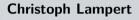
Statistical Machine Learning https://cvml.ist.ac.at/courses/SML_W20



I S T AUSTRIA

Institute of Science and Technology

Fall Semester 2020/2021 Lecture 4

Construction of the local

Overview (tentative)

Date		no.	Торіс
Oct 05	Mon	1	A Hands-On Introduction
Oct 07	Wed	2	Bayesian Decision Theory, Generative Probabilistic Models
Oct 12	Mon	3	Discriminative Probabilistic Models
Oct 14	Wed	4	Maximum Margin Classifiers, Generalized Linear Models
Oct 19	Mon	5	Estimators; Overfitting/Underfitting, Regularization, Model Selection
Oct 21	Wed	6	Bias/Fairness, Domain Adaptation
Oct 26	Mon	-	no lecture (public holiday)
Oct 28	Wed	7	Learning Theory I
Nov 02	Mon	8	Learning Theory II
Nov 04	Wed	9	Deep Learning I
Nov 09	Mon	10	Deep Learning II
Nov 11	Wed	11	Unsupervised Learning
Nov 16	Mon	12	project presentations
Nov 18	Wed	13	buffer

Learning from Data

In the real world, p(x, y) is unknown, but we have a training set \mathcal{D} . At least 3 approaches:

Definition

Given a training set $\mathcal{D},$ we call it

a generative probabilistic approach:

if we use ${\mathcal D}$ to build a model $\hat p(x,y)$ of p(x,y), and then define

$$c(x) := \mathop{\mathrm{argmax}}_{y \in \mathcal{Y}} \hat{p}(x,y) \quad \text{or} \quad c_\ell(x) := \mathop{\mathrm{argmin}}_{y \in \mathcal{Y}} \mathop{\mathbb{E}}_{\bar{y} \sim \hat{p}(x,\bar{y})} \ell(\bar{y},y)$$

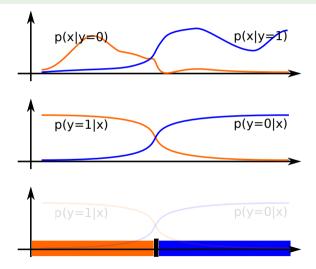
• a discriminative probabilistic approach: if we use \mathcal{D} to build a model $\hat{p}(y|x)$ of p(y|x) and define

$$g(x) := \operatorname*{argmax}_{y \in \mathcal{Y}} \hat{p}(y|x) \quad \text{or} \quad c_\ell(x) := \operatorname*{argmin}_{y \in \mathcal{Y}} \mathop{\mathbb{E}}_{\bar{y} \sim \hat{p}(\bar{y}|x)} \ell(\bar{y},y).$$

• a **decision theoretic approach**: if we use \mathcal{D} to directly seach for a classifier c.

Observation

Even easier than estimating $p(y \vert x)$ or p(x,y) should be to just estimate the decision boundary between classes.



Let's use \mathcal{D} to estimate a classifier $c: \mathcal{X} \to \mathcal{Y}$ directly.

Let's use \mathcal{D} to estimate a classifier $c: \mathcal{X} \to \mathcal{Y}$ directly.

For a start, we fix

•
$$\mathcal{D} = \{(x^1, y^1), \dots, (x^n, y^n)\},\$$

- $\mathcal{Y} = \{+1, -1\},\$
- we look for classifiers with linear decision boundary.

Several of the classifiers we saw had *linear* decision boundaries:

- Perceptron
- Generative classifiers for Gaussian class-conditional densities with shared covariance matrix
- Logistic Regression

What's the **best linear classifier**?

Maximum Margin Classifiers

Linear classifiers

Definition

Let

$$\mathcal{F} = \{ f : \mathbb{R}^d \to \mathbb{R} \text{ with } f(x) = b + w_1 x_1 + \dots + w_d x_d = b + \langle w, x \rangle \}$$

be the set of linear (affine) function from $\mathbb{R}^d \to \mathbb{R}$. For any $f \in \mathcal{F}$,

- w is called weight vector,
- b is called bias term.

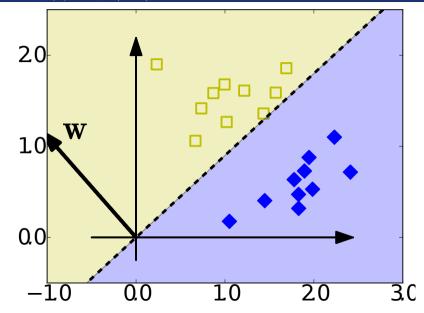
A classifier $g: \mathcal{X} \to \mathcal{Y}$ is called **linear**, if it can be written as

 $g(x) = \operatorname{sign} f(x)$

for some $f \in \mathcal{F}$.

Given a training set $\mathcal{D} = \{(x^1, y^1), \dots, (x^n, y^n)\} \overset{i.i.d.}{\sim} p$, what's the best f (and induced g)?

A linear classifier, $g(x) = \operatorname{sign}\langle w, x \rangle$, with b = 0



A linear classifier $g(x) = \operatorname{sign}(\langle w, x \rangle + b)$, with b > 0



The bias term is good for intuition, but annoying in analysis:

Useful trick: feature augmentation

Adding a constant feature allows us to avoid models with explicit bias term:

- instead of $x=(x^1,\ldots,x^d)\in\mathbb{R}^d$, use $\tilde{x}=(x^1,\ldots,x^d,1)\in\mathbb{R}^{d+1}$
- for any $ilde w\in \mathbb{R}^{d+1}$, think ilde w=(w,b) with $w\in \mathbb{R}^d$ and $b\in \mathbb{R}$

Linear function in \mathbb{R}^{d+1} :

$$f(\tilde{x}) = \langle \tilde{w}, \tilde{x} \rangle = \sum_{i=1}^{d+1} \tilde{w}_i \tilde{x}_i = \sum_{i=1}^d \tilde{w}_i \tilde{x}_i + \tilde{w}_{d+1} \tilde{x}_{d+1} = \langle w, x \rangle + b$$

Linear classifier with bias in \mathbb{R}^d \equiv linear classifier with no bias in \mathbb{R}^{d+1}

Augmenting with other (larger) values than 1 can make sense, see later...

Definition (Ad hoc)

We call a classifier, g, **correct** (for a training set \mathcal{D}), if it predicts the correct labels for all training examples:

$$g(x^i) = y^i$$
 for $i = 1, \dots, n$.

Example (Perceptron)

- if the *Perceptron* converges, the result is an *correct* classifier.
- any classifier with zero training error is *correct*.

Definition (Ad hoc)

We call a classifier, g, **correct** (for a training set \mathcal{D}), if it predicts the correct labels for all training examples:

$$g(x^i) = y^i$$
 for $i = 1, \dots, n$.

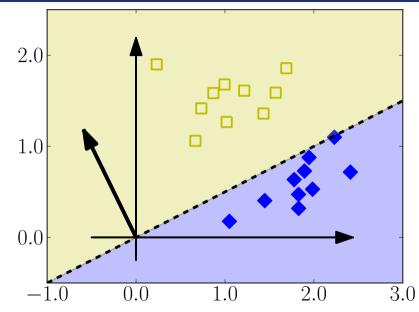
Example (Perceptron)

- if the *Perceptron* converges, the result is an *correct* classifier.
- any classifier with zero training error is *correct*.

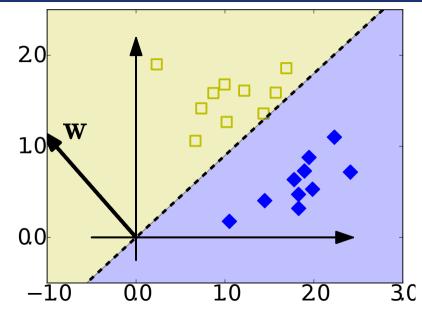
Definition (Linear Separability)

A training set \mathcal{D} is called **linearly separable**, if it allows a correct linear classifier (i.e. the classes can be separated by a hyperplane).

A linearly separable dataset and a correct classifier



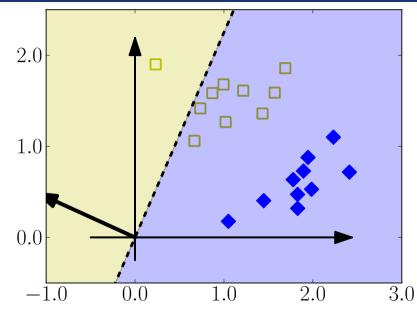
A linearly separable dataset and a correct classifier



A linearly separable dataset and a correct classifier



An incorrect classifier



Definition (Ad hoc)

The **robustness** of a classifier g (with respect to \mathcal{D}) is the largest amount, ρ , by which we can perturb the training samples without changing the predictions of g.

$$g(x^i + \epsilon) = g(x^i),$$
 for all $i = 1, \dots, n$.

for any $\epsilon \in \mathbb{R}^d$ with $\|\epsilon\| < \rho$.

Example

- constant classifier, e.g. $c(x) \equiv 1$: very robust $(\rho = \infty)$, (but it is not *correct*, in the sense of the previous definition)
- robustness of the *Perceptron*: can be arbitrarily small (see Exercise...)

Robustness, ρ , of a linear classifier



Definition (Margin)

Let $f(x) = \langle w, x \rangle + b$ define a *correct* linear classifier. The **margin** of f (with despect to \mathcal{D}) is the largest amount by which the decision hyperplane in the direction of the weight vector or its negative without making the classifier incorrect.

Lemma

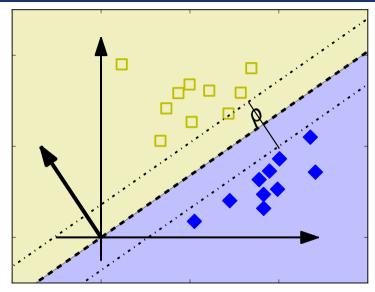
The margin of f is identical to the smallest distance of any point in D to the decision boundary. We can compute the margin of a linear classifier $f = \langle w, x \rangle + b$ as

$$\rho = \min_{i=1,\dots,n} \left| \langle \frac{w}{\|w\|}, x^i \rangle + b \right|.$$

Proof.

High school maths: distance between a points and a hyperplane in Hessian normal form.

Margin, ρ , of a linear classifier



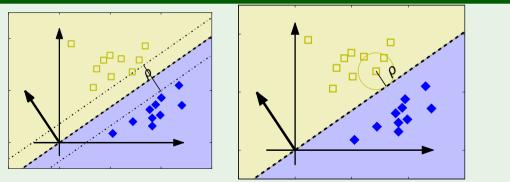
Theorem

The robustness of a linear classifier function $g(x) = \operatorname{sign} f(x)$ with $f(x) = \langle w, x \rangle$ is identical to the margin of f.

Theorem

The robustness of a linear classifier function $g(x) = \operatorname{sign} f(x)$ with $f(x) = \langle w, x \rangle$ is identical to the margin of f.

Proof by Picture



Proof (blackboard). For any i = 1, ..., n and any $\epsilon \in \mathbb{R}^d$

$$f(x^{i} + \epsilon) = \langle w, x^{i} + \epsilon \rangle = \langle w, x^{i} \rangle + \langle w, \epsilon \rangle = f(x^{i}) + \langle w, \epsilon \rangle,$$

so it follows (Cauchy-Schwarz inequality) that

$$f(x^{i}) - ||w|| ||\epsilon|| \le f(x^{i} + \epsilon) \le f(x^{i}) + ||w|| ||\epsilon||.$$

Checking the cases $\epsilon = \pm \frac{\|\epsilon\|}{\|w\|} w$, we see that these inequalities are sharp.

To ensure $g(x^i + \epsilon) = g(x^i)$ for all training samples, $f(x^i)$ and $f(x^i + \epsilon)$ have the same sign for all ϵ , i.e. $|f(x^i)| \ge ||w|| ||\epsilon||$ for i = 1, ..., n.

This inequality holds for all samples, so in particular it holds for the one of minimal score, and $\min_i |f(x^i)| = \min_i |\langle w, x^i \rangle| = \rho$.

Theorem

Let \mathcal{D} be a linearly separable training set. Then the **most robust, correct** linear classifier (without bias term) is given by $g(x) = \operatorname{sign} \langle w^*, x \rangle$ where w^* are the solution to

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} \|w\|^2$$

subject to

$$y^i(\langle w, x^i \rangle) \ge 1$$
, for $i = 1, \dots, n$.

Remark

- The classifier defined above is call Maximum (Hard) Margin Classifier, or Hard-Margin Support Vector Machine (SVM)
- It is unique (follows from strictly convex optimization problem).

Proof.

- 1. All w that fulfill the inequalities yield *correct* classifiers.
- 2. Since $\ensuremath{\mathcal{D}}$ is linearly separable, there exists some v with

 $\operatorname{sign} \langle v, x^i \rangle = y_i, \quad \text{i.e.} \quad y_i \langle v, x^i \rangle \geq \gamma > 0.$

for $\gamma = \min_i y_i \langle v, x^i \rangle$. So $\tilde{v} = v/\gamma$, fulfills the inequalities and we see that the constraint set is at least not empty.

Proof.

- 1. All w that fulfill the inequalities yield *correct* classifiers.
- 2. Since $\ensuremath{\mathcal{D}}$ is linearly separable, there exists some v with

$$\operatorname{sign} \langle v, x^i \rangle = y_i, \quad \text{i.e.} \quad y_i \langle v, x^i \rangle \geq \gamma > 0.$$

for $\gamma = \min_i y_i \langle v, x^i \rangle$. So $\tilde{v} = v/\gamma$, fulfills the inequalities and we see that the constraint set is at least not empty.

3. Now we check (with $i = 1, \ldots, n$):

$$\begin{split} & \min_{w \in \mathbb{R}^d} \frac{1}{2} \|w\|^2 \text{ sb.t. } y^i \langle w, x^i \rangle \geq 1 \\ \Leftrightarrow & \max_{w \in \mathbb{R}^d} \frac{1}{\|w\|} \quad \text{ sb.t. } y^i \langle w, x^i \rangle \geq 1 \\ \Leftrightarrow & \max_{\{w': |w'\|=1\}, \rho \in \mathbb{R}} \quad \rho \quad \text{ sb.t. } y^i \langle \frac{w'}{\rho}, x^i \rangle \geq 1 \\ \Leftrightarrow & \max_{\{w': |w'\|=1\}, \rho \in \mathbb{R}} \quad \rho \quad \text{ sb.t. } y^i \langle w', x^i \rangle \geq \rho \\ \Leftrightarrow & \max_{\{w': |w'\|=1\}, \rho \in \mathbb{R}} \quad \rho \quad \text{ sb.t. } |\langle w', x^i \rangle| \geq \rho \text{ and } \operatorname{sign}\langle w', x^i \rangle = y_i \end{split}$$

Proof.

- 1. All w that fulfill the inequalities yield *correct* classifiers.
- 2. Since $\ensuremath{\mathcal{D}}$ is linearly separable, there exists some v with

$$\operatorname{sign} \langle v, x^i \rangle = y_i, \quad \text{i.e.} \quad y_i \langle v, x^i \rangle \geq \gamma > 0.$$

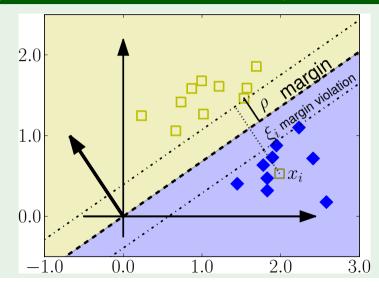
for $\gamma = \min_i y_i \langle v, x^i \rangle$. So $\tilde{v} = v/\gamma$, fulfills the inequalities and we see that the constraint set is at least not empty.

3. Now we check (with $i = 1, \ldots, n$):

$$\begin{split} & \underset{w \in \mathbb{R}^{d}}{\min} \frac{1}{2} \|w\|^{2} \text{ sb.t. } y^{i} \langle w, x^{i} \rangle \geq 1 \\ \Leftrightarrow & \underset{w \in \mathbb{R}^{d}}{\max} \frac{1}{\|w\|} \quad \text{ sb.t. } y^{i} \langle w, x^{i} \rangle \geq 1 \\ \Leftrightarrow & \underset{\{w': |w'| = 1\}, \rho \in \mathbb{R}}{\max} \quad \rho \quad \text{ sb.t. } y^{i} \langle \frac{w'}{\rho}, x^{i} \rangle \geq 1 \\ \Leftrightarrow & \underset{\{w': |w'| = 1\}, \rho \in \mathbb{R}}{\max} \quad \rho \quad \text{ sb.t. } y^{i} \langle w', x^{i} \rangle \geq \rho \\ \Leftrightarrow & \underbrace{\max_{\{w': |w'| = 1\}, \rho \in \mathbb{R}}}{\max} \quad \rho \quad \text{ sb.t. } |\langle w', x^{i} \rangle| \geq \rho}_{\text{ maximal robustness}} \quad \text{and } \underbrace{\operatorname{sign}\langle w', x^{i} \rangle = y_{i}}_{\text{ and correct}} \end{split}$$

Non-Separable Training Sets

Observation (Not all training sets are linearly separable.)



Definition (Maximum Soft-Margin Classifier)

Let \mathcal{D} be a training set, not necessarily linearly separable. Let C > 0. Then the classifier $g(x) = \operatorname{sign} \langle w^*, x \rangle + b$ where (w^*, b^*) are the solution to

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \quad \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi^i$$

subject to

$$\begin{split} y^i(\langle w,x^i\rangle+b) &\geq 1-\xi^i, \quad \text{for } i=1,\ldots,n.\\ \xi^i &\geq 0, \quad \text{for } i=1,\ldots,n. \end{split}$$

is called Maximum (Soft-)Margin Classifier or Linear Support Vector Machine.

The variables ξ_1, \ldots, ξ_n are called *slack* variables.

Theorem

The maximum soft-margin classifier exists and is unique for any C > 0.

Proof. optimization problem is strictly convex

Remark

The constant C > 0 is called **regularization** parameter.

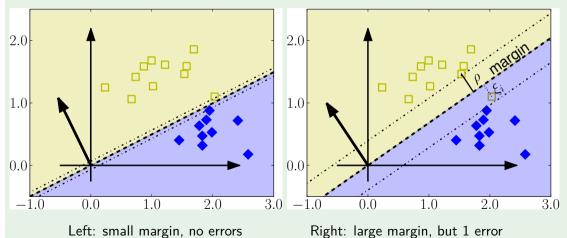
It balances the wishes for robustness and for correctness

- $C \rightarrow 0$: mistakes don't matter much, emphasis on short w
- $C \to \infty$: as few errors as possible, might not be robust

We'll see more about this in the next lecture.

Remark

Sometimes, a soft margin SVM is better even for linearly separable datasets!



Lemma

Let \mathcal{D} be a training set, not necessarily linearly separable. Let C > 0. Then the maximum soft-margin classifier (=linear SVM) can also be computed as

$$\min_{v \in \mathbb{R}^{d}, b \in \mathbb{R}} \ \frac{1}{2} \|w\|^{2} + C \sum_{i=1}^{n} \max\{0, 1 - y^{i}(\langle w, x^{i} \rangle + b)\}$$

Proof: the original optimization problem is

$$\min_{w,b,\xi} \ \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi^i \quad \text{sb.t.} \quad y^i (\langle w, x^i \rangle + b) \ge 1 - \xi^i, \quad \xi^i \ge 0, \quad \text{for } i = 1, \dots, n.$$

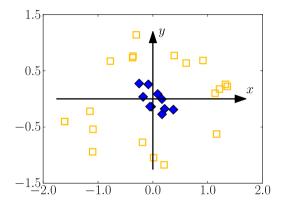
We can determine the optimal values of ξ_i for i = 1, ..., n:

- they should be bigger or equal to 0 and to $1-y^i(\langle w,x^i
 angle+b)$ (from the constraints)
- they should be as small as possible (because of the objective)
- in combination, we obtain $\xi_i^{\text{opt}} = \max\{0, 1 y^i(\langle w, x^i \rangle + b)\}$

Pluggin this into the optimization yields the result.

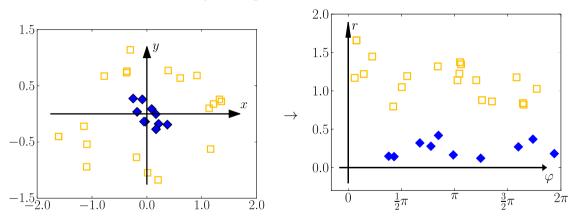
Nonlinear Classifiers

What, if a linear classifier is really not a good choice?



Nonlinear Classifiers

What, if a linear classifier is really not a good choice?



Change the data representation, e.g. Cartesian \rightarrow polar coordinates

Definition (Max-margin Generalized Linear Classifier)

Let C > 0. Assume a training set

$$\mathcal{D} = \{(x^1, y^1), \dots (x^n, y^n)\} \subset \mathcal{X} \times \mathcal{Y}.$$

Let $\phi : \mathcal{X} \to \mathbb{R}^D$ be a feature map from \mathcal{X} into a feature space \mathbb{R}^D .

Then we can form a new training set

$$\mathcal{D}^{\phi} = \{ (\phi(x^1), y^1), \ldots, (\phi(x^n), y^n) \} \subset \mathbb{R}^D \times \mathcal{Y}.$$

The maximum-(soft)-margin linear classifier in \mathbb{R}^D ,

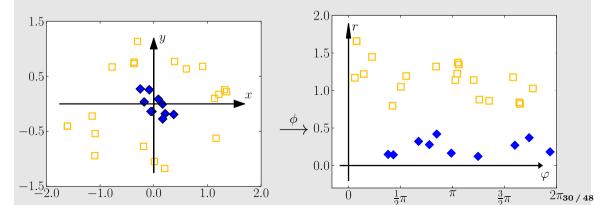
$$g(x) = \operatorname{sign}[\langle w, \phi(x) \rangle_{\mathbb{R}^D} + b]$$

for $w \in \mathbb{R}^D$ and $b \in \mathbb{R}$ is called **max-margin generalized linear classifier**. It is still *linear* w.r.t w, but (in general) nonlinear with respect to x.

Example (Polar coordinates)

Left: dataset \mathcal{D} for which no good linear classifier exists. Right: dataset \mathcal{D}^{ϕ} for $\phi : \mathcal{X} \to \mathbb{R}^D$ with $\mathcal{X} = \mathbb{R}^2$ and $\mathbb{R}^D = \mathbb{R}^2$

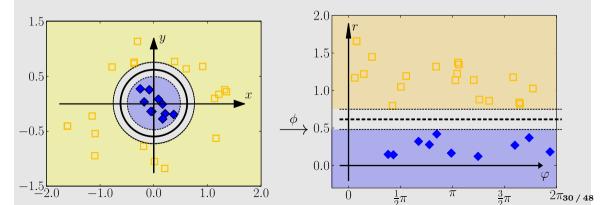
$$\phi(x,y) = (\sqrt{x^2 + y^2}, \arctan \frac{y}{x})$$
 (and $\phi(0,0) = (0,0)$)



Example (Polar coordinates)

Left: dataset \mathcal{D} for which no good linear classifier exists. Right: dataset \mathcal{D}^{ϕ} for $\phi : \mathcal{X} \to \mathbb{R}^D$ with $\mathcal{X} = \mathbb{R}^2$ and $\mathbb{R}^D = \mathbb{R}^2$

$$\phi(x,y) = (\sqrt{x^2 + y^2}, \arctan \frac{y}{x})$$
 (and $\phi(0,0) = (0,0)$)



Example (*d*-th degree polynomials)

$$\phi: (x_1, \dots, x_n) \mapsto (1, x_1, \dots, x_n, x_1^2, \dots, x_n^2, x_1^2, x_1 x_2, \dots, x_n^2, \dots, x_n^d)$$

Resulting classifier: d-th degree polynomial in $x.~g(x)=\mathrm{sign}\,f(x)$ with

$$f(x) = \langle w, \phi(x) \rangle = \sum_{j} w_{j} \phi(x)_{j} = a + \sum_{i} b_{i} x_{i} + \sum_{ij} c_{ij} x_{i} x_{j} + \dots$$

Example (Distance map)

For a set of prototype $p_1, \ldots, p_N \in \mathcal{X}$:

$$\phi: \vec{x} \mapsto \left(e^{-\|\vec{x}-\vec{p_1}\|^2}, \dots, e^{-\|\vec{x}-\vec{p_N}\|^2} \right)$$

Classifier: combine weights from close enough prototypes

$$g(x) = \operatorname{sign}\langle w, \phi(x) \rangle = \operatorname{sign} \sum_{i=1}^{n} a_i e^{-\|\vec{x} - \vec{p}_i\|^2}$$

Example (Pre-trained deep network)

The internet is full of already trained (deep) neural networks that one can download, e.g. trained on ImageNet for image classification.

Idea: use initial segment of network as feature extractor for other data:

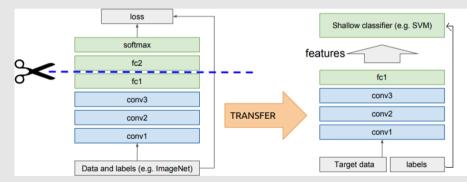


Image: Steven Schmatz,

https://www.quora.com/What-is-the-difference-between-transfer-learning-domain-adaptation-and-multitask-learning-in-machine-learning-domain-adaptation-and-multitask-learning-in-machine-learning-domain-adaptation-and-multitask-learning-in-machine-learning-domain-adaptation-and-multitask-learning-in-machine-learning-domain-adaptation-and-multitask-learning-in-machine-learning-domain-adaptation-and-multitask-learning-in-machine-learning-domain-adaptation-and-multitask-learning-in-machine-learning-domain-adaptation-and-multitask-learning-in-machine-learning-domain-adaptation-and-multitask-learning-in-machine-learning-domain-adaptation-and-multitask-learning-in-machine-learning-domain-adaptation-and-multitask-learning-in-machine-learning-in-machine-learning-domain-adaptation

Beyond Vectors as Inputs

Linear models, such as

$$f(x) = \langle w, x \rangle + b$$

only makes sense if data $x \in \mathcal{X}$ are vectors of equal dimension, $x \in \mathbb{R}^d$.

Real data

- can be categorical,
- can be structured,
- can be of variable size.

Linear models, such as

$$f(x) = \langle w, x \rangle + b$$

only makes sense if data $x \in \mathcal{X}$ are vectors of equal dimension, $x \in \mathbb{R}^d$.

Real data

- can be categorical,
- can be structured,
- can be of variable size.

Generalized linear models,

$$f(x) = \langle w, \phi(x) \rangle + b$$

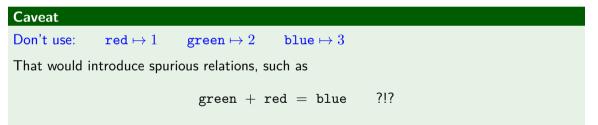
can make sense for other input sets \mathcal{X} , if we define a suitable feature map $\phi : \mathcal{X} \to \mathcal{F}$.

 $\mathcal{X} = \{\texttt{red}, \texttt{green}, \texttt{blue}\}$

"One-hot encoding": encode by vector of binary indicator variables, $\phi : \mathcal{X} \to \mathbb{R}^{|\mathcal{X}|}$, • $\phi(\text{red}) = (1, 0, 0), \quad \phi(\text{green}) = (0, 1, 0), \quad \phi(\text{blue}) = (0, 0, 1)$ $\mathcal{X} = \{\texttt{red}, \texttt{green}, \texttt{blue}\}$

"One-hot encoding": encode by vector of binary indicator variables, $\phi : \mathcal{X} \to \mathbb{R}^{|\mathcal{X}|}$,

•
$$\phi(\texttt{red}) = (1,0,0)$$
, $\phi(\texttt{green}) = (0,1,0)$, $\phi(\texttt{blue}) = (0,0,1)$



One-hot encoding works well even for large \mathcal{X} , e.g. all English words, when using the right data structures (e.g. sparse vectors/matrices).

$$\mathcal{X} = \{\texttt{poor}, \texttt{fair}, \texttt{good}, \texttt{very good}, \texttt{excellent}\}$$

Best treatment depends on the situation

• working with distances?

$$\phi(\texttt{poor}) = 1$$
 $\phi(\texttt{fair}) = 2$ \dots $\phi(\texttt{excellent}) = 5$

might work well.

- in other situations, one-hot might work better.
- if values derive from a continuous quantity by quantization

▶ \leq 60%: poor 61-70%: good ... \geq 91-100%: excellent it might make sense to reflect those

 $\phi(\texttt{poor}) = 0.55 \qquad \phi(\texttt{fair}) = 0.65 \qquad \dots \qquad \phi(\texttt{excellent}) = 0.95$

Language data

Example: $\mathcal{X} = \{ \text{ all English words } \}, \text{ task-specific encoding: "word vectors"} \}$

• represent each word w by a vector $\phi(w) \in \mathbb{R}^d$ (e.g. $25 \le d \le 300$)

similar vectors encode words of similar meaning (more or less)

(-1) = (-1) =										
quark	-0.53	-0.55	0.17	-0.67	-0.51	-0.32	-0.90	-1.41	0.74	
pion	-0.53	-0.62	-0.13	0.55	-0.55	-0.43	-1.12	-0.39	0.67	
lion	-0.89	-0.56	-0.37	0.76	-0.78	0.56	0.80	-0.05	0.80	
tiger	-0.70	-0.34	0.44	-0.38	-0.55	0.29	0.79	0.01	0.56	

• $\phi(\texttt{tiger}) \approx \phi(\texttt{lion})$ $\phi(\texttt{pion}) \not\approx \phi(\texttt{lion})$, etc.

Euclidean distances, $\|\phi(w_i) - \phi(w_j)\|$:

	tiger	lion	pion	quark
tiger	0	2.6	4.6	4.0
lion	2.6	0	4.3	4.6
pion	4.6	4.3	0	2.8
quark	4.0	4.6	2.8	0

Vectors that have been learned automatically (unsupervised) from large corpora (e.g. Wikipedia) are available for download, e.g. https://github.com/3Top/word2vec-api#where-to-get-a-pretrained-models

Variable size data: text and strings

Given: a text fragment or short sentence $W = "w_1 w_2 \dots w_k"$.

Easiest option: average individual representations

$$\Phi(W) = \frac{1}{k} \sum_{i=1}^{k} \phi(w_i)$$

for a word representation ϕ .

• linear function of Φ is average of linear functions on ϕ :

$$w^{\top}\Phi(W) = w^{\top}\left(\frac{1}{k}\sum_{i}\phi(w_{i})\right) = \frac{1}{k}\sum_{i}w^{\top}\phi(w_{i})$$

- advantage: very simple
- disadvantage: mixes words together, not really suitable for long texts

Example: $\mathcal{X} = \{ \text{ arbitrary lengths text documents } \}$

Task-specific encoding, $x \mapsto \phi(x)$, e.g.,

- create a dictionary of all possible words, w_1, \ldots, w_L
- represent x by histogram of word occurrences

 $x \mapsto (h_1, \dots, h_L) \in \mathbb{R}^L$ "bag-of-words" representation

where h_i counts how often word w_i occurs in x (absolute or relative)

Example: $\mathcal{X} = \{ \text{ arbitrary lengths text documents } \}$

Task-specific encoding, $x \mapsto \phi(x)$, e.g.,

- create a dictionary of all possible words, w_1, \ldots, w_L
- represent x by histogram of word occurrences

 $x \mapsto (h_1, \dots, h_L) \in \mathbb{R}^L$ "bag-of-words" representation

where h_i counts how often word w_i occurs in x (absolute or relative)

Include domain-knowledge if possible, e.g. stop-words

• ignore words a priori known not to be useful for the task at hand:

a an as at be ... the ... you

Given: a set $D = \{d_1, d_2, \dots, d_N\}$ of variable length documents.

tf-idf: term frequency - inverse document frequency

 $\mathsf{tfidf}(t,d) = \mathsf{tf}(t,d) \cdot \mathsf{idf}(t)$

term frequency tf(t, d): how frequent is term t in document d?

tf(t, d) = raw count of how often t occurs in d

• inverse document frequency idf(t): in how many documents does the term occur?

$$\mathsf{idf}(t,d) = \log \frac{N}{1+n_t} \quad \text{for } n_t = |\{d \in D : t \in d\}| \text{ and } N = |D|$$

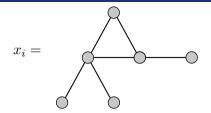
Many variants: normalization, boolean or logarithmic tf, constant idf (unweighted), ...

More powerful: count not just terms but short fragments: n-grams

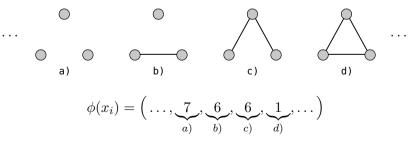
- $x_i = ext{ctcctgactttcctcgcttggtggtttgagtggacctcccaggccagtgccgggcccctcataggagagg}$
- count A,C,G,T: $\phi_1(x_i) = (9, 22, 22, 17) \in \mathbb{R}^4$
- count AA,AC,...,TT: $\phi_2(x_i) = (0, 2, 6, 1, 3, \dots, 4, 1, 5, 6, 3) \in \mathbb{R}^{16}$
- count AAA,...,TTT: $\phi_3(x_i) = (0,0,0,0,0,1,0,1,\dots,1,2,2) \in \mathbb{R}^{64}$
- etc.

fun demo: https://books.google.com/ngrams

data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html



Possible feature map: count characteristic patterns, e.g. subgraphs



Many more in application-dependent literature.

From Binary to Multi-class Classification

Multiclass Classification – One-versus-rest reduction

Classification problems with M classes:

- Training samples $\{x^1, \ldots, x^n\} \subset \mathcal{X}$,
- Training labels $\{y^1, \ldots, y^n\} \subset \{1, \ldots, M\},$
- Task: learn a prediction function $f : \mathcal{X} \to \{1, \dots, M\}$.

Multiclass Classification – One-versus-rest reduction

Classification problems with \boldsymbol{M} classes:

- Training samples $\{x^1, \ldots, x^n\} \subset \mathcal{X}$,
- Training labels $\{y^1, \ldots, y^n\} \subset \{1, \ldots, M\},$
- Task: learn a prediction function $f : \mathcal{X} \to \{1, \dots, M\}$.

One-versus-rest construction:

- train one binary classifier $g_c : \mathcal{X} \to \mathbb{R}$ for each class c:
 - ▶ all samples with class label c are positive examples
 - all other samples are negative examples
- classify by finding maximal response

$$f(x) = \underset{c=1,\dots,M}{\operatorname{argmax}} g_c(x)$$

Advantage: easy to implement, parallel, works well in practice

Disadvantage: with many classes, training sets become unbalanced. no explicit *calibration* of scores between different g_c

Multiclass Classification – All-versus-all reduction

Classification problems with M classes:

- Training samples $\{x^1, \ldots, x^n\} \subset \mathcal{X}$,
- Training labels $\{y^1, \ldots, y^n\} \subset \{1, \ldots, M\},$
- Task: learn a prediction function $f : \mathcal{X} \to \{1, \dots, M\}$.

Multiclass Classification – All-versus-all reduction

Classification problems with \boldsymbol{M} classes:

- Training samples $\{x^1, \ldots, x^n\} \subset \mathcal{X}$,
- Training labels $\{y^1, \ldots, y^n\} \subset \{1, \ldots, M\},$
- Task: learn a prediction function $f : \mathcal{X} \to \{1, \dots, M\}$.

All-versus-all construction:

- train one classifier, $g_{ij} : \mathcal{X} \to \mathbb{R}$, for each pair of classes $1 \le i < j \le M$, in total $\frac{m(m-1)}{2}$ prediction functions
- classify by voting

$$f(x) = \underset{m=1,\dots,M}{\operatorname{argmax}} \ \#\{i \in \{1,\dots,M\} : g_{m,i}(x) > 0\},\$$

(writing $g_{j,i} = -g_{i,j}$ for j > i and $g_{j,j} = 0$)

Advantage: small and balanced training problems, parallel, works well. **Disadvantage**: number of classifiers grows quadratically in classes.

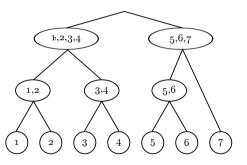
Multiclass Classification – Hierarchical

Classification problems with \boldsymbol{M} classes:

- Training samples $\{x^1, \ldots, x^n\} \subset \mathcal{X}$,
- Training labels $\{y^1, \ldots, y^n\} \subset \{1, \ldots, M\},$
- Task: learn a prediction function $f : \mathcal{X} \to \{1, \dots, M\}$.

Hierarchical (tree) construction:

- construct binary tree with classes at leafs
- learn one classifier for each decision



Advantage: at most $\lceil \log_2 M \rceil$ classifier evaluation at test time **Disadvantage**: not parallel, not robust to mistakes at any stage

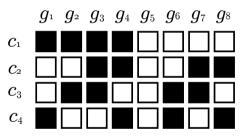
Multiclass Classification – Error Correcting Output Codes

Classification problems with \boldsymbol{M} classes:

- Training samples $\{x^1, \ldots, x^n\} \subset \mathcal{X}$,
- Training labels $\{y^1, \ldots, y^n\} \subset \{1, \ldots, M\},$
- Task: learn a prediction function $f : \mathcal{X} \to \{1, \dots, M\}$.

Define a binary codeword for each class

- one classifier for codeword entry
- classify by comparing predictions to code words (exact or in some norm)



Advantage: parallel, trade off between speed and robustness Disadvantage: optimal code design is NP-hard Many different option for multi-class to binary reduction:

- One-versus-Rest
- One-versus-One
- Hierarchical (fixed or learned)
- Error-correcting output codes (ECOC)

• ...

Hot topic in the 2000s: which is the best one?

Many different option for multi-class to binary reduction:

- One-versus-Rest
- One-versus-One
- Hierarchical (fixed or learned)
- Error-correcting output codes (ECOC)

• ...

Hot topic in the 2000s: which is the best one?

Answer: None (or all of them)!

- there's dozens of studies, they all disagree
- use whatever is available, or best fits the target application
- to implement own yourself, One-versus-Rest is most popular, since it's the simplest