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Unsupervised Learning
Dimensionality Reduction
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Dimensionality Reduction

Given: data

X = {x1, . . . , xm} ⊂ Rd

Dimensionality Reduction – Transductive
Task: Find a lower-dimensional representation

Y = {y1, . . . , ym} ⊂ Rn

with m � d, such that Y "represents X well"

Dimensionality Reduction – Inductive
Task: find a function φ : Rd → Rn and set yi = φ(xi)

(allows computing φ(x) for x 6= X : "out-of-sample extension")
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Linear Dimensionality Reduction

Choice 1: φ : Rd → Rn is linear or affine.

Choice 2: "Y represents X well" means:

There’s a ψ : Rn → Rd such that
m∑

i=1
‖xi − ψ(yi)‖2 is small.

Principal Component Analysis
Given X = {x1, . . . , xm} ⊂ Rd , find function φ(x) = Wx and ψ(y) = Uy
by solving

min
U∈Rn×d

W∈Rd×n

m∑
i=1
‖xi −UWxi‖2
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Principal Component Analysis (PCA)

U ,W = argmin
U∈Rn×d ,W∈Rd×n

m∑
i=1
‖xi −UWxi‖2 (PCA)

Lemma
If U ,W are minimizers of the above PCA problem, then the column of
U are orthogonal, and W = U>.

Theorem
Let A =

∑m
i=1 xix>i and let u1, . . . , un be n eigenvectors of A that

correspond to the largest n eigenvalues of A. Then U =
(
u1|u2| · · · |un

)
and W = U> are minimizers of the PCA problem.

• A has orthogonal eigenvectors, since it is symmetric positive definite.
• U can also be obtained by singular value decomposition, X = USV .
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Principal Component Analysis – Visualization
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Principal Component Analysis – Affine

Given X = {x1, . . . , xm} ⊂ Rd , find function φ(x) = Wx + w and
ψ(y) = Uy + u by solving

U ,W = argmin
U∈Rn×d ,W∈Rd×n

m∑
i=1
‖xi−U (Wxi+w)−u‖2 (AffinePCA)

Theorem
Let µ = 1

m
∑m

i=1 xi the mean and C = 1
m
∑m

i=1(xi − µ)(xi − µ)> the
covariance matrix of X . Let u1, . . . , un be n eigenvectors of C that
correspond to the largest n eigenvalues. Then U =

(
u1|u2| · · · |un

)
,

W = U>, w = Wµ and u = µ are minimizers of the affine PCA
problem.

Simpler to remember: φ(x) = W (x − µ), ψ(y) = Uy + µ
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Principal Component Analysis – Alternative Views

There’s (at least) one more way to interpret the PCA procedure:

The following to goals are equivalent:
• find subspace such that projecting to it orthogonally results in the
smallest reconstruction error
• find subspace such that projecting to it orthogonally results
preserves most of the data variance
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Principal Component Analysis – Applications

Data Visualization
If the original data is high-dimensional, use PCA with n = 2 or n = 3 to
obtain low-dimensional representation that can be visualized.

Data Compression
If the original data is high-dimensional, use PCA to obtain a
lower-dimensional representation that requires less RAM/storage.

n typically chosen such that 95% or 99% of variance are preserved.

Data Denoising
If the original data is noisy, apply PCA and reconstruction to obtain a
less noisy representation.

n depends on noise level if known, otherwise as for compression.
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Genes mirror geography in Europe [Novembre et al, Nature 2008]
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Canonical Correlation Analysis (CCA) [Hotelling, 1936]

Given: paired data

X1 = {x1
1 , . . . , xm

1 } ⊂ Rd X2 = {x1
2 , . . . , xm

2 } ⊂ Rd′

for example (after some preprocessing):
• DNA expression and gene expression (Monday’s colloquium)
• images and text captions.

Canonical Correlation Analysis (CCA)

Find projections φ1(x1) = U1x1 and φ2(x2) = U2x2 with U1 ∈ Rd×m and
U2 ∈ Rd ′ ×m such that after projection X1 and X2 are maximally
correlated.
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Canonical Correlation Analysis (CCA)

One dimension: find directions u1 ∈ Rd , u2 ∈ Rd′ , such that

max
u1∈Rd ,u2∈Rd′

corr(u>1 X1, u>2 X2).

With C11 = cov(X1,X1), C22 = cov(X2,X2) and C12 = cov(X1,X2),

max
u1∈Rd ,u2∈Rd′

u>1 C12u2√
u>1 C11u1

√
u>2 C22u2

Find u1, u2 by solving generalized eigenvalue problem for maximal λ:(
0 C12

C>12 0

)(
u1
u2

)
= λ

(
C11 0
0 C22

)(
u1
u2

)
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Example: Canonical Correlation Analysis for fMRI Data

data 1: video sequence data 2: fMRI signal while watching
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Kernel Principle Component Analysis (Kernel-PCA)

Reminder: given samples xi ∈ Rd , PCA finds the directions of maximal
covariance. Assume

∑
i xi = 0 (e.g. by first subtracting the mean).

• The PCA directions u1, . . . , un
are the eigenvectors of the
covariance matrix

C = 1
m

m∑
i=1

xix>i

sorted by their eigenvalues.

• We can express xi in PCA-space by P(xi) =
∑n

j=1〈xi , uj〉uj .

• Lower-dim. coordinate mapping: xi 7→


〈xi , u1〉
〈xi , u2〉
. . .

〈xi , um〉

 ∈ Rn
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Kernel-PCA

Given samples xi ∈ X , kernel k : X × X → R with an implicit feature
map φ : X → H. Do PCA in the (implicit) feature space H.

• The kernel-PCA directions
u1, . . . , un are the eigenvectors
of the covariance operator

C = 1
m

m∑
i=1

φ(xi)φ(xi)>

sorted by their eigenvalue.

• Lower-dim. coordinate mapping: xi 7→


〈φ(xi), u1〉
〈φ(xi), u2〉

. . .
〈φ(xi), un〉

 ∈ Rn
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Kernel-PCA

Given samples xi ∈ X , kernel k : X × X → R with an implicit feature
map φ : X → H. Do PCA in the (implicit) feature space H.

• Equivalently, we can use the
eigenvectors u′j and eigenvalues
λj of K ∈ Rm×m , with
Kij = 〈φ(xi), φ(xj)〉 = k(xi , xj)

• Coordinate mapping: xi 7→
( √

λ1u′i1 , . . . ,
√
λK u′in

)
.

Kernel-PCA
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Example: Canonical Correlation Analysis for fMRI Data
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Application – Image Superresolution

• Collect high-res face
images
• Use KernelPCA with
Gaussian kernel to learn
non-linear projections
• For new low-res image:

I scale to target high
resolution

I project to closest
point in face
subspace

reconstruction in r dimensions

[Kim, Jung, Kim, "Face recognition using kernel principal component analysis", Signal Processing Letters, 2002.]
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Random Projections

Recently, random matrices have been used for dimensionality reduction:

• Let W ∈ Rd×n be a matrix with random entries (i.i.d. Gaussian)

Then one can show that φ : Rd → Rn with φ(x) = Wx does not distort
Euclidean distances too much.

Theorem
For fixed x ∈ Rd let W ∈ Rn×d be a random matrix as above. Then, for
every ε ∈ (0, 3),

P
[∣∣∣ 1

n‖Wx‖2

‖x‖2 − 1
∣∣∣ > ε

]
≤ 2e−ε2n/6

Note: The dimension of the original data does not show up in the bound!
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Multidimensional Scaling (MDS)

Given: data X = {x1, . . . , xm} ⊂ Rd

Task: find embedding y1, . . . , ym ⊂ Rn that preserves pairwise
distances ∆ij = ‖x i − x j‖.

Solve, e.g., by gradient descent on∑
i,j

(‖yi − yj‖2 −∆2
ij)2

Multiple extensions:
• non-linear embedding
• take into account geodesic distances (e.g. IsoMap)
• arbitrary distances instead of Euclidean
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Multidimensional Scaling (MDS)
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Multidimensional Scaling (MDS)

2D embedding of US Senate Voting behavior
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Unsupervised Learning
Clustering
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Clustering

Given: data

X = {x1, . . . , xm} ⊂ Rd

Clustering – Transductive
Task: partition the point in X into clusters S1, . . . ,SK .

Idea: elements within a cluster are similar to each other, elements in
different clusters are dissimilar

Clustering – Inductive
Task: define a partitioning function f : Rd → {1, . . . ,K} and set
Sk = { x ∈ X : f (x) = k }.

(allows assigning a cluster label also to new points, x 6= X :
"out-of-sample extension")
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Clustering

Clustering is fundamentally problematic and subjective
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Clustering – Linkage-based

General framework to create a hierarchical partitioning

• initialize: each point xi is it’s own cluster, Si = {i}
• repeat

I take two most similar clusters and merge into a single new cluster
• until K clusters left

Open question: how to define similarity between clusters?
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Clustering – Linkage-based

Given: similarity between individual points d(xi , xj)

Single linkage clustering
Smallest distance between any cluster elements

d(S ,S ′) = mini∈S ,j∈S′ d(xi , xj)

Average linkage clustering
Average distance between all cluster elements

d(S ,S ′) = 1
|S ||S ′|

∑
i∈S ,j∈S′

d(xi , xj)

Max linkage clustering
Largest distance between any cluster elements

d(S ,S ′) = maxi∈S ,j∈S′ d(xi , xj)
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Example: Single linkage clustering

Theorem
The edges of a single linkage clustering forms a minimal spanning tree.
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Clustering – centroid-based clustering

Let c1, . . . , cK ∈ Rd be K cluster centroids. Then a distance-based
clustering function, c : X → {1, . . . ,K}, is given by the assignment

f (x) = argmin
k=1,...,K

‖x − ci‖ (arbitrary tie break)

(similar to K -means with training set {(c1, 1), . . . , (cK ,K )})
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Clustering – centroid-based clustering

K -means objective
Find c1, . . . , cK ∈ Rd by minimizing the total Euclidean error

m∑
i=1
‖xi − cf (xi)‖

2

Lloyd’s algorithm

• Initialize c1, . . . , cK (random subset of X , or smarter)
• repeat

I set Sk = {i : f (xi) = k} (current assignment)
I ck = 1

|Sk |
∑

i∈Sk
xi (mean of points in cluster)

• until no more changes to Sk

Demo: http://shabal.in/visuals/kmeans/6.html
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Clustering – centroid-based clustering

Alternatives:
• k-mediods: like k-means, but centroids must be datapoints

update step chooses mediod of cluster instead of mean

• k-medians: like k-means, but minimize
∑m

i=1 ‖xi − cf (xi)‖
update step chooses median of each coordinate with each cluster
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Clustering – graph-based clustering

For x1, . . . , xm form a graph G = (V ,E) with vertex set V = {1, . . . ,m}
and edge set E . Each partitioning of the graph defines a clustering
of the original dataset.

Choice of edge set
ε-nearest neighbor graph

E = {(i, j) ⊂ V ×V : ‖xi − xj‖ < ε}

k-nearest neighbor graph

E = {(i, j) ⊂ V ×V : xi is a k-nearest neighbor of xj }

Weighted graph
Fully connected, but define edge weights wij = exp(−λ‖xi − xj‖2).
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Example: Graph-based Clustering

Data set
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Example: Graph-based Clustering

Neighborhood Graph
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Example: Graph-based Clustering

Min Cut: biased towards small clusters
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Example: Graph-based Clustering

Normalized Cut: balanced weight of cut edges and volume of clusters
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Spectral Clustering

Approximate solution to Normalized Cut

Spectral Clustering

• Input: weight matrix W ∈ Rm×m

• compute graph Laplacian L = W −D,
for D = diag(d1, . . . , dm) with di =

∑
j wij .

• let v ∈ Rm be the eigenvector of L corresponding to the second
smallest eigenvalue (the smallest is 0, since L is singular)

• assign xi to cluster 1 if vi ≥ 0 and to cluster 2 otherwise.

To obtain more than 2 clusters apply recursively, each time splitting the
largest remaining cluster.
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Clustering Axioms [Kleinberg, "An Impossibility Theorem for Clustering", NIPS 2002]

Scale-Invariance
For any distance d and any α > 0, f (d) = f (α · d)

Richness
Range(f ) is the set of all partitions of {1, . . . ,m}

Consistency
Let d and d ′ be two distance functions. If f (d) = Γ, and d ′ is a
Γ-transform of d, then f (d ′) = Γ.

Definition: d ′ is a Γ-transform of d, iff for any i, j in the same cluster
d ′(i, j) ≤ d(i, j) and for i, j in different clusters, d ′(i, j) ≥ d(i, j).

Theorem: "Impossibility of Clustering". For each m ≥ 2, there is
no clustering function f that satisfies all three axioms at the same time.

(but not all hope lost: "Consistency" is debatable...)
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Final project

Part 1
• Go to https://kaggle.com/join/ist_sml2016/ and participate
in the challenge: "Final project for Statistical Machine Learning
Course 2016 at IST Austria"

passing criterion: beat the baselines (linear SVM and LogReg)
Part 2
• send Alex a short (one to two pages) report that explains what
exactly you did to achieve these results, including data
preprocessing, classifier, software used, model selection, etc.

Deadline: Thursday, 5th May midnight MEST
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