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1 Weighted Estimators

Let w1, . . . , wn be non-negative constants with 1
n

∑
iwi = 1. For a training set D = {(x1, y1), . . . , (xn, yn)} i.i.d.∼ p

and a prediction function f : X → Y , define a weighted estimator

R̂w(f) :=
1

n

n∑
i=1

wi`(yi, f(xi)) (1)

a) Show that R̂w(f) is an unbiased estimator of R(f).

b) Show that its variance is
σ2

n2
‖w‖2, where σ2 = Var[`(y, f(x))] is the variance of a single loss term

note: red indicates a correction of the original sheets, blue is a additional explanation

c) Derive by constrained optimization: which choice of w yields the estimator of smallest variance?

d) Derive by constrained optimization: which choices of w yield the estimator of largest variance?

e) In Lecture 6, we see several weighted estimators that use samples from a distribution pS to estimate the
risk for a (different) distribution pT . How is this not a contradiction to a)?

2 Model selection can fail

Cross-validation and leave-one-out estimation (Lecture 5) are popular techniques for selecting hyperparameters
of a learning system. Show that they are not guaranteed to work, though, by constructing a learning situation
(in particular a data distribution, loss function, hypothesis class, etc), in which the leave-one-out error of a
hypothesis is a terrible approximation to its generalization error, regardless of training set size.

3 Excurse: Ridge Regression

Regularized linear least-squares regression is also called ridge regression (RR). For a regularization constant,
λ > 0, and a training set, D = {(x1, y1), . . . , (xn, yn)} ⊂ Rd × R, it learns a predictor h(x) = w>RRx by solving

min
w∈Rd

λ‖w‖2 +
n∑

i=1

(w>xi − yi)2 (2)

a) Show that ridge regression has the closed-form solution

wRR = (XX> + λId×d)
−1Xy

where X = (x1| . . . |xn) ∈ Rd×n is the matrix that contains the training data vectors as columns, y =
(y1, . . . , yn) ∈ Rn is the vector of target values, and Id×d is the (d× d)-identity matrix.
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b) Show that an alternative way for computing wRR is

wRR = X(X>X + λIn×n)−1y (3)

c) In practice, when would you prefer to use (3) over (2), or vice versa?

Hint: if you’re stuck on b), use the matrix identity (P−1 + B>R−1B)−1B>R−1 = PB>(BPB> + R)−1 for any
P,B,R where it makes sense (i.e. P and R invertible, B not necessarily square but of matching dimensions).
Can you prove the identity?

4 Efficient leave-one-out error estimation

As discussed in the lecture, computing the leave-one-out (LOO) error is in general computationally very costly.
In this exercise we show that this is not the case for ridge regression, where leave-one-out error estimation can
be performed efficiently without repeated training.
For this exercise, you can make use of the results from Exercise 3, even if you did not prove them.

� Let D = {(x1, y1), . . . , (xn, yn)} ⊂ Rd × R be a training set. For any i = 1, . . . , n, denote by Di the set of
size m− 1 in which (xi, yi) was removed from D.

� For any dataset S, denote by hS the predictor obtained by training ridge regression on S (see Exercise 3).

� By definition, the leave-one-out error for squared loss, `(y, y′) = (y − y′)2, with respect to D is

R̂LOO =
1

n

n∑
i=1

(hDi
(xi)− yi)2 (4)

a) Let D′i be the set D with the value yi replaced by hDi
(xi). Show that hD′

i
= hDi

.

b) Denote by yi the vector of target values, y, with the i-th entry replaced by hDi
(xi), i.e.

yi = y − yiei + hSi
(xi)ei, where ei = (0, . . . , 0,

i-th pos︷︸︸︷
1 , 0, . . . , 0) ∈ Rn. Show that

hDi
(xi) = y>i (K + λIn×n)−1Kei for K = X>X.

c) Show that the leave-one-out error for hD can be written in the following way

R̂LOO =
1

n

n∑
i=1

[ hD(xi)− yi
ei(K + λIn×n)−1Kei

]2
(5)

Note that (5) can be evaluated efficiently, because the values showing up in the denominator of (5) are
simply the diagonal entries of M = (K + λIn×n)−1K, so only a single (n× n)-matrix inversion is needed
to compute all of them.

d) Suppose that all diagonal entries of M are identical with value γ. Then how does the leave-one-out error
R̂LOO relate to the training error R̂D = 1

n

∑n
i=1(hD(xi) − yi)2? Is there a value for which they coindice?

If yes, could this happen in practice?
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5 Practical Experiments IV

Expand your system from the Practical Experiments III.

a) Model selection

� perform automatic model selection to select the regularization strength, λ. Either use Deval as a validation
set, or apply one of the alternative methods, such as 5-fold cross-validation. If you chose the latter, please
do not use an existing library function but implement data splitting and the repeated calls to classifier
training yourself.

� retrain your system with the regularization parameter that you’ve obtained to obtain a single final pre-
dictor.

� afterwards (and only then), download the test data XtestIMG.txt and Ytest.txt from the homepage and
compute the test error of the single final predictor.

b) Domain adaptation

� download the data XtrainIMG2.txt and Ytrain2.txt from the homepage. These also contain images of
eyes, but of right eyes, where the original data contained left eyes.

� rerun the pipeline from a)

– using the right eyes data as input,

– using the right eyes and left data combined data as input,

– using the right eyes and left data combined data as input, where you first mirrored the right eyes
horizontally to look like left ones

In all cases, evaluate the final predictors (and only these) on the original test data.
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