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Unsupervised Learning

Dimensionality Reduction
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Dimensionality Reduction

Given: data

X={z..., 2™} CRY

Dimensionality Reduction — Transductive

Task: Find a lower-dimensional representation

Y ={y}..., 9™} CR"
with m < d, such that Y "represents X well"

Dimensionality Reduction — Inductive

Task: find a function ¢ : R — R™ and set y; = ¢(;)

(allows computing ¢(z) for z # X: "out-of-sample extension")
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Linear Dimensionality Reduction

Choice 1: ¢ : R? — R” is linear or affine.

Choice 2: "Y represents X well" means:
p

m
There's a ¢ : R™ — R? such that > |lz; — ¥(y)||* is small.
i=1
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Linear Dimensionality Reduction

Choice 1: ¢ : R? — R” is linear or affine.

Choice 2: "Y represents X well" means:
p

m
There's a ¢ : R™ — R? such that > |lz; — ¥(y)||* is small.
i=1

Principal Component Analysis

Given X = {z' ..., 2™} C R, find function ¢(z) = Wz and (y) = Uy
by solving

m
i o 112
UIEIIIRIgd Z |z — UWai|
werdxn =
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Principal Component Analysis (PCA)

m
U,W = argmin |2 — UWa||? (PCA)
UeRrxd, WeRxn ;1

If U, W are minimizers of the above PCA problem, then the column of
U are orthogonal, and W = U".
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Principal Component Analysis (PCA)

m

U,W = argmin |z — UWaz; || (PCA)
UeRrxd WeRdxn ;4

Lemma

If U, W are minimizers of the above PCA problem, then the column of
U are orthogonal, and W = U".

Theorem

Let A=3"7", a:zx;r and let uy, ..., u, be n eigenvectors of A that
correspond to the largest n eigenvalues of A. Then U = (u1|uz| e |un>
and W = U are minimizers of the PCA problem.

A has orthogonal eigenvectors, since it is symmetric positive definite.

U can also be obtained by singular value decomposition, X = USV.
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Principal Component Analysis — Visualization
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Principal Component Analysis — Visualization
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Principal Component Analysis — Visualization
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Principal Component Analysis — Affine

Given X = {z',...,2™} C R, find function ¢(z) = Wz + w and
Y(y) = Uy + u by solving

U, W= argmin > lwi— U(Wag+w)—ul)? (AffinePCA)
UER"Xd,WERdX" i=1

Theorem

Let p = L 37 z; the mean and C = £ "7\ (z; — p)(z; — p) | the
covariance matrix of X. Let uq,...,u, be n eigenvectors of C that
correspond to the largest n eigenvalues. Then U = (uﬂuﬂ . \un)
W =UT, w= Wu and u = u are minimizers of the affine PCA

problem.

Simpler to remember: ¢(z) = W(x —pn), ¥(y) = Uy+u
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Principal Component Analysis — Alternative Views

There's (at least) one more way to interpret the PCA procedure:

The following to goals are equivalent:

find subspace such that projecting to it orthogonally results in the
smallest reconstruction error

find subspace such that projecting to it orthogonally results
preserves most of the data variance
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Principal Component Analysis — Applications

Data Visualization

If the original data is high-dimensional, use PCA with n =2 or n = 3 to
obtain low-dimensional representation that can be visualized.

Data Compression

If the original data is high-dimensional, use PCA to obtain a
lower-dimensional representation that requires less RAM /storage.

n typically chosen such that 95% or 99% of variance are preserved.

Data Denoising

If the original data is noisy, apply PCA and reconstruction to obtain a
less noisy representation.

n depends on noise level if known, otherwise as for compression.



Genes mirror geography in Europe [Novembre et al, Nature 2008]

\
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Canonical Correlation Analysis (CCA) [Hotelling, 1936]

Given: paired data

Xi={al,..,a"} cRY  Xy={z},....2l"} CRY
for example (after some preprocessing):

DNA expression and gene expression (Monday's colloquium)

images and text captions.

Canonical Correlation Analysis (CCA)

Find projections éx(21) = Uray and éa(s) = Upmy with Uy € R4™ and
Uy € Rd' x m such that after projection X7 and X, are maximally
correlated.
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Canonical Correlation Analysis (CCA)

One dimension: find directions u; € RY, us € R?, such that

max  corr(u] X1, uy Xo).
w1 €ERA,up R

With C1; = cov(X1, X7), Caa = cov(Xa, X3) and Cia = cov(Xi, Xa),

u;r 012 U

max ,
d d T T
u1 €ER* ug ER \/ul Ollul\/uz 022?,62

Find uy, uo by solving generalized eigenvalue problem for maximal A:
0 012 Ui o )\ 011 0 ui
01T2 0 u o 0 022 ()
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Example: Canonical Correlation Analysis for fMRI Data

colorrange: >2 5D

2 sD 3
data 1: video sequence data 2: fMRI signal while watching
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Kernel Principle Component Analysis (Kernel-PCA)

Reminder: given samples z; € R? PCA finds the directions of maximal
covariance. Assume Y, z; = 0 (e.g. by first subtracting the mean).

The PCA directions uy, ..., Uy
are the eigenvectors of the
covariance matrix

sorted by their eigenvalues.

We can express z; in PCA-space by P(z;) = 377 (i, uj) uj.

<xi7 U1>

(i, up)

Lower-dim. coordinate mapping: x; — eR"

<:Ei’ Um>
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Kernel-PCA

Given samples z; € X, kernel k£ : X x X — R with an implicit feature
map ¢ : X — H. Do PCA in the (implicit) feature space H.

The kernel-PCA directions
Uy, ..., Uy are the eigenvectors
of the covariance operator

1 & ’

C==> olz)p(z:)" :

m i—1 2

sorted by their eigenvalue.

Lower-dim. coordinate mapping: x; —
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Kernel-PCA

Given samples z; € X, kernel k: X x X — R with an implicit feature
map ¢ : X — H. Do PCA in the (implicit) feature space H.

Equivalently, we can use the 2
eigenvectors u]’ and eigenvalues 1
Aj of K € R™*™ with °
Kij = (¢(z:), ¢(z7)) = k(ai, ;)

Coordinate mapping: z; — ( VA1uf', ...,V Agul ).

| Kernel-PCA
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Example: Canonical Correlation Analysis for fMRI Data

Projection by KPCA

Original space
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Application — Image Superresolutio

Collect high-res face - ﬂnau

images 6
Gaussian kernel to learn
non-linear projections PCA 14 Hﬂﬂﬂ"

For new low-res image:
> scale to target high

64
resolution
. 256 !
> project to closest :
o S
subspace -

reconstruction in r dimensions

[Kim, Jung, Kim, "Face recognition using kernel principal component analysis", Signal Processing Letters, 2002.]
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Random Projections

Recently, random matrices have been used for dimensionality reduction:

Let W € R4*™ be a matrix with random entries (i.i.d. Gaussian)

Then one can show that ¢ : RY — R™ with ¢(z) = Wz does not distort
Euclidean distances too much.

Theorem

For fixed z € R% let W € R™*% be a random matrix as above. Then, for
every e € (0,3),
]P) [

Note: The dimension of the original data does not show up in the bound!

all Wal|?
(Bl

_ 1‘ > 61 < 9e~n/6
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Multidimensional Scaling (MDS)

Given: data X = {z',...,2™} C R?

Task: find embedding ¢!, ..., y™ C R" that preserves pairwise
distances A = ||z° — 27].

Solve, e.g., by gradient descent on

>y = yIP - aj)?

Y]

Multiple extensions:
non-linear embedding
take into account geodesic distances (e.g. IsoMap)

arbitrary distances instead of Euclidean
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Multidimensional Scaling (MDS)

2D projection of the swissroll Unrolled manifold
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Multidimensional Scaling (MDS)
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Unsupervised Learning

Clustering
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Clustering

Given: data

X={z',..., 2™ CR?

Clustering — Transductive

Task: partition the point in X into clusters 51,..., Sk.

Idea: elements within a cluster are similar to each other, elements in
different clusters are dissimilar

Clustering — Inductive

Task: define a partitioning function f : R¢ — {1,..., K} and set
Sk={zeX:f(z)=k}.

(allows assigning a cluster label also to new points, z # X:
"out-of-sample extension")
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Clustering

Clustering is fundamentally problematic and subjective
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Clustering — Linkage-based

General framework to create a hierarchical partitioning

initialize: each point z; is it's own cluster, S; = {7}
repeat
> take two most similar clusters and merge into a single new cluster

until K clusters left

Open question: how to define similarity between clusters?
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Clustering — Linkage-based

Given: similarity between individual points d(x;, z;)
Smallest distance between any cluster elements
(S, 8') = minjes jess d(i, 7))

Average linkage clustering

Average distance between all cluster elements

Z d(:Cl, Ij)

i€S,jeS’

Max linkage clustering

Largest distance between any cluster elements

1
d(s,s") = e

d(S,S") = maxcs jes d(z;, )
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Example: Single linkage clustering

{a.b, c.d, e}

\

o {boe.d. e}
AN
o] {b, e} {d, e}
ANEEA
o) {la} {b} {e} {d} {e}
Theorem

The edges of a single linkage clustering forms a minimal spanning tree.
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Clustering — centroid-based clustering

Let ci,...,cx € R? be K cluster centroids. Then a distance-based
clustering function, ¢: X — {1,..., K}, is given by the assignment

f(z) = argmin ||z — ¢| (arbitrary tie break)

==1,...

(similar to K-means with training set {(¢1,1),..., (¢cx, K)})
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Clustering — centroid-based clustering

K-means objective

Find ¢1,..., cx € R? by minimizing the total Euclidean error

m

2
Z ||xl - Cf(zi)”
=1
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Clustering — centroid-based clustering

K-means objective

Find ¢1,..., cx € R? by minimizing the total Euclidean error

m

2
Z ||ZI?1 - Cf(l‘i)”
=1

Lloyd’s algorithm

Initialize c1, ..., cx (random subset of X, or smarter)
repeat
» set S, = {i: f(z;) =k} (current assignment)
> o = ﬁ Yics, (mean of points in cluster)

until no more changes to Sj

Demo: http://shabal.in/visuals/kmeans/6.html
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Clustering — centroid-based clustering

Alternatives:

k-mediods: like k-means, but centroids must be datapoints
update step chooses mediod of cluster instead of mean

k-medians: like k-means, but minimize 371" ||z — cpay |
update step chooses median of each coordinate with each cluster
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Clustering — graph-based clustering

For z1,...,zy, form a graph G = (V, E) with vertex set V ={1,...,m}
and edge set E. Each partitioning of the graph defines a clustering
of the original dataset.

Choice of edge set

e-nearest neighbor graph

E:{(Z,])C V x V:H«Ti_«TjH<5}

k-nearest neighbor graph

E ={(i,j) C V x V :a;is a k-nearest neighbor of z; }

Weighted graph

Fully connected, but define edge weights w;; = exp(—A||z; — z;]|?).
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Example: Graph-based Clustering

Data set
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Example: Graph-based Clustering

Neighborhood Graph
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Example: Graph-based Clustering

Min Cut: biased towards small clusters
33 /36



Example: Graph-based Clustering

Normalized Cut: balanced weight of cut edges and volume of clusters
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Spectral Clustering

Approximate solution to Normalized Cut
Spectral Clustering
Input: weight matrix W € R™*™

compute graph Laplacian L = W — D,
for D = diag(dl, ooy dm) with d; = Zj Wy

let v € R™ be the eigenvector of L corresponding to the second
smallest eigenvalue (the smallest is 0, since L is singular)

assign z; to cluster 1 if v; > 0 and to cluster 2 otherwise.

To obtain more than 2 clusters apply recursively, each time splitting the
largest remaining cluster.

34 /36



Clustering Axioms [Kleinberg, ""An Impossibility Theorem for Clustering", NIPS 2002]

Scale-Invariance

For any distance d and any a > 0, f(d) = f(a - d)

Range(f) is the set of all partitions of {1,...,m}

Consistency

Let d and d’ be two distance functions. If f(d) =T, and d’ is a
I-transform of d, then f(d’) =T.

Definition: d’ is a I'-transform of d, iff for any i, j in the same cluster
d'(i,7) < d(i,7) and for 4, j in different clusters, d'(7,7) > d(i,j).
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Theorem: "Impossibility of Clustering'. For each m > 2, there is
no clustering function f that satisfies all three axioms at the same time.
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Clustering Axioms [Kleinberg, ""An Impossibility Theorem for Clustering", NIPS 2002]

Scale-Invariance

For any distance d and any a > 0, f(d) = f(a - d)

Range(f) is the set of all partitions of {1,...,m}

Consistency

Let d and d’ be two distance functions. If f(d) =T, and d’ is a
I-transform of d, then f(d’) =T.

Definition: d’ is a I'-transform of d, iff for any i, j in the same cluster
d'(i,7) < d(i,7) and for 4, j in different clusters, d'(7,7) > d(i,j).

Theorem: "Impossibility of Clustering'. For each m > 2, there is
no clustering function f that satisfies all three axioms at the same time.

(but not all hope lost: "Consistency" is debatable...)
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Final project

Part 1

Go to https://kaggle.com/join/ist_sml2016/ and participate
in the challenge: "Final project for Statistical Machine Learning
Course 2016 at IST Austria"

# A3  TeamName Score Entries  Last Submission UTC (sest - Last submission

AlexanderKolesnikov 0.97367 6
2 Jan Humplik 0.97263 [
Michal Rolinek 0.91640 2
4 11 GeorgNebehay 0.86330 9
michael.meidlinger 0.75163 3
6 1z Christoph Lampert 0.48705 1

passing criterion: beat the baselines (linear SVM and LogReg)
Part 2

send Alex a short (one to two pages) report that explains what

exactly you did to achieve these results, including data

preprocessing, classifier, software used, model selection, etc.

Deadline: Thursday, 5th May midnight MEST
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