Statistical Machine Learning

Christoph Lampert

Institute of Science and Technology
Spring Semester 2015/2016 // Lecture 11

Representation Learning

Metric Learning

Task: nearest-neighbor classification, or information retrieval What distance to use? Euclidean might not be the best...

Metric Learning

Task: nearest-neighbor classification, or information retrieval
What distance to use? Euclidean might not be the best...

Metric Learning

Given data $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\} \subset \mathcal{X} \times \mathcal{Y}$, find a distance function, $d(x, \bar{x}): \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, such that

$$
d\left(x_{i}, x_{j}\right) \text { small } \quad \Leftrightarrow \quad y_{i}=y_{j}
$$

Special case: Mahalanobis Metric Learning

For $\mathcal{X} \subset \mathbb{R}^{d}$, parameterize

$$
d_{M}^{2}(x, \bar{x})=(x-\bar{x})^{\top} M(x-\bar{x})
$$

and learn positive (semi-)definite $M \in \mathbb{R}^{d \times d}$.

Relevant Component Analysis (RCA)

Given group $X^{1}=\left\{x_{1}^{1}, \ldots, x_{n^{1}}^{1}\right\}, \ldots, X^{K}=\left\{x_{1}^{K}, \ldots, x_{n^{K}}^{K}\right\}$ (e.g. $X^{k}=\left\{x_{i}: y_{i}=k\right\}$ all example of each label). Solve

$$
\min _{M \succcurlyeq 0} \sum_{k=1}^{K} \sum_{i=1}^{n^{k}} d_{M}^{2}\left(x_{i}^{k}, m^{k}\right) \quad \text { subject to } \quad \operatorname{det} M \geq 1 .
$$

with $m^{k}=\frac{1}{n^{k}} \sum_{i=1}^{n^{k}} x_{i}^{k}$.

- pull examples of same class together
- but prevent overall volume from shrinking to 0

Disadvantages:

- optimizing over all positive definite matrices is hard
- enforces low average distance, but outliers might exist that hurt k-NN performance

Given data $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\} \subset \mathcal{X} \times \mathcal{Y}$, solve

$$
\min _{M \succcurlyeq 0, \xi \geq 0} \sum_{i, j=1}^{n} d_{M}^{2}\left(x_{i}, x_{j}\right)+\sum_{i, j, l} \xi_{i j l}
$$

subject to, for all i, j, l with $y_{i}=y_{j} \neq y_{l}$,

$$
d_{M}^{2}\left(x_{i}, x_{l}\right)-d_{M}^{2}\left(x_{i}, x_{j}\right) \geq 1-\xi_{i j k}
$$

- pull examples together,
- but enforce examples of different classes to have larger distance from each other than examples of same class
- convex optimization problem

Disadvantages:

- optimizing over all positive definite matrices is still hard

Distance Learning, Alternative Views

Minimizing a function over the set of all positive definite matrices:

- difficult, since matrix entries must fulfill many constraints of high order (e.g. $\operatorname{det} M \geq 0$)
- but: set is convex, so no danger of getting stuck in local optima

Distance Learning, Alternative Views

Minimizing a function over the set of all positive definite matrices:

- difficult, since matrix entries must fulfill many constraints of high order (e.g. $\operatorname{det} M \geq 0$)
- but: set is convex, so no danger of getting stuck in local optima

Alternative: parameterize $M=L^{\top} L$ with $L \in \mathbb{R}^{m \times n}$

- simpler, since M automatically positive definite for any L
- enforcing a low rank on M is easy, since $\operatorname{rank}(M) \leq m$
- but: non-convex objective, only local optimum might be found

Distance Learning, Alternative Views

Minimizing a function over the set of all positive definite matrices:

- difficult, since matrix entries must fulfill many constraints of high order (e.g. $\operatorname{det} M \geq 0$)
- but: set is convex, so no danger of getting stuck in local optima

Alternative: parameterize $M=L^{\top} L$ with $L \in \mathbb{R}^{m \times n}$

- simpler, since M automatically positive definite for any L
- enforcing a low rank on M is easy, since $\operatorname{rank}(M) \leq m$
- but: non-convex objective, only local optimum might be found

Other interpretation: learn a representation, $x \mapsto L x$, because

$$
\begin{aligned}
d_{M}^{2}(x, \bar{x}) & =(x-\bar{x})^{\top} M(x-\bar{x})=(x-\bar{x})^{\top} L^{\top} L(x-\bar{x}) \\
& =(L x-L \bar{x})^{\top}(L x-L \bar{x})=d_{E u c l}^{2}(L x, L \bar{x})
\end{aligned}
$$

Representation Learning: Sparse Coding

Common problem in signal processing:

Coding

Let $D=\left\{d_{1}, \ldots, d_{m}\right\} \subset \mathbb{R}^{d}$ be a dictionary, e.g. of typical signals. Given $x \in \mathbb{R}^{d}$, find coefficients $\alpha_{1}, \ldots \alpha_{m}$, such that

$$
x \approx \sum_{j=1}^{m} \alpha_{j} d_{j}
$$

Typical Cases:

- no constraints on α :

$$
\min _{\alpha}\left\|x-\sum_{j=1}^{m} \alpha_{j} d_{j}\right\|^{2}
$$

\rightarrow linear algebra, project x to $\operatorname{span}\left(d_{1}, \ldots, d_{m}\right)$

Representation Learning: Sparse Coding

Typical Cases:

- enforce sparsity in α

$$
\min _{\alpha} \sum_{j=1}^{m}\left|\alpha_{j}\right| \quad \text { subject to } \quad\left\|x-\sum_{j=1}^{m} \alpha_{j} d_{j}\right\| \leq \epsilon
$$

or

$$
\min _{\alpha}\left\|x-\sum_{j=1}^{m} \alpha_{j} d_{j}\right\|^{2}+\lambda \sum_{j=1}^{m}\left|\alpha_{j}\right|
$$

called Sparse Coding,

popular, e.g., in Neuroscience

- α_{j} are neuron firing rates,
- sparsity expresses that at every time only a few neurons fire

Representation Learning: Sparse Coding

What, if we don't know $D=\left\{d_{1}, \ldots, d_{m}\right\} \subset \mathbb{R}^{d}$? Learn it from data!

Dictionary Learning

Given x_{1}, \ldots, x_{n} :

$$
\min _{\alpha, D} \sum_{i=1}^{n}\left\|x_{i}-\sum_{j=1}^{m} \alpha_{j}^{i} d_{j}\right\|^{2}+\lambda \sum_{j=1}^{m}\left|\alpha_{j}\right|
$$

Solve by alternating optimization

- initialize D (e.g. random elements x_{i})
- repeat
- solve for α with fixed D
- solve for D with fixed α
- until convergence

Convergences to local optimum, multiple restarts for better results

Example: Dictionary Learning

For x_{1}, \ldots, x_{n} image patches.
Learned dictionary:

(claim: human visual system has similar representation)

Example: Dictionary Learning

For x_{1}, \ldots, x_{n} images of faces.
Learned dictionary:

		l		\checkmark	-		1	$-$	-	1	\square	-	
		$=$	1)			\cdots	,	1	-		2\%	
$=$,	$=$								1	\checkmark	,
		\checkmark		ν	+					-	1	,	$=$
)			,	$=$	1			1	
- 5	$=$		- $=$						\square		,		

(used, e.g., in face recognition systems)

Deep Learning

"Artificial Neural Network" aka "Deep Learning"

Artificial Neural Network have been proposed as promising models to achieve artificial intelligence since the 1950s.

Main idea:

- stack layers of simple elements ("neurons")
- (part of) one layer's output is the next layer's input.

Models differ in:

- network topology (number of layers and neurons, connectivity)
- neuron output (binary or real-valued)
- parameterization of each neuron

"Artificial Neural Network" aka "Deep Learning"

Main step: end-to-end training across L layers

$$
f(x)=h_{L} \circ g_{L} \cdots \circ h_{1} \circ g_{1}(x)
$$

where

- each $g_{l}: \mathbb{R}^{d_{l-1}} \rightarrow \mathbb{R}^{d_{l}}$ is linear, i.e. $g_{l}(x)=W_{l} x$ for $W_{l} \in \mathbb{R}^{d_{l} \times d_{l-1}}$
- each $h_{l}: \mathbb{R}^{d_{l}} \rightarrow \mathbb{R}^{d_{l}}$ is non-linear but acts componentwise, e.g.

$$
h_{l}(z)=(\sigma(z[1]), \ldots, \sigma(z[l]))
$$

$$
\text { for } \sigma(t)=\tanh (t) \text { or } \sigma(t)=\max \{0, t\} \text { or } \sigma(t)=\frac{1}{1+e^{-t}}
$$

Trained end-to-end by minimizing a loss function:

$$
\min _{W_{1}, \ldots, W_{L}} \sum_{i=1}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right)
$$

- typically: stochastic gradient descent (with mini-batches).
- organize computations efficiently: backpropagation algorithmic

Example 1: Deep Autoencoder Networks [Hinton et al, 2006]

Image: http://wiki.ldv.ei.tum.de

Example 1: Deep Autoencoder Networks [Hinton et al, 2006]

Given: data $\left\{x^{1}, \ldots, x^{n}\right\} \subset \mathbb{R}^{d}$
Goal: learn a new data representation, $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$

- symmetric topology, $(2 K+1)$ layers, layer k and $2 K+2-k$ are mirrored copies of each other
- layers are fully connected to each other
- number of neuron per layer decreases from outer to inner layers
- each neuron i is a stochastic binary function, f_{i}, of its input x :

$$
\begin{array}{ll}
p\left(f_{i}=1 \mid x\right) & =\frac{1}{1+\exp \left(-a_{i}\right)} \\
\text { with } \quad a_{i}(x)=\sum_{j} w_{i j} x_{j}+b_{j} & \text { sigmoid (logistic function) } \\
\text { "activation" }
\end{array}
$$

- objective is reconstruction error, $\sum_{i}\left\|x^{i}-F\left(x^{i}\right)\right\|^{2}$ (non-convex)
- first, train each layer as separate auto-encoder
- then, train jointly by gradient descent
- also possible: binary-valued outputs ("restricted Boltzman machine")
- after training, middle layer is new data representation

Demo:

http://dpkingma.com/sgvb_mnist_demo/demo.html

Example 2: Convolutional Neural Networks (CNNs) [LeCun et al, 1980s]

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528 -dimensional, and the number of neurons in the network's remaining layers is given by $253,440-186,624-64,896-64,896-43,264-$ 4096-4096-1000.

Example 2: Convolutional Neural Networks (CNNs) [LeCun et al, 1980s]

Example 2: Convolutional Neural Networks (CNNs) [LeCun et al, 1980s]

Given: training set $\left\{\left(x^{1}, y^{1}\right), \ldots,\left(x^{n}, y^{n}\right)\right\} \subset \mathbb{R}^{d} \times \mathcal{Y}$
Goal: learn a classifier, $G: \mathbb{R}^{d} \rightarrow \mathcal{Y}$

- each neuron i is a real-valued function, f_{i}, of its input x :

$$
\begin{aligned}
F_{i}(x) & =\max \left\{0, a_{i}\right\} \quad \text { Rectified Linear Unit (ReLU) } \\
\text { with } \quad a_{i}(x) & =\sum_{j} w_{i j} x_{j}+b_{j} \quad \text { "activation" }
\end{aligned}
$$

- first layers convolutions,
- shared weights $w_{i j}$, acting on different subwindows of the layer's input
- last few layers fully connected
- individual weights for every neuron-neuron connection
- last layer: one neuron output, F_{k}, per target class
- objective is squared or log-loss
- non-convex optimization w.r.t. most parameters
- train jointly by gradient descent, often with GPU support
- additional tricks: weight decay, momentum term, dropout, batch normalization,...
- after training, $G(x)=\operatorname{argmax}_{y} F_{y}(x)$

Demo:

http://cs.stanford.edu/people/karpathy/convnetjs/demo/ cifar10.html

Example 3: word2vec [Mikolov et al, ICLR 2013]

For every (e.g. English) word, learn a vector $w_{i} \in \mathbb{R}^{d}$, such that it is "easy" to predict the next word of a text from a short history.

Demo:

http://deeplearner.fz-qqq.net/

Example 4: Long-Short Term Memory Networks (LSTM) [Hochreiter.

Each "neuron" has a memory cell that can keep its value indefinitely. Access controlled by additional inputs: store or erase a value.

- network handles sequential inputs/outputs with 'long-term' memory
- internal weights can be used as representation for a sequence

Demo:

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Summary - Representation Learning

Representation Learning is a recent trend in Machine Learning:

- Metric learning is well understood
- for linear (Mahalanobis), convex formulations exist
- can vastly improve quality, e.g., of nearest neigbhor classifiers,
- less impact on linear classifiers that learn per-coordinate weights, e.g. linear SVMs
- Dictionary learning is popular in some application areas, e.g.
- face recognition (explains one face as mixture of others)
- computational neuroscience (dictionary elements \equiv neurons), etc.
- recent trend: Deep Network
- learn data representation and classifiers jointly, end-to-end
- very impressive results in Computer Vision, Speech, Language, ...
- results have become more reproducible in the last few years,
- but, still a lot of engineering required to get good results

