
Statistical Machine Learning
https://cvml.ist.ac.at/courses/SML_W20

Christoph Lampert

Fall Semester 2020/2021
Lecture 4

1 / 48

https://cvml.ist.ac.at/courses/SML_W20

Overview (tentative)

Date no. Topic
Oct 05 Mon 1 A Hands-On Introduction
Oct 07 Wed 2 Bayesian Decision Theory, Generative Probabilistic Models
Oct 12 Mon 3 Discriminative Probabilistic Models
Oct 14 Wed 4 Maximum Margin Classifiers, Generalized Linear Models
Oct 19 Mon 5 Estimators; Overfitting/Underfitting, Regularization, Model Selection
Oct 21 Wed 6 Bias/Fairness, Domain Adaptation
Oct 26 Mon - no lecture (public holiday)
Oct 28 Wed 7 Learning Theory I
Nov 02 Mon 8 Learning Theory II
Nov 04 Wed 9 Deep Learning I
Nov 09 Mon 10 Deep Learning II
Nov 11 Wed 11 Unsupervised Learning
Nov 16 Mon 12 project presentations
Nov 18 Wed 13 buffer

2 / 48

Learning from Data

In the real world, p(x, y) is unknown, but we have a training set D. At least 3 approaches:

Definition
Given a training set D, we call it
• a generative probabilistic approach:

if we use D to build a model p̂(x, y) of p(x, y), and then define

c(x) := argmax
y∈Y

p̂(x, y) or c`(x) := argmin
y∈Y

E
ȳ∼p̂(x,ȳ)

`(ȳ, y).

• a discriminative probabilistic approach:
if we use D to build a model p̂(y|x) of p(y|x) and define

g(x) := argmax
y∈Y

p̂(y|x) or c`(x) := argmin
y∈Y

E
ȳ∼p̂(ȳ|x)

`(ȳ, y).

• a decision theoretic approach: if we use D to directly seach for a classifier c.

3 / 48

Observation
Even easier than estimating p(y|x) or p(x, y) should be to just estimate
the decision boundary between classes.

p(x|y=0) p(x|y=1)

p(y=1|x) p(y=0|x)

p(y=1|x) p(y=0|x)

4 / 48

Linear classifiers

Let’s use D to estimate a classifier c : X → Y directly.

For a start, we fix
• D = {(x1, y1), . . . , (xn, yn)},
• Y = {+1,−1},
• we look for classifiers with linear decision boundary.

Several of the classifiers we saw had linear decision boundaries:
• Perceptron
• Generative classifiers for Gaussian class-conditional densities with shared covariance
matrix
• Logistic Regression

What’s the best linear classifier?

5 / 48

Linear classifiers

Let’s use D to estimate a classifier c : X → Y directly.

For a start, we fix
• D = {(x1, y1), . . . , (xn, yn)},
• Y = {+1,−1},
• we look for classifiers with linear decision boundary.

Several of the classifiers we saw had linear decision boundaries:
• Perceptron
• Generative classifiers for Gaussian class-conditional densities with shared covariance
matrix
• Logistic Regression

What’s the best linear classifier?
5 / 48

Maximum Margin Classifiers

6 / 48

Linear classifiers

Definition
Let

F = { f : Rd → R with f(x) = b+ w1x1 + · · ·+ wdxd = b+ 〈w, x〉 }

be the set of linear (affine) function from Rd → R. For any f ∈ F ,
• w is called weight vector,
• b is called bias term.

A classifier g : X → Y is called linear, if it can be written as

g(x) = sign f(x)

for some f ∈ F .

Given a training set D = {(x1, y1), . . . , (xn, yn)} i.i.d.∼ p, what’s the best f (and induced g)?
7 / 48

A linear classifier, g(x) = sign〈w, x〉, with b = 0

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

w

8 / 48

A linear classifier g(x) = sign(〈w, x〉+ b), with b > 0

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

b

9 / 48

Feature augmentation

The bias term is good for intuition, but annoying in analysis:

Useful trick: feature augmentation
Adding a constant feature allows us to avoid models with explicit bias term:
• instead of x = (x1, . . . , xd) ∈ Rd, use x̃ = (x1, . . . , xd, 1) ∈ Rd+1

• for any w̃ ∈ Rd+1, think w̃ = (w, b) with w ∈ Rd and b ∈ R
Linear function in Rd+1:

f(x̃) = 〈w̃, x̃〉 =
d+1∑
i=1

w̃ix̃i =
d∑
i=1

w̃ix̃i + w̃d+1x̃d+1 = 〈w, x〉+ b

Linear classifier with bias in Rd ≡ linear classifier with no bias in Rd+1

Augmenting with other (larger) values than 1 can make sense, see later...
10 / 48

Linear classifiers

Definition (Ad hoc)

We call a classifier, g, correct (for a training set D), if it predicts the correct
labels for all training examples:

g(xi) = yi for i = 1, . . . , n.

Example (Perceptron)

• if the Perceptron converges, the result is an correct classifier.
• any classifier with zero training error is correct.

Definition (Linear Separability)

A training set D is called linearly separable, if it allows a correct linear classifier (i.e. the
classes can be separated by a hyperplane).

11 / 48

Linear classifiers

Definition (Ad hoc)

We call a classifier, g, correct (for a training set D), if it predicts the correct
labels for all training examples:

g(xi) = yi for i = 1, . . . , n.

Example (Perceptron)

• if the Perceptron converges, the result is an correct classifier.
• any classifier with zero training error is correct.

Definition (Linear Separability)

A training set D is called linearly separable, if it allows a correct linear classifier (i.e. the
classes can be separated by a hyperplane).

11 / 48

A linearly separable dataset and a correct classifier

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

12 / 48

A linearly separable dataset and a correct classifier

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

w

12 / 48

A linearly separable dataset and a correct classifier

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

12 / 48

An incorrect classifier

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

13 / 48

Linear Classifiers

Definition (Ad hoc)

The robustness of a classifier g (with respect to D) is the largest amount, ρ, by
which we can perturb the training samples without changing the predictions of g.

g(xi + ε) = g(xi), for all i = 1, . . . , n.

for any ε ∈ Rd with ‖ε‖ < ρ.

Example

• constant classifier, e.g. c(x) ≡ 1: very robust (ρ =∞),
(but it is not correct, in the sense of the previous definition)
• robustness of the Perceptron: can be arbitrarily small
(see Exercise...)

14 / 48

Robustness, ρ, of a linear classifier

ρ

15 / 48

Definition (Margin)

Let f(x) = 〈w, x〉+ b define a correct linear classifier.
The margin of f (with despect to D) is the largest amount by which the decision hyperplane
in the direction of the weight vector or its negative without making the classifier incorrect.

Lemma
The margin of f is identical to the smallest distance of any point in D to the decision
boundary. We can compute the margin of a linear classifier f = 〈w, x〉+ b as

ρ = min
i=1,...,n

∣∣∣〈 w‖w‖ , xi〉+ b
∣∣∣.

Proof.
High school maths: distance between a points and a hyperplane in Hessian normal form.

16 / 48

Margin, ρ, of a linear classifier

ρ

17 / 48

Theorem
The robustness of a linear classifier function g(x) = sign f(x) with f(x) = 〈w, x〉
is identical to the margin of f .

Proof by Picture

ρ ρ

18 / 48

Theorem
The robustness of a linear classifier function g(x) = sign f(x) with f(x) = 〈w, x〉
is identical to the margin of f .

Proof by Picture

ρ ρ

18 / 48

Proof (blackboard). For any i = 1, . . . , n and any ε ∈ Rd

f(xi + ε) = 〈w, xi + ε〉 = 〈w, xi〉+ 〈w, ε〉 = f(xi) + 〈w, ε〉,

so it follows (Cauchy-Schwarz inequality) that

f(xi)− ‖w‖‖ε‖ ≤ f(xi + ε) ≤ f(xi) + ‖w‖‖ε‖.

Checking the cases ε = ± ‖ε‖‖w‖w, we see that these inequalities are sharp.

To ensure g(xi + ε) = g(xi) for all training samples, f(xi) and f(xi + ε) have the same
sign for all ε, i.e. |f(xi)| ≥ ‖w‖‖ε‖ for i = 1, . . . , n.

This inequality holds for all samples, so in particular it holds for the one of minimal score,
and mini |f(xi)| = mini |〈w, xi〉| = ρ.

2

19 / 48

Maximum-Margin Classifier

Theorem
Let D be a linearly separable training set. Then the most robust, correct
linear classifier (without bias term) is given by g(x) = sign〈w∗, x〉 where w∗
are the solution to

min
w∈Rd

1
2‖w‖

2

subject to
yi(〈w, xi〉) ≥ 1, for i = 1, . . . , n.

Remark

• The classifier defined above is call Maximum (Hard) Margin Classifier, or
Hard-Margin Support Vector Machine (SVM)
• It is unique (follows from strictly convex optimization problem).

20 / 48

Proof.
1. All w that fulfill the inequalities yield correct classifiers.
2. Since D is linearly separable, there exists some v with

sign〈v, xi〉 = yi, i.e. yi〈v, xi〉 ≥ γ > 0.
for γ = mini yi〈v, xi〉. So ṽ = v/γ, fulfills the inequalities and we see that the
constraint set is at least not empty.

3. Now we check (with i = 1, . . . , n):

min
w∈Rd

1
2‖w‖

2 sb.t. yi〈w, xi〉 ≥ 1

⇔ max
w∈Rd

1
‖w‖

sb.t. yi〈w, xi〉 ≥ 1

⇔ max
{w′:|w′‖=1},ρ∈R

ρ sb.t. yi〈w
′

ρ
, xi〉 ≥ 1

⇔ max
{w′:|w′‖=1},ρ∈R

ρ sb.t. yi〈w′, xi〉 ≥ ρ

⇔ max
{w′:|w′‖=1},ρ∈R

ρ sb.t. |〈w′, xi〉| ≥ ρ

︸ ︷︷ ︸
maximal robustness

and sign〈w′, xi〉 = yi

︸ ︷︷ ︸
and correct

21 / 48

Proof.
1. All w that fulfill the inequalities yield correct classifiers.
2. Since D is linearly separable, there exists some v with

sign〈v, xi〉 = yi, i.e. yi〈v, xi〉 ≥ γ > 0.
for γ = mini yi〈v, xi〉. So ṽ = v/γ, fulfills the inequalities and we see that the
constraint set is at least not empty.

3. Now we check (with i = 1, . . . , n):

min
w∈Rd

1
2‖w‖

2 sb.t. yi〈w, xi〉 ≥ 1

⇔ max
w∈Rd

1
‖w‖

sb.t. yi〈w, xi〉 ≥ 1

⇔ max
{w′:|w′‖=1},ρ∈R

ρ sb.t. yi〈w
′

ρ
, xi〉 ≥ 1

⇔ max
{w′:|w′‖=1},ρ∈R

ρ sb.t. yi〈w′, xi〉 ≥ ρ

⇔ max
{w′:|w′‖=1},ρ∈R

ρ sb.t. |〈w′, xi〉| ≥ ρ

︸ ︷︷ ︸
maximal robustness

and sign〈w′, xi〉 = yi

︸ ︷︷ ︸
and correct

21 / 48

Proof.
1. All w that fulfill the inequalities yield correct classifiers.
2. Since D is linearly separable, there exists some v with

sign〈v, xi〉 = yi, i.e. yi〈v, xi〉 ≥ γ > 0.
for γ = mini yi〈v, xi〉. So ṽ = v/γ, fulfills the inequalities and we see that the
constraint set is at least not empty.

3. Now we check (with i = 1, . . . , n):

min
w∈Rd

1
2‖w‖

2 sb.t. yi〈w, xi〉 ≥ 1

⇔ max
w∈Rd

1
‖w‖

sb.t. yi〈w, xi〉 ≥ 1

⇔ max
{w′:|w′‖=1},ρ∈R

ρ sb.t. yi〈w
′

ρ
, xi〉 ≥ 1

⇔ max
{w′:|w′‖=1},ρ∈R

ρ sb.t. yi〈w′, xi〉 ≥ ρ

⇔ max
{w′:|w′‖=1},ρ∈R

ρ sb.t. |〈w′, xi〉| ≥ ρ︸ ︷︷ ︸
maximal robustness

and sign〈w′, xi〉 = yi︸ ︷︷ ︸
and correct

21 / 48

Non-Separable Training Sets

Observation (Not all training sets are linearly separable.)

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

ρ
margin

ξ i
margin vio

lation

xi

22 / 48

Definition (Maximum Soft-Margin Classifier)

Let D be a training set, not necessarily linearly separable. Let C > 0. Then
the classifier g(x) = sign〈w∗, x〉+ b) where (w∗, b∗) are the solution to

min
w∈Rd,b∈R,ξ∈Rn

1
2‖w‖

2 + C
n∑
i=1

ξi

subject to

yi(〈w, xi〉+ b) ≥ 1− ξi, for i = 1, . . . , n.
ξi ≥ 0, for i = 1, . . . , n.

is called Maximum (Soft-)Margin Classifier or Linear Support Vector Machine.

The variables ξ1, . . . , ξn are called slack variables.

23 / 48

Maximum Soft-Margin Classifier

Theorem
The maximum soft-margin classifier exists and is unique for any C > 0.

Proof. optimization problem is strictly convex

Remark
The constant C > 0 is called regularization parameter.

It balances the wishes for robustness and for correctness
• C → 0: mistakes don’t matter much, emphasis on short w
• C →∞: as few errors as possible, might not be robust

We’ll see more about this in the next lecture.

24 / 48

Maximum Margin Classifiers

Remark
Sometimes, a soft margin SVM is better even for linearly separable datasets!

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

−1.0 0.0 1.0 2.0 3.0

0.0

1.0

2.0

ρ
margin

ξ i

Left: small margin, no errors Right: large margin, but 1 error
25 / 48

Maximum Soft-Margin Classifier

Lemma
Let D be a training set, not necessarily linearly separable. Let C > 0. Then the maximum
soft-margin classifier (=linear SVM) can also be computed as

min
w∈Rd,b∈R

1
2‖w‖

2 + C
n∑
i=1

max{0, 1− yi(〈w, xi〉+ b)}

Proof: the original optimization problem is

min
w,b,ξ

1
2‖w‖

2 + C
n∑
i=1

ξi sb.t. yi(〈w, xi〉+ b) ≥ 1− ξi, ξi ≥ 0, for i = 1, . . . , n.

We can determine the optimal values of ξi for i = 1, . . . , n:
• they should be bigger or equal to 0 and to 1− yi(〈w, xi〉+ b) (from the constraints)
• they should be as small as possible (because of the objective)
• in combination, we obtain ξopti = max{0, 1− yi(〈w, xi〉+ b)}

Pluggin this into the optimization yields the result.
26 / 48

Nonlinear Classifiers

27 / 48

Nonlinear Classifiers

What, if a linear classifier is really not a good choice?

→

Change the data representation, e.g. Cartesian → polar coordinates

28 / 48

Nonlinear Classifiers

What, if a linear classifier is really not a good choice?

→

Change the data representation, e.g. Cartesian → polar coordinates

28 / 48

Nonlinear Classifiers

Definition (Max-margin Generalized Linear Classifier)

Let C > 0. Assume a training set

D = {(x1, y1), . . . (xn, yn)} ⊂ X × Y.

Let φ : X → RD be a feature map from X into a feature space RD.

Then we can form a new training set

Dφ = { (φ(x1), y1), . . . , (φ(xn), yn) } ⊂ RD × Y.

The maximum-(soft)-margin linear classifier in RD,

g(x) = sign[〈w, φ(x)〉RD + b]

for w ∈ RD and b ∈ R is called max-margin generalized linear classifier.

It is still linear w.r.t w, but (in general) nonlinear with respect to x.
29 / 48

Example (Polar coordinates)

Left: dataset D for which no good linear classifier exists.
Right: dataset Dφ for φ : X → RD with X = R2 and RD = R2

φ(x, y) = (
√
x2 + y2, arctan y

x
) (and φ(0, 0) = (0, 0))

φ−→

Any classifier in RD induces a classifier in X .

30 / 48

Example (Polar coordinates)

Left: dataset D for which no good linear classifier exists.
Right: dataset Dφ for φ : X → RD with X = R2 and RD = R2

φ(x, y) = (
√
x2 + y2, arctan y

x
) (and φ(0, 0) = (0, 0))

φ−→

Any classifier in RD induces a classifier in X .

30 / 48

Other popular feature mappings, φ

Example (d-th degree polynomials)

φ :
(
x1, . . . , xn

)
7→
(
1, x1, . . . , xn, x

2
1, . . . , x

2
n, x

2
1, x1x2, . . . , x

2
n, . . . , x

d
n

)
Resulting classifier: d-th degree polynomial in x. g(x) = sign f(x) with

f(x) = 〈w, φ(x)〉 =
∑

j
wjφ(x)j = a+

∑
i
bixi +

∑
ij
cijxixj + . . .

Example (Distance map)

For a set of prototype p1, . . . , pN ∈ X :

φ : ~x 7→
(
e−‖~x−~p1‖2

, . . . , e−‖~x−~pN‖2
)

Classifier: combine weights from close enough prototypes
g(x) = sign〈w, φ(x)〉 = sign

∑n

i=1
aie
−‖~x−~pi‖2

.

31 / 48

Other popular feature mappings, φ

Example (Pre-trained deep network)

The internet is full of already trained (deep) neural networks that one can download, e.g.
trained on ImageNet for image classification.

Idea: use initial segment of network as feature extractor for other data:

Image: Steven Schmatz,
https://www.quora.com/What-is-the-difference-between-transfer-learning-domain-adaptation-and-multitask-learning-in-machine-learning

32 / 48

Beyond Vectors as Inputs

33 / 48

Beyond Vectors as Inputs

Linear models, such as

f(x) = 〈w, x〉+ b

only makes sense if data x ∈ X are vectors of equal dimension, x ∈ Rd.

Real data

• can be categorical,

• can be structured,

• can be of variable size.

Generalized linear models,

f(x) = 〈w, φ(x)〉+ b

can make sense for other input sets X , if we define a suitable feature map φ : X → F .

34 / 48

Beyond Vectors as Inputs

Linear models, such as

f(x) = 〈w, x〉+ b

only makes sense if data x ∈ X are vectors of equal dimension, x ∈ Rd.

Real data

• can be categorical,

• can be structured,

• can be of variable size.

Generalized linear models,

f(x) = 〈w, φ(x)〉+ b

can make sense for other input sets X , if we define a suitable feature map φ : X → F .
34 / 48

Categorical data

X = {red, green, blue}

"One-hot encoding": encode by vector of binary indicator variables, φ : X → R|X |,
• φ(red) = (1, 0, 0), φ(green) = (0, 1, 0), φ(blue) = (0, 0, 1)

Caveat
Don’t use: red 7→ 1 green 7→ 2 blue 7→ 3

That would introduce spurious relations, such as

green + red = blue ?!?

One-hot encoding works well even for large X , e.g. all English words, when using the right
data structures (e.g. sparse vectors/matrices).

35 / 48

Categorical data

X = {red, green, blue}

"One-hot encoding": encode by vector of binary indicator variables, φ : X → R|X |,
• φ(red) = (1, 0, 0), φ(green) = (0, 1, 0), φ(blue) = (0, 0, 1)

Caveat
Don’t use: red 7→ 1 green 7→ 2 blue 7→ 3

That would introduce spurious relations, such as

green + red = blue ?!?

One-hot encoding works well even for large X , e.g. all English words, when using the right
data structures (e.g. sparse vectors/matrices).

35 / 48

Ordinal data

X = {poor, fair, good, very good, excellent}

Best treatment depends on the situation

• working with distances?

φ(poor) = 1 φ(fair) = 2 . . . φ(excellent) = 5

might work well.

• in other situations, one-hot might work better.

• if values derive from a continuous quantity by quantization
I ≤ 60%: poor 61–70%: good . . . ≥ 91-100%: excellent

it might make sense to reflect those
φ(poor) = 0.55 φ(fair) = 0.65 . . . φ(excellent) = 0.95

36 / 48

Language data

Example: X = { all English words }, task-specific encoding: "word vectors"

• represent each word w by a vector φ(w) ∈ Rd (e.g. 25 ≤ d ≤ 300)
• similar vectors encode words of similar meaning (more or less)

tiger -0.70 -0.34 0.44 -0.38 -0.55 0.29 0.79 0.01 0.56 . . .
lion -0.89 -0.56 -0.37 0.76 -0.78 0.56 0.80 -0.05 0.80 . . .
pion -0.53 -0.62 -0.13 0.55 -0.55 -0.43 -1.12 -0.39 0.67 . . .

quark -0.53 -0.55 0.17 -0.67 -0.51 -0.32 -0.90 -1.41 0.74 . . .

• φ(tiger) ≈ φ(lion) φ(pion) 6≈ φ(lion), etc.

Euclidean distances, ‖φ(wi)− φ(wj)‖:

tiger lion pion quark
tiger 0 2.6 4.6 4.0
lion 2.6 0 4.3 4.6
pion 4.6 4.3 0 2.8
quark 4.0 4.6 2.8 0

Vectors that have been learned automatically (unsupervised) from large corpora (e.g.
Wikipedia) are available for download, e.g. https://github.com/3Top/word2vec-api#where-to-get-a-pretrained-models

37 / 48

https://github.com/3Top/word2vec-api#where-to-get-a-pretrained-models

Variable size data: text and strings

Given: a text fragment or short sentence W = ”w1 w2 . . . wk”.

Easiest option: average individual representations

Φ(W) = 1
k

k∑
i=1

φ(wi)

for a word representation φ.

• linear function of Φ is average of linear functions on φ:

w>Φ(W) = w>
(1
k

∑
i

φ(wi)
)

= 1
k

∑
i

w>φ(wi)

• advantage: very simple
• disadvantage: mixes words together, not really suitable for long texts

38 / 48

Variable size data: text and strings

Example: X = { arbitrary lengths text documents }

Task-specific encoding, x 7→ φ(x), e.g.,
• create a dictionary of all possible words, w1, . . . , wL

• represent x by histogram of word occurrences

x 7→ (h1, . . . , hL) ∈ RL "bag-of-words" representation

where hi counts how often word wi occurs in x (absolute or relative)

Include domain-knowledge if possible, e.g. stop-words
• ignore words a priori known not to be useful for the task at hand:

a an as at be ... the ... you

39 / 48

Variable size data: text and strings

Example: X = { arbitrary lengths text documents }

Task-specific encoding, x 7→ φ(x), e.g.,
• create a dictionary of all possible words, w1, . . . , wL

• represent x by histogram of word occurrences

x 7→ (h1, . . . , hL) ∈ RL "bag-of-words" representation

where hi counts how often word wi occurs in x (absolute or relative)

Include domain-knowledge if possible, e.g. stop-words
• ignore words a priori known not to be useful for the task at hand:

a an as at be ... the ... you

39 / 48

Variable size data: text and strings

Given: a set D = {d1, d2, . . . , dN} of variable length documents.

tf-idf: term frequency – inverse document frequency

tfidf(t, d) = tf(t, d) · idf(t)

• term frequency tf(t, d): how frequent is term t in document d?

tf(t, d) = raw count of how often t occurs in d

• inverse document frequency idf(t): in how many documents does the term occur?

idf(t, d) = log N

1 + nt
for nt = |{d ∈ D : t ∈ d}| and N = |D|.

Many variants: normalization, boolean or logarithmic tf, constant idf (unweighted), . . .

40 / 48

Variable size data: text and strings

More powerful: count not just terms but short fragments: n-grams
• xi = CTCCTGACTTTCCTCGCTTGGTGGTTTGAGTGGACCTCCCAGGCCAGTGCCGGGCCCCTCATAGGAGAGG

• count A,C,G,T: φ1(xi) = (9, 22, 22, 17) ∈ R4

• count AA,AC,. . . ,TT: φ2(xi) = (0, 2, 6, 1, 3, . . . , 4, 1, 5, 6, 3) ∈ R16

• count AAA,. . . ,TTT: φ3(xi) = (0, 0, 0, 0, 0, 1, 0, 1, . . . , 1, 2, 2) ∈ R64

• etc.

fun demo: https://books.google.com/ngrams

data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

41 / 48

https://books.google.com/ngrams
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Variable size data: graphs

xi =

Possible feature map: count characteristic patterns, e.g. subgraphs

· · ·

a) b) c) d)

· · ·

φ(xi) =
(
. . . , 7︸︷︷︸

a)

, 6︸︷︷︸
b)

, 6︸︷︷︸
c)

, 1︸︷︷︸
d)

, . . .
)

Many more in application-dependent literature. 42 / 48

From Binary to Multi-class Classification

43 / 48

Multiclass Classification – One-versus-rest reduction

Classification problems with M classes:
• Training samples {x1, . . . , xn} ⊂ X ,
• Training labels {y1, . . . , yn} ⊂ {1, . . . ,M},
• Task: learn a prediction function f : X → {1, . . . ,M}.

One-versus-rest construction:
• train one binary classifier gc : X → R for each class c:

I all samples with class label c are positive examples
I all other samples are negative examples

• classify by finding maximal response

f(x) = argmax
c=1,...,M

gc(x)

Advantage: easy to implement, parallel, works well in practice
Disadvantage: with many classes, training sets become unbalanced.

no explicit calibration of scores between different gc

44 / 48

Multiclass Classification – One-versus-rest reduction

Classification problems with M classes:
• Training samples {x1, . . . , xn} ⊂ X ,
• Training labels {y1, . . . , yn} ⊂ {1, . . . ,M},
• Task: learn a prediction function f : X → {1, . . . ,M}.

One-versus-rest construction:
• train one binary classifier gc : X → R for each class c:

I all samples with class label c are positive examples
I all other samples are negative examples

• classify by finding maximal response

f(x) = argmax
c=1,...,M

gc(x)

Advantage: easy to implement, parallel, works well in practice
Disadvantage: with many classes, training sets become unbalanced.

no explicit calibration of scores between different gc
44 / 48

Multiclass Classification – All-versus-all reduction

Classification problems with M classes:
• Training samples {x1, . . . , xn} ⊂ X ,
• Training labels {y1, . . . , yn} ⊂ {1, . . . ,M},
• Task: learn a prediction function f : X → {1, . . . ,M}.

All-versus-all construction:
• train one classifier, gij : X → R, for each pair of classes 1 ≤ i < j ≤M , in total

m(m−1)
2 prediction functions

• classify by voting

f(x) = argmax
m=1,...,M

#{i ∈ {1, . . . ,M} : gm,i(x) > 0},

(writing gj,i = −gi,j for j > i and gj,j = 0)

Advantage: small and balanced training problems, parallel, works well.

Disadvantage: number of classifiers grows quadratically in classes.

45 / 48

Multiclass Classification – All-versus-all reduction

Classification problems with M classes:
• Training samples {x1, . . . , xn} ⊂ X ,
• Training labels {y1, . . . , yn} ⊂ {1, . . . ,M},
• Task: learn a prediction function f : X → {1, . . . ,M}.

All-versus-all construction:
• train one classifier, gij : X → R, for each pair of classes 1 ≤ i < j ≤M , in total

m(m−1)
2 prediction functions

• classify by voting

f(x) = argmax
m=1,...,M

#{i ∈ {1, . . . ,M} : gm,i(x) > 0},

(writing gj,i = −gi,j for j > i and gj,j = 0)

Advantage: small and balanced training problems, parallel, works well.

Disadvantage: number of classifiers grows quadratically in classes.
45 / 48

Multiclass Classification – Hierarchical

Classification problems with M classes:
• Training samples {x1, . . . , xn} ⊂ X ,
• Training labels {y1, . . . , yn} ⊂ {1, . . . ,M},
• Task: learn a prediction function f : X → {1, . . . ,M}.

Hierarchical (tree) construction:
• construct binary tree with classes at leafs
• learn one classifier for each decision

1 2 3 4 5 6 7

1;2 3;4 5;6

1;2;3;4 5;6;7;

Advantage: at most dlog2Me classifier evaluation at test time
Disadvantage: not parallel, not robust to mistakes at any stage

46 / 48

Multiclass Classification – Error Correcting Output Codes

Classification problems with M classes:
• Training samples {x1, . . . , xn} ⊂ X ,
• Training labels {y1, . . . , yn} ⊂ {1, . . . ,M},
• Task: learn a prediction function f : X → {1, . . . ,M}.

Define a binary codeword for each class
• one classifier for codeword entry
• classify by comparing predictions to code
words (exact or in some norm)

c1

c2
c3

c4

g1 g8g7g6g5g4g3g2

Advantage: parallel, trade off between speed and robustness

Disadvantage: optimal code design is NP-hard
47 / 48

From Binary to Multi-Class Classifiers

Many different option for multi-class to binary reduction:
• One-versus-Rest
• One-versus-One
• Hierarchical (fixed or learned)
• Error-correcting output codes (ECOC)
• . . .

Hot topic in the 2000s: which is the best one?

Answer: None (or all of them)!
• there’s dozens of studies, they all disagree
• use whatever is available, or best fits the target application
• to implement own yourself, One-versus-Rest is most popular, since it’s the simplest

48 / 48

From Binary to Multi-Class Classifiers

Many different option for multi-class to binary reduction:
• One-versus-Rest
• One-versus-One
• Hierarchical (fixed or learned)
• Error-correcting output codes (ECOC)
• . . .

Hot topic in the 2000s: which is the best one?

Answer: None (or all of them)!
• there’s dozens of studies, they all disagree
• use whatever is available, or best fits the target application
• to implement own yourself, One-versus-Rest is most popular, since it’s the simplest

48 / 48

