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Overview (tentative)

Date no. Topic
Oct 05 Mon 1 A Hands-On Introduction
Oct 07 Wed 2 Bayesian Decision Theory, Generative Probabilistic Models
Oct 12 Mon 3 Discriminative Probabilistic Models
Oct 14 Wed 4 Maximum Margin Classifiers, Generalized Linear Models
Oct 19 Mon 5 Estimators; Overfitting/Underfitting, Regularization, Model Selection
Oct 21 Wed 6 Bias/Fairness, Domain Adaptation
Oct 26 Mon - no lecture (public holiday)
Oct 28 Wed 7 Learning Theory I
Nov 02 Mon 8 Learning Theory II
Nov 04 Wed 9 Deep Learning I
Nov 09 Mon 10 Deep Learning II
Nov 11 Wed 11 Unsupervised Learning
Nov 16 Mon 12 project presentations
Nov 18 Wed 13 buffer
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Refresher from Previous Lecture

We treat all quantities of interest as random variables.
• x ∈ X : inputs, y ∈ Y: outputs, D ⊂ X ×Y: training set, θ ∈ Θ: model parameters, . . .
• p(x, y): underlying data distribution, p(θ): prior knowledge about parameters, . . .

If p(x, y) is known, the optimal classifier is easy:
• c∗(x) = argmaxy∈Y p(x, y) = argmaxy∈Y p(y|x)
• c∗` (x) = argmaxȳ∈Y E(y|x) `(y, ȳ)

If p(x, y) is unknown, we can use generative probabilistic modeling:
• estimate p̂(x, y) from a dataset D, then use as plug-in for true p(x, y)

For parametric models p(x, y; θ), find parameters θ by
• maximum likelihood method: θ = argmaxθ p(D; θ)
• maximum-a-posteriori method: θ = argmaxθ p(θ|D)
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Discrete Data – Laplace smoothing

Definition (Laplace smoothing)

Let z1, . . . , zn be i.i.d. samples from p(z). For α ≥ 0 we call

p̂n(z) := 1
n+ |Z|α

(
α+

n∑
i=1

Jzi = zK
)

the smoothed empirical estimate of p(z) (with smoothing parameter α).

Bayesian interpretation:
• Maximum-a-posteriori estimate of parameters θz of a multinomial distribution
• Prior on θ: symmetric Dirichlet distribution with parameter α

p(θ) = 1
B(α)

|Z|∏
z=1

(θz)α−1 with B(α) = Γ(α)|Z|

Γ(α|Z|)

Laplace’s "rule of succession": α = 1. More common: α < 1, e.g. α = 1
2 or α = 1

|Z| .
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Continuous Data

If X is continuous, p(x, y) is a strange object, mixing continuous and discrete.
Instead of modeling p(x, y), we decompose it:
Definition
Let p(x, y) = p(x|y)p(y).
• p(y) are called class priors,
• p(x|y), for y ∈ Y, are called class conditional densities.

Remark
p(y) is a discrete probability distribution over |Y| possible values, i.e.

• p(y) ≥ 0 for all y ∈ Y, and
∑
y

p(y) = 1.

For any fixed y ∈ Y, p(x|y) is a probability density, i.e.

• p(x|y) ≥ 0 for all x ∈ X , and
∫
x
p(x|y) dx = 1.
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Gaussian density estimation

Most popular parametric model for continuous data is Gaussian:

Definition (Gaussian Density Parameter Estimation)

For x ∈ Rd, let p̂(x|y;µ,Σ) = G(x, µy,Σy) with

G(x, µ,Σ) = 1√
(2π)d det Σy

exp(−1
2(x− µy)>Σ−1

y (x− µy)).

Given a set D = {(x1, y1), . . . , (xn, yn)}, we estimate all µy and Σy for y ∈ Y using the
classical formulas:

µy = 1
ny

∑
{i:yi=y}

xi Σy = 1
ny

∑
{i:yi=y}

(xi − µy)(xi − µy)> (1)

Remark: Alternatively, we can assume a fixed Σy and estimate only µy, or estimate a single
Σ for all classes, or set Σy = σyId and estimate σ, etc.
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Example (Gaussian Model of Height Distribution)

We observe the following situation:
• X: height of a person in cm, Y = {(male, female}.
• D = {(181, m), (165, f), (161, f), (172, m) ,(175, m), (178, f)}.

X = R1, so p̂(x|y) = 1√
2πσ2

y

exp(− 1
2σ2

y
(x− µy)2).

µm = 1
3(181 + 172 + 175) = 176 σ2

m = 1
3(52 + 42 + 12) = 14

µf = 1
3(161 + 165 + 178) = 168 σ2

f = 1
3(72 + 32 + 102) ≈ 52.7
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Example: 2D Gaussian
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Example: 2D Gaussian
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Lemma
The classical expressions for estimating µy and Σy for a Gaussian are the
maximum likelihood estimates for the parameters of p̂(x|y;µ, σ).

Proof. With G(x;µ,Σ) = 1
(2π det Σ)d/2 exp{−1

2(x− µ)>Σ−1(x− µ)}, solve
µML = argmaxµ L(µ) for L(µ) = log

∑n
i=1 log G(xi;µ,Σ).

L(µ) = 1
2

n∑
i=1

(xi − µ)>Σ−1(xi − µ)− d

2 log 2π − d

2 log det Σ

∇µL(µ,Σ) =
n∑
i=1

Σ−1(xi − µ) = Σ−1
n∑
i=1

(xi − µ)

HµL(µ,Σ) = −Σ−1 4 0

µML = 1
n

n∑
i=1

xi ⇒ ∇µL(µML,Σ) = 0 ⇒ maximum of L

ΣML analogously, but requires some matrix derivatives.
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Classification based on Gaussian models

Let p̂(x|y;µy,Σy) = 1√
(2π)d det Σy

exp(−1
2(x− µy)>Σ−1

y (x− µy)). How to make decisions?

General Bayes classifier:

c(x) = argmax
y∈Y

{ p̂(y)√
(2π)d det Σy

exp(−1
2(x− µy)>Σ−1

y (x− µy))}

For two classes, Y = {+1,−1}:

c(x) = sign
[
log p(x,+1)

p(x,−1)
]

= sign
[
(x− µ−1)>(Σ−1)−1(x− µ−1)

− (x− µ+1)>(Σ+1)−1(x− µ+1)− log det Σ+1
det Σ−1

]
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Gaussian Mixture Models (GMMs)

More flexibility by modeling each class as a Mixture of Gaussians

p̂(x|y;π, ~µ, ~Σ) =
∑K

k=1
πk G(x;µk,Σk) with πk ≥ 0 and

∑K

k=1
πk = 1.

No closed form for maximum likelihood parameters, but popular iterative algorithm:
Expectation-Maximization (EM) algorithm for GMMs

input x1, . . . , xn, K
init π, ~µ, ~Σ
repeat
γ̂ik = πkG(xi;µk,Σk), γik = γ̂ik/(

∑
j γ̂ij) E-step

πk = 1
n

∑n
i=1 γik

µk = 1
nπk

∑
i γikx

i M-step(s)
Σk = 1

nπk

∑
i γik(xi − µk)(xi − µk)>

until convergence

output π, ~µ, ~Σ

11 / 36



Gaussian Mixture Models (GMMs)

More flexibility by modeling each class as a Mixture of Gaussians

p̂(x|y;π, ~µ, ~Σ) =
∑K

k=1
πk G(x;µk,Σk) with πk ≥ 0 and

∑K

k=1
πk = 1.

No closed form for maximum likelihood parameters, but popular iterative algorithm:
Expectation-Maximization (EM) algorithm for GMMs

input x1, . . . , xn, K
init π, ~µ, ~Σ
repeat
γ̂ik = πkG(xi;µk,Σk), γik = γ̂ik/(

∑
j γ̂ij) E-step

πk = 1
n

∑n
i=1 γik

µk = 1
nπk

∑
i γikx

i M-step(s)
Σk = 1

nπk

∑
i γik(xi − µk)(xi − µk)>

until convergence

output π, ~µ, ~Σ
11 / 36



Example: Mixture of Gaussians in R2

data
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Example: Mixture of Gaussians in R2

Single Gaussian model does not fit well.
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Example: Mixture of Gaussians in R2

Mixture of Gaussian model.
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Example: Mixture of Gaussians in R2

Individual Gaussians in the model.
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Non-parametric density estimation

Definition
Let Kh(x) : X → R be a (fixed) kernel function, where h is a bandwidth parameter. Then

p̂(x|y) := 1
|{yi = y}|

∑
{i:yi=y}

Kh(x− xi)

is called a kernel density estimate (KDE) of p(x|y).

Alternative name: Parzen windows estimate.

Kernel density estimates are non-parametric. The number of terms grows with the number of
examples.
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Example: Kernel density estimate

Example

• X: height of a person in cm, Y = {(male, female}.
• D = {(181, m), (165, f), (161, f), (172, m) ,(175, m), (178, f)}.

For Kh(x) = 1√
2πh2 exp(− 1

h2 ‖x‖2) (Gaussian with bandwidth h):
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Example

• X: height of a person in cm, Y = {(male, female}.
• D = {(181, m), (165, f), (161, f), (172, m) ,(175, m), (178, f)}.

For Kh(x) = 1
2hJ|x| < hK (Box kernel):
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Summary: Generative Models

For generative models, one uses the available data to estimate p(x, y)
• either directly, or
• through the decomposition p(x, y) = p(x|y)p(y)

Generative models are popular in the natural sciences and engineering because they
• model all information in the data
• often reflect the actual data generation process

Recently, generative models made a come-back in machine learning
• autoregressive/Markov models, variational autoencoders, . . .

But: generative models suffer from curse of dimensionality!
• one either needs a lot of data,
• or, one must resort to a simple (usually wrong) model,
• or, one must have strong additional assumptions, e.g. known independence relations.
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Learning from Data

In the real world, p(x, y) is unknown, but we have a training set D. At least 3 approaches:

Definition
Given a training set D, we call it
• a generative probabilistic approach:

if we use D to build a model p̂(x, y) of p(x, y), and then define

c(x) := argmax
y∈Y

p̂(x, y) or c`(x) := argmin
y∈Y

E
ȳ∼p̂(x,ȳ)

`( ȳ, y ).

• a discriminative probabilistic approach:
if we use D to build a model p̂(y|x) of p(y|x) and define

c(x) := argmax
y∈Y

p̂(y|x) or c`(x) := argmin
y∈Y

E
ȳ∼p̂(ȳ|x)

`( ȳ, y ).

• a decision theoretic approach: if we use D to directly seach for a classifier c.
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Discriminative Probabilistic Models

Observation
Task: spam classification, X = {all possible emails},Y = {spam, ham}.

What’s, e.g., p(x|ham)? For every possible email, a value how likely it is to see that email,
including:
• all possible languages,
• all possbile topics,
• an arbitrary length,
• all possible spelling mistakes, etc.

This is much more general (and much harder) than just deciding if an email is spam or not!

"When solving a problem, do not solve a more general problem
as an intermediate step."

(Vladimir Vapnik, 1998)
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Observation
Instead of p(x, y) = p(x|y)p(y), we can also use p(x, y) = p(y|x)p(x).
Because argmaxy p(x, y) = argmaxy p(y|x), we don’t need to model p(x), only p(y|x).

Let’s use D to estimate p(y|x).

Visual intuition:
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Instead of p(x, y) = p(x|y)p(y), we can also use p(x, y) = p(y|x)p(x).
Because argmaxy p(x, y) = argmaxy p(y|x), we don’t need to model p(x), only p(y|x).

Let’s use D to estimate p(y|x).

Example (Spam Classification)

Is p(y|x) really easier than, e.g., p(x|y)?
• p("v1agra"|spam) is some positive value (what fraction of spam words are "v1agra"?)
• p(spam|"v1agra") is almost surely 1.

For p(y|x) we can treat x as given/known, we don’t need to know its probability.
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Nonparametric Discriminative Model

Idea: split X into regions, for each region store an estimate p̂(y|x).

X
p(1|x)=0.9
p(2|x)=0.0
p(3|x)=0.1

p(1|x)=0.7
p(2|x)=0.2
p(3|x)=0.1

p(1|x)=0.1
p(2|x)=0.8
p(3|x)=0.1

p(1|x)=0.01 p(2|x)=0.98

p(3|x)=0.01

Note: prediction rule
c(x) = argmax

y
p̂(y|x)

is predicts the most frequent label in each leaf (same as in first lecture).
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Parametric Discriminative Model: Logistic Regression

Setting. We assume X ⊆ Rd and Y = {−1,+1}.

Definition (Logistic Regression Model, "LogReg", "LR")

Modeling

p̂(y|x;w) = 1
1 + exp(−y〈w, x〉) ,

with parameter vector w ∈ Rd is called a logistic regression model.

Lemma
p̂(y|x;w) is a well defined probability density w.r.t. y for any w ∈ Rd.

Proof. elementary.
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How to set the weight vector w (based on D)

Logistic Regression Training
Given a training set D = {(x1, y1), . . . , (xn, yn)}, logistic regression training
sets the free parameter vector as

wLR = argmin
w∈Rd

n∑
i=1

log
(
1 + exp(−yi〈w, xi〉)

)

Lemma (Conditional Likelihood Maximization)

wLR from Logistic Regression training maximizes the conditional data likelihood w.r.t. the
LogReg model,

wLR = argmax
w∈Rd

p̂(y1, . . . , yn|x1, . . . , xn, w)
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Proof.
Maximizing

p̂(DY |DX , w) i.i.d.=
n∏
i=1

p̂(yi|xi, w )

is equivalent to minimizing its negative logarithm

− log p̂(DY |DX , w) = − log
n∏
i=1

p̂(yi|xi, w ) = −
n∑
i=1

log p̂(yi|xi, w )

= −
n∑
i=1

log 1
1 + exp(−yi〈w, xi〉) ,

= −
n∑
i=1

[log 1− log(1 + exp(−yi〈w, xi〉)],

=
n∑
i=1

log(1 + exp(−yi〈w, xi〉).
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Alternative Explanation

Definition (Kullback-Leibler (KL) divergence)

Let p and q be two probability distributions (for discrete Z) or probabilitiy
densities with respect to a measure dλ (for continuous Z).

The Kullbach-Leibler (KL)-divergence between p and q is defined as

KL(p ‖q) =
∑
z∈Z

p(z) log p(z)
q(z) , or KL(p ‖q) =

∫
z∈Z

p(z) log p(z)
q(z) dλ(z),

(with convention 0 log 0 = 0, and a log a
0 =∞ for a > 0).

KL is a similarity measure between probability distributions. It fulfills

0 ≤ KL(p ‖q) ≤ ∞, and KL(p ‖q) = 0 ⇔ p = q.

However, KL is not a metric.
• it is in general not symmetric, KL(q ‖p) 6= KL(p ‖q),
• it does not fulfill the triangle inequality.
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Alternative Explanation of Logistic Regression Training

Definition (Expected Kullback-Leibler (KL) divergence)

Let p(x, y) be a probability distribution over (x, y) ∈ X × Y and let p̂(y|x) be
an approximation of p(y|x). We measure the approximation quality by the expected
KL-divergence between p and q over all x ∈ X :

KLexp(p ‖q) = E
x∼p(x)

{ KL(p(·|x)‖q(·|x)) }

Theorem
The parameter wLR obtained by logistic regression training approximately minimizes the KL
divergence between p̂(y|x;w) and p(y|x).
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Proof.
We show how maximizing the conditional likelihood relates to KLexp:

KLexp(p‖p̂) = E
x∼p(x)

∑
y∈Y

p(y|x) log p(y|x)
p̂(y|x,w)

= E
(x,y)∼p(x,y)

log p(y|x)︸ ︷︷ ︸
indep. of w

− E
(x,y)∼p(x,y)

log p̂(y|x,w)

We can’t maximize E(x,y)∼p(x,y) log p̂(y|x,w) directly, because p(x, y) is unknown. But we
can maximimize its empirical estimate based on D:

E
(x,y)∼p(x,y)

log p̂(y|x,w) ≈
∑

(xi,yi)∈D
log p̂(yi|xi, w)

︸ ︷︷ ︸
log of conditional data likelihood

.

The more data we have, the better the approximation will get.
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Solving Logistic Regression numerically – Optimization I

Theorem
Logistic Regression training,

wLR = argmin
w∈Rd

L(w) for L(w) =
n∑
i=1

log
(
1 + exp(−yi〈w, xi〉)

)
,

is a C∞-smooth, unconstrained, convex optimization problem.

Proof.
1. it’s an optimization problem,
2. it’s unconstrained,
3. it’s smooth (the objective function is C∞ differentiable),
4. remains to show: the objective function is a convex function.

Since L is smooth, it’s enough to show that its Hessian matrix
(the matrix of 2nd partial derivatives) is everywhere positive definite.
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We compute first the gradient and then the Hessian of

L(w) =
n∑
i=1

log(1 + exp(−yi〈w, xi〉).

∇w L(w) =
n∑
i=1
∇ log(1 + exp(−yi〈w, xi〉).

use the chain rule, ∇f(g(w)) = df
dt (g(w))∇g(w), and d log(t)

dt = 1
t

=
n∑
i=1

∇[1 + exp(−yi〈w, xi〉]
1 + exp(−yi〈w, xi〉 =

n∑
i=1

exp(−yi〈w, xi〉)
1 + exp(−yi〈w, xi〉)︸ ︷︷ ︸

=p̂(−yi|xi,w)

∇(−yi〈w, xi〉)

use the chain rule again, d
dt exp(t) = exp(t), and ∇w〈w, xi〉 = xi

= −
n∑
i=1

[p̂(−yi|xi, w)] yixi
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HwL(w) = ∇∇>L(w) = −
n∑
i=1

[∇p̂(−yi|xi, w)] yixi

∇p̂(−yi|xi, w) = ∇ 1
1 + exp(yi〈w, xi〉)

= −∇[1 + exp(yi〈w, xi〉)]
[1 + exp(yi〈w, xi〉)]2

use quotient rule, ∇ 1
f(w) = −∇f(w)

f2(w) , and chain rule,

= − exp(yi〈w, xi〉)
[1 + exp(yi〈w, xi〉)]2∇y

i〈w, xi〉

= −(p̂(−yi|xi))p̂(yi|xi, w)yixi

insert into above expression for HwL(w)

H =
n∑
i=1

p̂(−yi|xi)p̂(yi|xi, w)︸ ︷︷ ︸
>0

xixi>︸ ︷︷ ︸
sym.pos.def.

A positively weighted linear combination of pos.def. matrices is pos.def.
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Example plot: LogReg objective for three examples in R2
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Numeric Optimization

Convex optimization is a well understood field. We can use,
e.g., gradient descent, which will converge to a globally optimal solution!

Steepest Descent Minimization with Line Search

input ε > 0, tolerance (for stopping criterion)
1: w ← 0
2: repeat
3: v ← −∇w L(w) {descent direction}
4: η ← argminη>0 L(w + ηv) {1D line search}
5: w ← w + ηv
6: until ‖v‖ < ε
output w ∈ Rd learned weight vector

Faster conference from methods that use second-order information, e.g., conjugate gradients
or (L-)BFGS.
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Binary classification with a LogReg Models

A discriminative probability model, p̂(y|x), is enough to make decisions:
c(x) = argmax

y∈Y
p̂(y|x) or c(x) = argmin

y∈Y
E

ȳ∼p̂(y|x)
`(ȳ, y).

For Logistic Regression, this is particularly simple:
Lemma
The LogReg classification rule for 0/1-loss is

c(x) = sign 〈w, x〉.

For a loss function ` =
(
a b
c d

)
the rule is

c`(x) = sign[ 〈w, x〉+ log c− d
b− a

],

In particular, the decision boundaries is linear (or affine).

Proof. Elementary, since log p̂(+1|x;w)
p(−1|x;w) = 〈w, x〉
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Multiclass Logistic Regression

For Y = {1, . . . ,M}, we can do two things:

• Parametrize p̂(y|x; ~w) using M−1 vectors, w1, . . . , wM−1 ∈ Rd, as

p̂(y|x,w) = exp(〈wy, x〉)
1 +

∑M−1
j=1 exp(〈wj , x〉)

for y = 1, . . . ,M − 1,

p̂(M |x,w) = 1
1 +

∑M−1
j=1 exp(〈wj , x〉)

.

• Parametrize p̂(y|x; ~w) using M vectors, w1, . . . , wM ∈ Rd, as

p̂(y|x,w) = exp(〈wy, x〉)∑M
j=1 exp(〈wj , x〉)

for y = 1, . . . ,M,

Second is more popular, since it’s easier to implement and analyze.

Decision boundaries are still piecewise linear, c(x) = argmaxy〈wy, x〉.
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Summary: Discriminative Models

Discriminative models treats the input data, x, as fixed and only model the
distribution of the outputs p(y|x).

Discriminative models, in particular logistic regression, are popular, because
• they often need less training data than generative models,
• they provide an estimate of the uncertainty of a decision p(c(x)|x),
• training them is often efficient, e.g. big companies train LogReg models
routinely from billions of examples.

But: they also have drawbacks
• usually p̂LR(y|x) 6→ p(y|x), even for n→∞,
• they usually are good for prediction, but they do not reflect the actual mechanism.

Note: there are much more complex discriminative models than LogReg, e.g. "Conditional
Random Fields" (→ course on probabilistic graphical models).
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Learning from Data

In the real world, p(x, y) is unknown, but we have a training set D. At least 3 approaches:

Definition
Given a training set D, we call it
• a generative probabilistic approach:

if we use D to build a model p̂(x, y) of p(x, y), and then define

c(x) := argmax
y∈Y

p̂(x, y) or c`(x) := argmin
y∈Y

E
ȳ∼p̂(x,ȳ)

`( ȳ, y ).

• a discriminative probabilistic approach:
if we use D to build a model p̂(y|x) of p(y|x) and define

c(x) := argmax
y∈Y

p̂(y|x) or c`(x) := argmin
y∈Y

E
ȳ∼p̂(ȳ|x)

`( ȳ, y ).

• a decision theoretic approach: if we use D to directly seach for a classifier c.
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Observation
Even easier than estimating p(y|x) or p(x, y) should be to just estimate
the decision boundary between classes.

p(x|y=0) p(x|y=1)

p(y=1|x) p(y=0|x)

p(y=1|x) p(y=0|x)
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Maximum Margin Classifiers

Let’s use D to estimate a classifier c : X → Y directly.

For a start, we fix
• D = {(x1, y1), . . . , (xn, yn)},
• Y = {+1,−1},
• we look for classifiers with linear decision boundary.

Several of the classifiers we saw had linear decision boundaries:
• Perceptron
• Generative classifiers for Gaussian class-conditional densities with shared covariance
matrix
• Logistic Regression

What’s the best linear classifier?
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