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Lecture 7 — Notes

Coordinate classifiers
o X =RY Y ={%1}, ly,y) =[v,v'], H={hi,...,ha} with hj(x) = sign z[i]

Lemma 1. If p is uniform in [—1,1]%, ERM works for mq(e, §) = [log, <]

Proof:

1.

2.

7.

let true labeling function be h;, it has R(h;) =0
all other labeling function have R(hy) = 1

what’s the probability that ERM returns a hypotheses hy with k& # j7 Since there exists a hypothesis
with 0 error on every training set, any hypothesis that ERM returns will have 0 training error.

. what’s the probability that at least one of the hypotheses hj, with k # j have 0 training error?

Fix hy with k& # j. Training examples are i.i.d. evaluations:

Pr (y; =signa;[k] ) =

(z4,9:)

Union bound: Pr(A4; V Ay V.-V Ay) <>, Pr(A4g)
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We want r.h.s. to be no bigger than §. Solve for m: m > log, 1. Next biggest integer: mg = [log, %11.

Finite hypothesis classes are PAC learnable

Theorem 2. Let H = {hq,...,hi} be a finite hypothesis class and f € H (i.e. the true labeling function is one
of the hypotheses). Then H is PAC-learnable by the ERM algorithm with mo(e,0) = [(log(|H |+ log(1/4) )]

Proof:
We have to show: the probability that ERM on m > my samples returns a hypothesis with generalization error
bigger than € is not bigger than 0.

1.

denote by ey, ..., ex the generalization errors of hy, ..., hg.

denote by H, = {h; : e; > €} C H be the subset of hypotheses with error bigger than e (the ones we don’t
want).

what’s the probability that ERM returns a hypotheses h; € H.? Since there exists a hypothesis with 0
error on every training set, any hypothesis that ERM returns will have 0 training error.

what’s the probability that at least one of the hypotheses in H, have 0 training error?



5. First, for any fixed h; € H,, training examples are i.i.d. evaluations:
Pr(Rp(hy) =0) = (1 —¢)" < (1—¢"

6. Apply a union bound

Pr(3h; € He + Ryu(h) =0) < . Pr(Ru(h) =0) < (K —1)(1—¢)™
hj€He

7. how large is the r.h.s. for m > mg = [1(log(|H| + log(1/6))] ?

log(1 —¢€) <=
€ €

~(og(K+log(1/9) - hecause log(l —t) < —t, so

K —1 eflogK eflog(l/é)

Finite hypothesis classes are agnostic PAC learnable
Theorem 3. Let H = {hy,...,hx} be a finite hypothesis class.
Then H is agnostic PAC-learnable by ERM with mg(e, 0) = [ (log(|H| + log(2/6) )]
Proof. Let
e hpry € argming,, R, (h)  (result of ERM)
e h* € argminj,, R,(h) (if exists, otherwise use argument of arbitrarily close approximation)

From the following lemma (proved later):

Lemma 4. For any e > 0, 0 > 0, the following inequality hold uniformly in h € H with probability at least 1 — 0
w.r.t. D,,:

log |H| + log 2
2m

Ry (h) = Ron ()] < \/

it follows that with prob. at least 1 — ¢, it holds at the same time:

. log [H| + log 2 5 (e oy < Jlog ] +1log 3
Rp<hERM>—Rm<hERM)§\/ g| 2|m g6 and Rm(h)—Rp(h)S\/ g| 2|m g§

Adding the two inequalities we obtain

<0

Ry(hern) — Rp(h*) < Ron(herat) — Rin () +2\/

I 1 2 m>m,
2\/OgIH|+0g5 o
2m

log [H| + log2
2m
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Proof of the lemma

Lemma 5 (Hoeffding’s Inequality). Let Zy,...,Z,, be i.i.d. random variables that take values in the interval
la,b]. Let Z =L 5™ Z; and denote E[Z] = . Then, for any € > 0,

_ 2me?

Pr[‘Z —,u‘ >e] <2 -7,

Proof of uniform bound Lemma:
1. for any fix h € H, let Z; := £(y;, h(x;)). These are i.i.d. random variables in the interval [0, 1].
2. then Z = L5, 7, = R,,(h) and E[Z] = R(h), such that

2

Pr[| Ry (h) = R(R)| > €] < 2727

3. by a union bound, we obtain
Pr[3h € H : [Rpn(h) = R(h)| > €] < 2[H[e >

4. calling the right hand side 9§, we obtain

R log(M)
Pr|3h€H : [Rp(h) — R(h)| > — | <
which is equivalent to the statement of the lemma. O



