IST Austria: Statistical Machine Learning 2015/16

Christoph Lampert chl@ist.ac.at
Lecture 7 - Notes

Coordinate classifiers

- $\mathcal{X}=\mathbb{R}^{d}, \mathcal{Y}=\{ \pm 1\}, \ell\left(y, y^{\prime}\right)=\llbracket y, y^{\prime} \rrbracket, \quad \mathcal{H}=\left\{h_{1}, \ldots, h_{d}\right\}$ with $h_{i}(x)=\operatorname{sign} x[i]$

Lemma 1. If p is uniform in $[-1,1]^{d}$, ERM works for $m_{0}(\epsilon, \delta)=\left\lceil\log _{2} \frac{d-1}{\delta}\right\rceil$

Proof:

1. let true labeling function be h_{j}, it has $\mathcal{R}\left(h_{j}\right)=0$
2. all other labeling function have $\mathcal{R}\left(h_{k}\right)=\frac{1}{2}$
3. what's the probability that ERM returns a hypotheses h_{k} with $k \neq j$? Since there exists a hypothesis with 0 error on every training set, any hypothesis that ERM returns will have 0 training error.
4. what's the probability that at least one of the hypotheses h_{k} with $k \neq j$ have 0 training error?
5. Fix h_{k} with $k \neq j$. Training examples are i.i.d. evaluations:

$$
\underset{\left(x_{i}, y_{i}\right)}{\operatorname{Pr}}\left(y_{i}=\operatorname{sign} x_{i}[k]\right)=\frac{1}{2} \quad \rightarrow \quad \underset{\mathcal{D}_{m}}{\operatorname{Pr}}\left(\hat{\mathcal{R}}\left(h_{k}\right)=0\right)=\frac{1}{2^{m}}
$$

6. Union bound: $\operatorname{Pr}\left(A_{1} \vee A_{2} \vee \cdots \vee A_{d}\right) \leq \sum_{k} \operatorname{Pr}\left(A_{k}\right)$

$$
\operatorname{Pr}_{\mathcal{D}_{m}}\left(\exists k \neq j: \hat{\mathcal{R}}\left(h_{k}\right)=0\right) \leq \sum_{k \neq j} \frac{1}{2^{m}}=\frac{d-1}{2^{m}}
$$

7. We want r.h.s. to be no bigger than δ. Solve for m : $m \geq \log _{2} \frac{d-1}{\delta}$. Next biggest integer: $m_{0}=\left\lceil\log _{2} \frac{d-1}{\delta}\right\rceil$.

Finite hypothesis classes are PAC learnable

Theorem 2. Let $\mathcal{H}=\left\{h_{1}, \ldots, h_{K}\right\}$ be a finite hypothesis class and $f \in \mathcal{H}$ (i.e. the true labeling function is one of the hypotheses). Then \mathcal{H} is PAC-learnable by the ERM algorithm with $m_{0}(\epsilon, \delta)=\left\lceil\frac{1}{\epsilon}(\log (|\mathcal{H}|+\log (1 / \delta))\rceil\right.$

Proof:

We have to show: the probability that ERM on $m \geq m_{0}$ samples returns a hypothesis with generalization error bigger than ϵ is not bigger than δ.

1. denote by e_{1}, \ldots, e_{K} the generalization errors of h_{1}, \ldots, h_{K}.
2. denote by $\mathcal{H}_{\epsilon}=\left\{h_{i}: e_{i}>\epsilon\right\} \subset \mathcal{H}$ be the subset of hypotheses with error bigger than ϵ (the ones we don't want).
3. what's the probability that ERM returns a hypotheses $h_{j} \in \mathcal{H}_{\epsilon}$? Since there exists a hypothesis with 0 error on every training set, any hypothesis that ERM returns will have 0 training error.
4. what's the probability that at least one of the hypotheses in \mathcal{H}_{ϵ} have 0 training error?
5. First, for any fixed $h_{j} \in \mathcal{H}_{\epsilon}$, training examples are i.i.d. evaluations:

$$
\operatorname{Pr}\left(\hat{\mathbb{R}}_{m}\left(h_{j}\right)=0\right)=\left(1-e_{j}\right)^{m} \leq(1-\epsilon)^{m}
$$

6. Apply a union bound

$$
\operatorname{Pr}\left(\exists h_{j} \in \mathcal{H}_{\epsilon}: \hat{\mathbb{R}}_{m}\left(h_{j}\right)=0\right) \leq \sum_{h_{j} \in \mathcal{H}_{\epsilon}} \operatorname{Pr}\left(\hat{\mathbb{R}}_{m}\left(h_{j}\right)=0\right) \leq(K-1)(1-\epsilon)^{m}
$$

7. how large is the r.h.s. for $m \geq m_{0}=\left\lceil\frac{1}{\epsilon}(\log (|\mathcal{H}|+\log (1 / \delta))\rceil\right.$?

$$
\begin{aligned}
(K-1)(1-\epsilon)^{m} & \leq(K-1)(1-\epsilon)^{m_{0}} \\
& \leq(K-1)(1-\epsilon)^{\frac{1}{\epsilon}(\log (K+\log (1 / \delta))} \\
& =(K-1) e^{\frac{\log (1-\epsilon)}{\epsilon}(\log (K+\log (1 / \delta)))} \\
& \leq(K-1) e^{-(\log (K+\log (1 / \delta))} \quad \text { because } \log (1-t) \leq-t, \text { so } \frac{\log (1-\epsilon)}{\epsilon} \leq \frac{-\epsilon}{\epsilon}=-1 \\
& =(K-1) e^{-\log K} e^{-\log (1 / \delta)} \\
& =\frac{K-1}{K} \frac{1}{1 / \delta} \\
& <\delta
\end{aligned}
$$

Finite hypothesis classes are agnostic PAC learnable

Theorem 3. Let $\mathcal{H}=\left\{h_{1}, \ldots, h_{K}\right\}$ be a finite hypothesis class.
Then \mathcal{H} is agnostic PAC-learnable by $E R M$ with $m_{0}(\epsilon, \delta)=\left\lceil\frac{2}{\epsilon^{2}}(\log (|\mathcal{H}|+\log (2 / \delta))\rceil\right.$
Proof. Let

- $h_{\text {ERM }} \in \operatorname{argmin}_{\bar{h} \in \mathcal{H}} \hat{\mathcal{R}}_{m}(\bar{h}) \quad$ (result of ERM)
- $h^{*} \in \operatorname{argmin}_{\bar{h} \in \mathcal{H}} \mathcal{R}_{p}(\bar{h}) \quad$ (if exists, otherwise use argument of arbitrarily close approximation)

From the following lemma (proved later):
Lemma 4. For any $\epsilon>0, \delta>0$, the following inequality hold uniformly in $h \in \mathcal{H}$ with probability at least $1-\delta$ w.r.t. \mathcal{D}_{m} :

$$
\left|\mathcal{R}_{p}(h)-\hat{\mathcal{R}}_{m}(h)\right| \leq \sqrt{\frac{\log |\mathcal{H}|+\log \frac{2}{\delta}}{2 m}}
$$

it follows that with prob. at least $1-\delta$, it holds at the same time:

$$
\mathcal{R}_{p}\left(h_{\mathrm{ERM}}\right)-\hat{\mathcal{R}}_{m}\left(h_{\mathrm{ERM}}\right) \leq \sqrt{\frac{\log |\mathcal{H}|+\log \frac{2}{\delta}}{2 m}} \quad \text { and } \quad \hat{\mathcal{R}}_{m}\left(h^{*}\right)-\mathcal{R}_{p}\left(h^{*}\right) \leq \sqrt{\frac{\log |\mathcal{H}|+\log \frac{2}{\delta}}{2 m}}
$$

Adding the two inequalities we obtain

$$
\begin{aligned}
& \mathcal{R}_{p}\left(h_{\text {ERM }}\right)-\mathcal{R}_{p}\left(h^{*}\right) \leq \overbrace{\hat{\mathcal{R}}_{m}\left(h_{\text {ERM }}\right)-\hat{\mathcal{R}}_{m}\left(h^{*}\right)}^{\leq 0}+2 \sqrt{\frac{\log |\mathcal{H}|+\log \frac{2}{\delta}}{2 m}} \\
& \leq 2 \sqrt{\frac{\log |\mathcal{H}|+\log \frac{2}{\delta}}{2 m}} \quad \stackrel{m \geq m_{0}}{\leq} \epsilon
\end{aligned}
$$

Proof of the lemma

Lemma 5 (Hoeffding's Inequality). Let Z_{1}, \ldots, Z_{m} be i.i.d. random variables that take values in the interval $[a, b]$. Let $\bar{Z}=\frac{1}{m} \sum_{i=1}^{m} Z_{i}$ and denote $\mathbb{E}[\bar{Z}]=\mu$. Then, for any $\epsilon>0$,

$$
\operatorname{Pr}[|\bar{Z}-\mu|>\epsilon] \leq 2 e^{-\frac{2 m \epsilon^{2}}{(b-a)^{2}}}
$$

Proof of uniform bound Lemma:

1. for any fix $h \in \mathcal{H}$, let $Z_{i}:=\ell\left(y_{i}, h\left(x_{i}\right)\right)$. These are i.i.d. random variables in the interval $[0,1]$.
2. then $\bar{Z}=\frac{1}{m} \sum_{i} Z_{i}=\hat{\mathcal{R}}_{m}(h)$ and $\mathbb{E}[\bar{Z}]=\mathcal{R}(h)$, such that

$$
\operatorname{Pr}\left[\left|\hat{\mathcal{R}}_{m}(h)-\mathcal{R}(h)\right|>\epsilon\right] \leq 2 e^{-2 m \epsilon^{2}} .
$$

3. by a union bound, we obtain

$$
\operatorname{Pr}\left[\exists h \in \mathcal{H}:\left|\hat{\mathcal{R}}_{m}(h)-\mathcal{R}(h)\right|>\epsilon\right] \leq 2|\mathcal{H}| e^{-2 m \epsilon^{2}}
$$

4. calling the right hand side δ, we obtain

$$
\operatorname{Pr}\left[\exists h \in \mathcal{H}:\left|\hat{\mathcal{R}}_{m}(h)-\mathcal{R}(h)\right|>\sqrt{\frac{\log \left(\frac{2|\mathcal{H}|}{\delta}\right)}{2 m}}\right] \leq \delta
$$

which is equivalent to the statement of the lemma.

