$$

Representation Learning: Sparse Coding

Common problem in signal processing:

Coding

Let $D = \{d_1, \ldots, d_m\} \subset \mathbb{R}^d$ be a *dictionary*, e.g. of *typical signals*. Given $x \in \mathbb{R}^d$, find coefficients $\alpha_1, \ldots, \alpha_m$, such that

$$x \approx \sum_{j=1}^{m} \alpha_j d_j$$

Typical Cases:

no constraints on α:

$$\min_{\alpha} \|x - \sum_{j=1}^{m} \alpha_j d_j\|^2$$

 \rightarrow linear algebra, project x to span (d_1, \ldots, d_m)

Typical Cases:

• enforce *sparsity* in α

$$\min_{\alpha} \quad \sum_{j=1}^{m} |\alpha_j| \qquad \text{subject to} \quad \|x - \sum_{j=1}^{m} \alpha_j d_j\| \le \epsilon$$

or

$$\min_{\alpha} \|x - \sum_{j=1}^{m} \alpha_j d_j\|^2 + \lambda \sum_{j=1}^{m} |\alpha_j|$$

called Sparse Coding,

- popular, e.g., in Neuroscience
 - α_j are neuron firing rates,
 - sparsity expresses that at every time only a few neurons fire

Representation Learning: Sparse Coding

What, if we don't know $D = \{d_1, \ldots, d_m\} \subset \mathbb{R}^d$? Learn it from data!

Dictionary Learning

Given x_1, \ldots, x_n :

$$\min_{\alpha,D} \sum_{i=1}^{n} \|x_i - \sum_{j=1}^{m} \alpha_j^i d_j\|^2 + \lambda \sum_{j=1}^{m} |\alpha_j|$$

Solve by alternating optimization

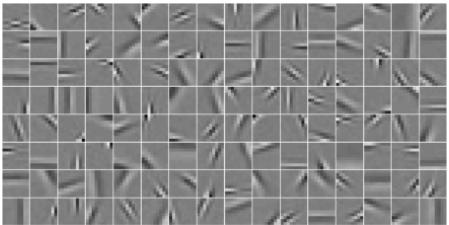
- initialize D (e.g. random elements x_i)
- repeat
 - \blacktriangleright solve for α with fixed D
 - solve for D with fixed α
- until convergence

Convergences to local optimum, multiple restarts for better results

Example: Dictionary Learning

For x_1, \ldots, x_n image patches.

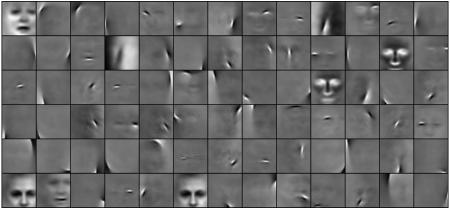
Learned dictionary:



(claim: human visual system has similar representation)

For x_1, \ldots, x_n images of faces.

Learned dictionary:



(used, e.g., in face recognition systems)

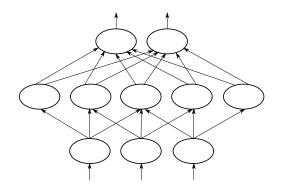
Deep Learning

"Artificial Neural Network" aka "Deep Learning"

Artificial Neural Network have been proposed as promising models to achieve artificial intelligence since the 1950s.

Main idea:

- stack layers of simple elements ("neurons")
- (part of) one layer's output is the next layer's input.



Models differ in:

- network topology (number of layers and neurons, connectivity)
- neuron output (binary or real-valued)
- parameterization of each neuron

"Artificial Neural Network" aka "Deep Learning"

Main step: end-to-end training across L layers

$$f(x) = h_L \circ g_L \cdots \circ h_1 \circ g_1(x)$$

where

- each $g_l : \mathbb{R}^{d_{l-1}} \to \mathbb{R}^{d_l}$ is linear, i.e. $g_l(x) = W_l x$ for $W_l \in \mathbb{R}^{d_l \times d_{l-1}}$
- each $h_l : \mathbb{R}^{d_l} \to \mathbb{R}^{d_l}$ is non-linear but acts componentwise, e.g.

$$h_l(z) = (\sigma(z[1]), \ldots, \sigma(z[l]))$$

for
$$\sigma(t) = \tanh(t)$$
 or $\sigma(t) = \max\{0,t\}$ or $\sigma(t) = \frac{1}{1+e^{-t}}$

Trained end-to-end by minimizing a loss function:

$$\min_{W_1,...,W_L} \quad \sum_{i=1}^n \ell(y_i,f(x_i))$$

- typically: stochastic gradient descent (with mini-batches).
- organize computations efficiently: backpropagation algorithmic

Example 1: Deep Autoencoder Networks [Hinton et al, 2006]

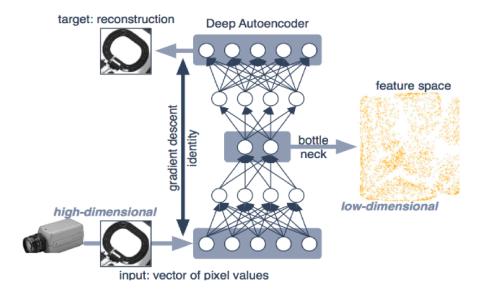


Image: http://wiki.ldv.ei.tum.de

Example 1: Deep Autoencoder Networks [Hinton et al, 2006]

Given: data $\{x^1, \ldots, x^n\} \subset \mathbb{R}^d$

Goal: learn a new data representation, $\phi : \mathbb{R}^d \to \mathbb{R}^{d'}$

• symmetric topology, (2K + 1) layers, layer k and 2K + 2 - k are mirrored copies of each other

layers are fully connected to each other

- number of neuron per layer decreases from outer to inner layers
- each neuron i is a *stochastic* binary function, f_i , of its input x:

$$\begin{split} p(f_i = 1 | x) &= \frac{1}{1 + \exp(-a_i)} \qquad \text{sigmoid (logistic function)} \\ \text{with} \quad a_i(x) &= \sum_j w_{ij} x_j + b_j \qquad \text{"activation"} \end{split}$$

• objective is reconstruction error, $\sum_i \|x^i - F(x^i)\|^2$ (non-convex)

- first, train each layer as separate auto-encoder
- then, train jointly by gradient descent
- also possible: binary-valued outputs ("restricted Boltzman machine")
- after training, *middle layer* is new data representation

Demo: http://dpkingma.com/sgvb_mnist_demo/demo.html

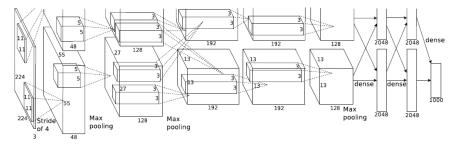
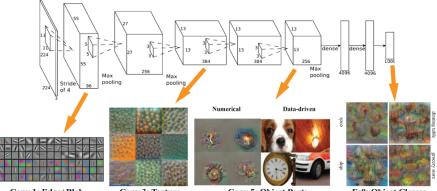


Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

[Krizhevsky et al, "ImageNet Classification with Deep Convolutional Neural Networks", NIPS 2012]



Conv 1: Edge+Blob

Conv 3: Texture

Conv 5: Object Parts

Fc8: Object Classes

Example 2: Convolutional Neural Networks (CNNs) [LeCun et al, 1980s]

Given: training set $\{(x^1, y^1), \ldots, (x^n, y^n)\} \subset \mathbb{R}^d \times \mathcal{Y}$ Goal: learn a classifier, $G : \mathbb{R}^d \to \mathcal{Y}$

• each neuron i is a *real-valued* function, f_i , of its input x:

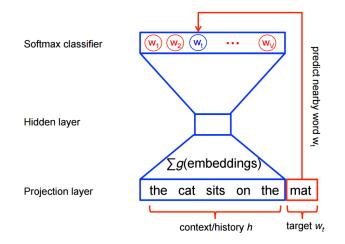
$$\label{eq:Fi} \begin{split} F_i(x) &= \max\{0,a_i\} & \text{Rectified Linear Unit (ReLU)} \\ \text{with} & a_i(x) &= \sum_j w_{ij} x_j + b_j & \text{"activation"} \end{split}$$

- first layers convolutions,
 - shared weights w_{ij} , acting on different subwindows of the layer's input
- last few layers fully connected
 - individual weights for every neuron-neuron connection
- last layer: one neuron output, F_k , per target class
- objective is squared or log-loss
 - non-convex optimization w.r.t. most parameters
 - train jointly by gradient descent, often with GPU support
 - additional tricks: weight decay, momentum term, dropout, batch normalization,...
- after training, $G(x) = \operatorname{\mathbf{argmax}}_y F_y(x)$

Demo:

http://cs.stanford.edu/people/karpathy/convnetjs/demo/ cifar10.html

Example 3: word2vec [Mikolov et al, ICLR 2013]

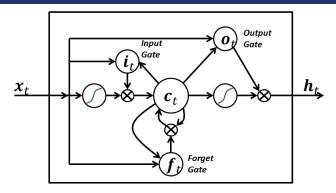


For every (e.g. English) word, learn a vector $w_i \in \mathbb{R}^d$, such that it is "easy" to predict the next word of a text from a short history.

Demo: http://deeplearner.fz-qqq.net/

Example 4: Long-Short Term Memory Networks (LSTM) [Hochreiter,

Schmidthuber, 1997]



Each "neuron" has a memory cell that can keep its value indefinitely. Access controlled by additional inputs: store or erase a value.

- network handles sequential inputs/outputs with 'long-term' memory
- internal weights can be used as representation for a sequence

Image: Wikipedia (BiObserver, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=43992484)

Demo:

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Representation Learning is a recent trend in Machine Learning:

- Metric learning is well understood
 - for linear (Mahalanobis), convex formulations exist
 - can vastly improve quality, e.g., of nearest neighbor classifiers,
 - less impact on linear classifiers that learn per-coordinate weights, e.g. linear SVMs
- Dictionary learning is popular in some application areas, e.g.
 - face recognition (explains one face as mixture of others)
 - computational neuroscience (dictionary elements \equiv neurons), etc.
- recent trend: Deep Network
 - learn data representation and classifiers jointly, end-to-end
 - very impressive results in Computer Vision, Speech, Language, ...
 - results have become more reproducible in the last few years,
 - but, still a lot of engineering required to get good results