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1 Robustness of the Perceptron

Remember Perceptron training of Lecture 1 (deterministic with samples in fixed order). Look at the dataset
with the following three points:
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,+1)} ⊂ R2 × {±1}.

� For any 0 < ρ ≤ 1, find values for a and b such that the Perceptron algorithm converges to a correct
classifier with robustness ρ.

� What’s the maximal robustness you can achieve for any choice of a and b?

� Can you find a situation (i.e. a,b) in which the classifier found by the perceptron algorithm has small
robustness, but the max-margin classifier has much larger robustness?

Hint: it’ll help to look at the Perceptron algorithm steps geometrically in 2D.

2 What’s needed for a good test set?

In the lecture we saw that R̂tst(f) = 1
n

∑n
i=1 `( yi, f(xi)) is an unbiased and consistent estimator of the true risk

R(f) = E(x,y)∼p(x,y)`( y, f(x) ), if

a) each point (xi, yi) in the test set is sampled from the data distribution p

b) the points (xi, yi) are independent of each other

c) the predictor f is chosen independently of the test set

d) the loss function is bounded.

Show that each conditions a)–d) is necessary: for each condition construct a situation where the specific condition
is violated but the others are fulfilled, and the R̂tst(f) is not an unbiased and consistent estimator of the true
risk. In each case, state which property is violated, unbiasedness or consistency (or both).

Hint: c) entails that if (xi, yi) and (xj, yj) are independent of each other, then `(yi, f(xi)) and `(yj, f(xj)) are
also independent random variables.

3 Properties of the Variance

a) Let Z be a random variable with finite mean and variance. Show that for any a, b ∈ R one has

Var[aZ + b] = a2Var[Z]

b) Let Z be a random variable with finite expected value and variance. Show that

Var[Z] = E[Z2]− (E[Z])2
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c) Show that for independent random variables Z1, . . . , Zn one has:

Var
[ n∑
i=1

Zi
]

=
n∑
i=1

Var[Zi]

(tip: write the variance as a double sum over products; split the double sum into two: one where the factors in
the product are independent and one where they are not; show that some terms vanish.)

d) Let ` : Y × Y → R be a loss function and let Dtst = {(x1, y1), . . . , (xn, yn)} be a test set,sampled i.i.d. from
the dataset distribution p. Let f : X → Y be a prediction function that was selected independently from Dtst.

Prove the following statements:
1) for any bounded loss function, `(y, ȳ) ∈ [0,M ] for some M > 0, the following inequality holds

Var
[
R̂tst(f)

]
≤ M2

m
,

2) if the loss function is 0/1-loss, then following equality holds

Var
[
R̂tst(f)

]
=
µ(1− µ)

m
with µ = R(f).

4 Bias of the Variance

Let z1, . . . , zn be i.i.d. samples from a Gaussian distribution G(z;µ, σ2).

a) Here is two estimator of the mean:

µ̂n =
1

n

n∑
i=1

zi andµ̂n−1 =
1

n− 1

n∑
i=1

zi

What’s the variance of each of these estimators?

b) There’s two popular estimator of the variance, σ2:

σ̂n =
1

n

n∑
i=1

(zi − µ̂)2 and σ̂n−1 =
1

n− 1

n∑
i=1

(zi − µ̂)2 for µ̂ as above.

What the bias for each of these estimators? Which one has the bigger variance?

c) What if the samples are not from a Gaussian but from any real-valued random variable, Z, with expected
value E[Z] and variance Var[Z]. What changes in the answers to a) and b)?
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5 Practical Experiments III

The goal of this exercise is observe overfitting and underfitting with different regularization strengths. As an
example task we will classify images of open or closed eyes.

Setting

� input: x: images of eyes, grayscale, resolution 24× 24 pixels

examples: open eyes closed eyes

� output: y = 1: eye is open, y = −1: eye is closed.

� model: g(x) = sign f(x) for linear function, f(x) = 〈w, x〉. Model parameters: w ∈ Rd

� quality measure: `(y, f(x)) = Jsignf(x) 6= yK =

{
1 if g(x) 6= y

0 otherwise

Model Learning

� Load the data files ”XtrainIMG.txt” and ”Ytrain.txt”. They contain the training images as row vectors
of pixel intensities and the corresponding ground truth annotation, respectively.

� Split the data randomly into two parts of (approximately) equal size: Dtrn, which we will use for learning
the models, and Deval, which we will use to evaluate the models.

� For any regularization strength λ ∈ {2−15, 2−14, . . . , 215} train a least-squares classifier onDtrn and evaluate
its test error on Deval (see below for details)

� plot a graph with λ on the x-axis (in logarithmic units) and training and validation error on the y axis.

� which regularization values result in overfitting, which ones in underfitting?

� repeat the above for two other classifiers: logistic regression and soft-margin SVM (with C = 1
λ
). How do

the plots differ?

Please submit your code as well as the resulting plots.

Least-squares classifier

The least-squares classifier is a simple linear classifier that is popular (sometimes under the misleading name
”Least-Squares SVM”) because it has a closed-form solution:

For data D = {(x1, y1), . . . , (xn, yn)}, let X ∈ Rn×d be the data matrix with columns x1, . . . , xn and let Y ∈ Rn

be the vector of label values. The least-squares classifier with regularization strength λ has the form

g(x) = sign〈w, x〉 with w = (X>X + λ Idd×d)
−1X>Y

In python, it is available as sklearn.linear model.RidgeClassifier.
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