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Date no. | Topic

Oct 05 | Mon | 1 | A Hands-On Introduction

Oct 07 | Wed | 2 | Bayesian Decision Theory, Generative Probabilistic Models
Oct 12 | Mon | 3 | Discriminative Probabilistic Models

Oct 14 | Wed | 4 | Maximum Margin Classifiers, Generalized Linear Models
Oct 19 | Mon | 5 | Estimators; Overfitting/Underfitting, Regularization, Model Selection
Oct 21 | Wed | 6 | Bias/Fairness, Domain Adaptation

Oct 26 | Mon | - | no lecture (public holiday)

Oct 28 | Wed | 7 | Learning Theory |

Nov 02 | Mon | 8 | Learning Theory Il

Nov 04 | Wed | 9 | Deep Learning |

Nov 09 | Mon | 10 | Deep Learning Il

Nov 11 | Wed | 11 | Unsupervised Learning

Nov 16 | Mon | 12 | project presentations

Nov 18 | Wed | 13 | buffer
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Refresher from Previous Lecture

We treat all quantities of interest as random variables.
x € X: inputs, y € Y: outputs, D C X x Y: training set, 0 € ©: model parameters, ...
p(z,y): underlying data distribution, p(f): prior knowledge about parameters, ...

3/36



Refresher from Previous Lecture

We treat all quantities of interest as random variables.
x € X: inputs, y € Y: outputs, D C X x Y: training set, 0 € ©: model parameters, ...
p(z,y): underlying data distribution, p(f): prior knowledge about parameters, ...

If p(x,y) is known, the optimal classifier is easy:
x) = argmax, .y p(z,y) = argmax,cy p(yl|x)

x) = argmaxgcy Ky, Uy, y)

C

C

“(
o

3/36



Refresher from Previous Lecture

We treat all quantities of interest as random variables.
x € X: inputs, y € Y: outputs, D C X x Y: training set, 0 € ©: model parameters, ...
p(z,y): underlying data distribution, p(f): prior knowledge about parameters, ...

If p(x,y) is known, the optimal classifier is easy:
x) = argmax, .y p(z,y) = argmax,cy p(yl|x)

x) = argmaxgcy Ky, Uy, y)

C

C

“(
7 (
If p(z,y) is unknown, we can use generative probabilistic modeling:

estimate p(z,y) from a dataset D, then use as plug-in for true p(z,y)
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Refresher from Previous Lecture

We treat all quantities of interest as random variables.
x € X: inputs, y € Y: outputs, D C X x Y: training set, 0 € ©: model parameters, ...
p(z,y): underlying data distribution, p(f): prior knowledge about parameters, ...

If p(x,y) is known, the optimal classifier is easy:
x) = argmax, .y p(z,y) = argmax,cy p(yl|x)

x) = argmaxgcy Ky, Uy, y)

(
e
If p(z,y) is unknown, we can use generative probabilistic modeling:

estimate p(z,y) from a dataset D, then use as plug-in for true p(z,y)

For parametric models p(z,y; ), find parameters 0 by
maximum likelihood method: 6 = argmax, p(D; )
maximum-a-posteriori method: # = argmax, p(6|D)
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Discrete Data — Laplace smoothing

Definition (Laplace smoothing)

Let 2%,...,2" be i.i.d. samples from p(z). For a > 0 we call

a—i—Z[[z = z])

=1

bn(2) = n—+ |Z|a

the smoothed empirical estimate of p(z) (with smoothing parameter «).
Bayesian interpretation:

Maximum-a-posteriori estimate of parameters 6, of a multinomial distribution
Prior on #: symmetric Dirichlet distribution with parameter «

IZ] z
1 1 . I'(a)?l
p(0) = —— [[(6.)*7! with B(a) = ———
Bay 110 MalZ)
Laplace’s "rule of succession": a« =1. More common: o < 1, e.g. a = % or a = \%I
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Continuous Data

If X is continuous, p(z,y) is a strange object, mixing continuous and discrete.
Instead of modeling p(x,y), we decompose it:

Definition
Let p(z,y) = p(z|y)p(y).
p(y) are called class priors,

p(z|y), for y € Y, are called class conditional densities.

Remark

p(y) is a discrete probability distribution over |)| possible values, i.e.

p(y) >0forallyey, and > p(y)=1.
Yy

For any fixed y € ), p(x|y) is a probability density, i.e.
p(zly) > 0 for all z € X, and /p(x|y) dx = 1.

5/36



Gaussian density estimation

Most popular parametric model for continuous data is Gaussian:

Definition (Gaussian Density Parameter Estimation)

For z € RY, let p(z|y; u, X) = G(x, 1y, By) with

1 1 _
Gl %) = —————exp(— 5 (@ — 1) 5y (@ — ).
(2m)d det 2,
Given a set D = {(z},4'),..., (2" y™)}, we estimate all y, and 3, for y € Y using the
classical formulas:
1 4 1 . .
py=— D> ' Zy=— 3 (') — )’ (1)
Ny e Ny iz
{iy'=y} {iy'=y}

Remark: Alternatively, we can assume a fixed ¥, and estimate only s, or estimate a single

Y for all classes, or set X, = o, /d and estimate o, etc.
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Example (Gaussian Model of Height Distribution)

We observe the following situation:
X: height of a person in cm, Y = {(male, female}.
D = {(181,m), (165, %), (161,f), (172,m) ,(175,m), (178, £)}.
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Example (Gaussian Model of Height Distribution)

We observe the following situation:
X: height of a person in cm, Y = {(male, female}.
D = {(181,m), (165, %), (161,f), (172,m) ,(175,m), (178, £)}.

X =R, so p(aly) = \/2;7 exp(—g52 (7 — 11y)%).
Yy

| 1
fm = (181 +172+175) =176 of = 5(5° +4° +1%) = 14

1 1
s = 5 (161 + 165 + 178) = 168 o2 = 5(72 +3% +10%) ~ 52.7
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Example (Gaussian Model of Height Distribution)

We observe the following situation:
X: height of a person in cm, Y = {(male, female}.
D = {(181,m), (165,£), (161,£), (172,m) ,(175,m), (178,£)}.

_ 1wl A _ 1 1 2
X =R", so p@“y) = mexp(_ﬁ(x_ﬂy) )

— male
0.100 — female

150 160 170 180 190 200
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Example: 2D Gaussian

|
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Example: 2D Gaussian
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Lemma

The classical expressions for estimating ., and ¥, for a Gaussian are the
maximum likelihood estimates for the parameters of p(x|y; p, o).
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Lemma

The classical expressions for estimating ., and ¥, for a Gaussian are the
maximum likelihood estimates for the parameters of p(x|y; p, o).

Proof. With G(x; u, X) = mexp{—%(g; - M)T;}fl(m — 1)}, solve
pme = argmax,, L(p) for  L(p) =log3lit, logG(a'; u, X).

n

1 i Ty—1,i d d
L) = 22(35 ) X (xt = p) 210g27r 2logdet2

i=1
VuL(p,X) = Z >t —p) = 271 Z(x’ — 1)
i=1 i=1

1<
LML = szl = V,L(pmL,X) =0 = maximum of £
i=1

>mL analogously, but requires some matrix derivatives.
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Classification based on Gaussian models

1

-1 L — Ty —1(p — isions?
TS, exp(—5(z — py) X, (x — py)). How to make decisions?

Let p(x|y; ,Uyazy) = y

General Bayes classifier:

e(w) = argmax {——2W o0 )T - )
yeY (2m)d det 3,
For two classes, Y = {+1,—1}:
¢(z) = sign [log igi: ti?]
= sign |(z — p1) T (B) @ - )
det X
— (z = p1) (B4) (@ — pya) — log dZt Ej
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Gaussian Mixture Models (GMMs)

More flexibility by modeling each class as a Mixture of Gaussians

) A K . K
plaly;m, i, X) = mk Gy, $y) withm >0and Y~ m = 1.
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Gaussian Mixture Models (GMMs)

More flexibility by modeling each class as a Mixture of Gaussians

) . a K . K
plaly;m, i, X) = mk Gy, $y) withm >0and Y~ m = 1.

No closed form for maximum likelihood parameters, but popular iterative algorithm:

Expectation-Maximization (EM) algorithm for GMMs

input z',... 2" K

init m, i, &

repeat
Ak = TeG ("5 e, )y Yake = Yaw/ (25 Yig) E-step
Tk = %2?21 ik
= 23, g M-step(s)
Sk = i i Yik (@t — ) (@ — ) T

until convergence

—

output 7, i, >
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Example: Mixture of Gaussians in R?
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data

12 /36



Example: Mixture of Gaussians in R?

Single Gaussian model does not fit well.
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Example: Mixture of Gaussians in R?

Mixture of Gaussian model.
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Example: Mixture of Gaussians in R?

Individual Gaussians in the model.
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Non-parametric density estimation

Definition
Let Kjp(z) : X — R be a (fixed) kernel function, where h is a bandwidth parameter. Then

ply) = 7— Y EKn(z—2)
|{yl y}| {Z Yi y}
is called a kernel density estimate (KDE) of p(z|y).

Alternative name: Parzen windows estimate.

Kernel density estimates are non-parametric. The number of terms grows with the number of
examples.
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Example: Kernel density estimate

Example

X height of a person in cm, Y = {(male, female}.
D = {(181,m), (165, ), (161,£), (172,m) ,(175,m), (178,£)}.

For Kj(x) = ﬁ exp(—7z|z[|?) (Gaussian with bandwidth &):
T
0035 (f(x,1‘81)+f(x,17‘2‘)+1(><%(17§)8$g [— 003 ) (“X’m““x—’lés)*'(x;(”??ﬁ —
V[ = ot ) —
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Example: Kernel density estimate

Example

X: height of a person in cm, Y = {(male, female}.

D = {(181,m), (165, £), (161,£), (172,m) ,(175,m), (178, £)}.

For Kp(z) = 5-[|z| < h] (Box kernel):

0.035 0.035
(4 181) £(x,172)+(x,175))/3 —— (F(X, 161)+7(%,165)+f(x,178))/3 ——
LY | f(x18 / \ f(x161) ——
\ | f(x172) IR / f(%,165)
003 VL[ ears — 0.03 RV [ f(6178) ——
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Summary: Generative Models

For generative models, one uses the available data to estimate p(z,y)
either directly, or

through the decomposition p(z,y) = p(z|y)p(y)

Generative models are popular in the natural sciences and engineering because they
model all information in the data

often reflect the actual data generation process

Recently, generative models made a come-back in machine learning

autoregressive/Markov models, variational autoencoders, ...

But: generative models suffer from curse of dimensionality!
one either needs a /ot of data,
or, one must resort to a simple (usually wrong) model,
or, one must have strong additional assumptions, e.g. known independence relations.
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Learning from Data

In the real world, p(z,y) is unknown, but we have a training set D. At least 3 approaches:
Given a training set D, we call it

a generative probabilistic approach:
if we use D to build a model p(x,y) of p(x,y), and then define

c(z) := argmax p(x,y) or c¢y(zr):=argmin E {((y,y).

a discriminative probabilistic approach:
if we use D to build a model p(y|z) of p(y|x) and define

c(z) == argmax p(y|z) or cy(z):=argmin E ((y,y).
yeY yey  y~p(ylz)

a decision theoretic approach: if we use D to directly seach for a classifier c.
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Discriminative Probabilistic Models

Task: spam classification, X = {all possible emails}, ) = {spam, ham}.
What's, e.g., p(z|/ham)? For every possible email, a value how likely it is to see that email,
including:
all possible languages,
all possbile topics,
an arbitrary length,
all possible spelling mistakes, etc.
This is much more general (and much harder) than just deciding if an email is spam or not!

"When solving a problem, do not solve a more general problem

as an intermediate step."
(Vladimir Vapnik, 1998)
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Instead of p(z,y) = p(z|y)p(y), we can also use p(z,y) = p(ylz)p(z).
Because argmax, p(z,y) = argmax, p(y|z), we don't need to model p(x), only p(y|z).

‘Let's use D to estimate p(y|1:)‘
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Observation

Instead of p(z,y) = p(z|y)p(y), we can also use p(z,y) = p(ylz)p(z).
Because argmax, p(z,y) = argmax, p(y|z), we don't need to model p(x), only p(y|z).

‘ Let's use D to estimate p(y|x). ‘

Visual intuition:

1, x| ) class conditional densities
N\ = likelihood plxly)
A
plx|a)Pla) joint densit
pxb)Pe) Y
- likelihood*prior: p(x|ylply)

X

il ) __'\E-f"_ plbx) class posteriors
A plypd=plx[y)ply)iphi)

X
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Observation

Instead of p(z,y) = p(z|y)p(y), we can also use p(z,y) = p(y|z)p(x).
Because argmax, p(z,y) = argmax, p(y|z), we don't need to model p(x), only p(y|z).

‘Let’s use D to estimate p(y|x)‘

Example (Spam Classification)

Is p(y|x) really easier than, e.g., p(z|y)?
p("vlagra"|spam) is some positive value (what fraction of spam words are "vlagra"?)

p(spam|“vlagra”) is almost surely 1.

For p(y|z) we can treat = as given/known, we don't need to know its probability.
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Nonparametric Discriminative Model

Idea: split X" into regions, for each region store an estimate p(y|z).

X

p(1]|x)=0.9

p(2|x)=0.0

p(3|x)=0.1
p(1]|x)=0.7
p(2]x)=0.2
p(3|x)=0.1

p(1|x)=0.1

p(2|x)=0.8

p(3|x)=0.1

p(1]x)=0.01 p(2|x)=0.98
p(3]|x)=0.01
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Nonparametric Discriminative Model

Idea: split X" into regions, for each region store an estimate p(y|z).

For example, using a decision tree:
training: build a tree
prediction: for new example x, find its leaf
output p(ylx) = 2%, where

» n is the number of examples in the leaf,
> n, is the number of example of label y in the leaf.
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Nonparametric Discriminative Model

Idea: split X" into regions, for each region store an estimate p(y|z).

For example, using a decision tree:
training: build a tree
prediction: for new example x, find its leaf
output p(ylx) = 2%, where

» n is the number of examples in the leaf,
> n, is the number of example of label y in the leaf.

Note: prediction rule
c(z) = argmax p(y|z)
Yy

is predicts the most frequent label in each leaf (same as in first lecture).
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Parametric Discriminative Model: Logistic Regression

Setting. We assume X C R? and ) = {1, +1}.

Definition (Logistic Regression Model, "LogReg", "LR")

Modeling

1
1+ exp(—y(w,x))’

P(ylz;w) =

with parameter vector w € R is called a logistic regression model.
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Parametric Discriminative Model: Logistic Regression

Setting. We assume X C R? and ) = {1, +1}.

Definition (Logistic Regression Model, "LogReg", "LR")

Modeling

1
1+ exp(—y(w,x))’

P(ylz;w) =

with parameter vector w € R is called a logistic regression model.

Lemma

P(y|x; w) is a well defined probability density w.r.t. y for any w € R?.

Proof. elementary.
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How to set the weight vector w (based on D)

Logistic Regression Training

Given a training set D = {(x!,y'),..., (2™, y™)}, logistic regression training
sets the free parameter vector as

n
wir = argmin » log (1 + exp(—y*(w,z")))
weRd ;4

Lemma (Conditional Likelihood Maximization)

wy R from Logistic Regression training maximizes the conditional data likelihood w.r.t. the
LogReg model,
N 1
wig = argmax p(y,...,y"z ..., 2"
weRd

7w)
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Maximizing

A i.0.d. - AN
A(DY DX, w) "= [T b(y'|2",w)
i=1

is equivalent to minimizing its negative logarithm

—log ﬁ(Dylpxjw)z—longylx w) Zlogpy!w w)
=il =il

1
51+ exp(—yi(w, 27))’

llog 1 — log(1 + exp(—y'(w,2"))],

:Zl g(1 4 exp(—y*(w, z%)).
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Alternative Explanation

Definition (Kullback-Leibler (KL) divergence)

Let p and ¢ be two probability distributions (for discrete Z) or probabilitiy
densities with respect to a measure d\ (for continuous Z).

The Kullbach-Leibler (KL)-divergence between p and ¢ is defined as

p(2) B p(2) §
L(pllg) = z;p 7), or KL(p|lq) —ZG/Z p(2) log e dA(z),

(with convention 0log0 = 0, and alog § = oo for a > 0).
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Alternative Explanation

Definition (Kullback-Leibler (KL) divergence)

Let p and ¢ be two probability distributions (for discrete Z) or probabilitiy
densities with respect to a measure d\ (for continuous Z).

The Kullbach-Leibler (KL)-divergence between p and ¢ is defined as
z z
Liplle) = > (=) ( ) o KL(pllq) = / p(2) log][M dA(z),

2P Gy L)

(with convention 0log0 = 0, and alog § = oo for a > 0).

KL is a similarity measure between probability distributions. It fulfills

0<KL(pllg) <o, and  KL(pllg)=0 & p=gq.

However, K L is not a metric.
it is in general not symmetric, K L(q ||p) # KL(p|q),

it does not fulfill the triangle inequality.
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Alternative Explanation of Logistic Regression Training

Definition (Expected Kullback-Leibler (KL) divergence)

Let p(x,y) be a probability distribution over (z,y) € X x ) and let p(y|z) be
an approximation of p(y|x). We measure the approximation quality by the expected
KL-divergence between p and q over all x € X:

KLexp(p [lg) = xNIE(x){ KL(p(-|z)llq(-[x)) }

Theorem

The parameter w; g obtained by logistic regression training approximately minimizes the K L
divergence between p(y|z;w) and p(y|z).
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Proof

We show how maximizing the conditional likelihood relates to KLexp:

plylz)
KLexp(pllD) = Zp ylz)lo
Z P By )
= E log p(y|x) — E log p(y|x, w
(z,y)~p(z,y) ep(yle) (z,y)~p(z,y) BP0 )
indep. of w

We can't maximize E, y)~p(z.y) l0g P(y|z, w) directly, because p(z,y) is unknown. But we
can maximimize its empirical estimate based on D:

E log p(y|z, w) =~ Z log p(y'|a", w)
(z,y)~p(z,y) (zi,y*)€D

log of conditional data likelihood

The more data we have, the better the approximation will get. O
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Solving Logistic Regression numerically — Optimization |

Logistic Regression training,

wig = argmin L(w) for L(w) :ZIOg (1 4 exp(—y*(w,z"))),
weR4 i=1

is a C*°-smooth, unconstrained, convex optimization problem.

Proof.

1.

it's an optimization problem,

2. it's unconstrained,
3.
4

. remains to show: the objective function is a convex function.

it's smooth (the objective function is C*° differentiable),

Since L is smooth, it's enough to show that its Hessian matrix
(the matrix of 2nd partial derivatives) is everywhere positive definite.
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We compute first the gradient and then the Hessian of
= > log(1 + exp(—y'(w,z")).
i=1

Vw L ZVlog + exp(—y'(w, z")).
i=1

use the chain rule, Vf(g(w)) = %(g(w))Vg(w), and dl‘;igt(t) =1

72 1+ exp( y<w7ﬂél>]:zn: XY ) G ity i)

1 + exp(—y*(w, %) — 1+exp(—y"(w,z"))

=p(—y'lz"w)
i

use the chain rule again, %exp(t) = exp(t), and V,(w,z?) = x

n

== > [p(=y'l2', w)] y'a’

i=1
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H,L(w)=VV'L(w)=— Z[vp(—yi\xi,w)] yixt

Vh(—y'la’, w) =

v1 + exp(y*(w, z*))
V[ 4 exp(y*(w, z"))]
[1 + exp(y*(w, xz))]z

use quotient rule, Vﬁ = —%, and chain rule,

exp(y (w, )
kel P
5yl DBy ', w)y'a
)

Vy'(w,a)

insert into above expression for H,

F\
M:fg\/-\

H =3 p(—y'la")ply'[a’,w) a'a’]
i=1 >0 sym.pos.def.
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Example plot: LogReg objective for three examples in R“

-3

000'%7

-1.0

1.0
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Numeric Optimization

Convex optimization is a well understood field. We can use,
e.g., gradient descent, which will converge to a globally optimal solution!

Steepest Descent Minimization with Line Search

input € > 0, tolerance (for stopping criterion)

1w+ 0

2: repeat

3 v+ —Vyu L(w) {descent direction}
4. 1< argmin, o L(w +nv) {1D line search}
5 w4~ w+nu

6: until ||v]| <e

output w € R? learned weight vector

Faster conference from methods that use second-order information, e.g., conjugate gradients
or (L-)BFGS.
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Binary classification with a LogReg Models

A discriminative probability model, p(y|z), is enough to make decisions:

c(r) = argmax p(y|r) or c(x)=argmin E /{(y,y).
yeY yey  y~b(ylz)

For Logistic Regression, this is particularly simple:

The LogReg classification rule for 0/1-loss is
c(x) = sign (w, x).

For a loss function ¢ = (Z Z) the rule is

—d
co(x) = sign| (w, ) +log 7

B

In particular, the decision boundaries is linear (or affine).

Proof. Elementary, since log % = (w,x)
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Multiclass Logistic Regression

For Y ={1,..., M}, we can do two things:

Parametrize p(y|z;w) using M —1 vectors, wy,...,wy—1 € R?, as
R exp((wy, 7))
pylx, w) = — fory=1,...,M —1,
1+ 330" exp((w), 7))
. 1
p(M|z,w) = :
1+ Z] 1 exp(<w]7x>)
Parametrize p(y|x; ) using M vectors, w1, ..., wy € RY, as
p(y|z,w) = Aﬁ}[xp((wy,x)) fory=1,...,M,

Ej:l exp((wj, ))

Second is more popular, since it's easier to implement and analyze.

Decision boundaries are still piecewise linear, c(z) = argmax,(w,, ).
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Summary: Discriminative Models

Discriminative models treats the input data, x, as fixed and only model the
distribution of the outputs p(y|x).
Discriminative models, in particular logistic regression, are popular, because
they often need less training data than generative models,
they provide an estimate of the uncertainty of a decision p(c(z)|x),

training them is often efficient, e.g. big companies train LogReg models
routinely from billions of examples.

But: they also have drawbacks

usually pir(y|z) /4 p(y|x), even for n — oo,
they usually are good for prediction, but they do not reflect the actual mechanism.

Note: there are much more complex discriminative models than LogReg, e.g. "Conditional
Random Fields" (— course on probabilistic graphical models).
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Learning from Data

In the real world, p(z,y) is unknown, but we have a training set D. At least 3 approaches:
Given a training set D, we call it

a generative probabilistic approach:
if we use D to build a model p(x,y) of p(x,y), and then define

c(z) := argmax p(x,y) or c¢y(zr):=argmin E {((y,y).

a discriminative probabilistic approach:
if we use D to build a model p(y|z) of p(y|x) and define

c(z) == argmax p(y|z) or cy(z):=argmin E ((y,y).
yeY yey  y~p(ylz)

a decision theoretic approach: if we use D to directly seach for a classifier c.
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Observation

Even easier than estimating p(y|z) or p(x,y) should be to just estimate
the decision boundary between classes.

A
p(x| p(x|yz

p(y=1|x) p(y=0|x)

>

A
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Maximum Margin Classifiers

Let’s use D to estimate a classifier ¢ : X — ) directly.
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Maximum Margin Classifiers

‘Let's use D to estimate a classifier ¢ : X — ) directly.

For a start, we fix
D ={(z',y"),.... (=", y")},
y: {+1)_1}1

we look for classifiers with linear decision boundary.

Several of the classifiers we saw had linear decision boundaries:
Perceptron

Generative classifiers for Gaussian class-conditional densities with shared covariance
matrix

Logistic Regression

What's the best linear classifier?
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