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Overview (tentative)

Date no. Topic
Oct 05 Mon 1 A Hands-On Introduction
Oct 07 Wed 2 Bayesian Decision Theory, Generative Probabilistic Models
Oct 12 Mon 3 Discriminative Probabilistic Models
Oct 14 Wed 4 Maximum Margin Classifiers, Generalized Linear Models
Oct 19 Mon 5 Estimators; Overfitting/Underfitting, Regularization, Model Selection
Oct 21 Wed 6 Bias/Fairness, Domain Adaptation
Oct 26 Mon - no lecture (public holiday)
Oct 28 Wed 7 Learning Theory I, Concentration of Measure
Nov 02 Mon 8 Learning Theory II
Nov 04 Wed 9 Deep Learning I
Nov 09 Mon 10 Deep Learning II
Nov 11 Wed 11 Unsupervised Learning
Nov 16 Mon 12 project presentations
Nov 18 Wed 13 buffer
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The Holy Grail of Statistical Machine Learning

Inferring the test loss
from the training loss

Generalization Bound
For every f ∈ H it holds:

E
(x,y)

`(y, f(x))︸ ︷︷ ︸
generalization loss

≤ 1
n

∑
i

`(yi, f(xi))︸ ︷︷ ︸
training loss

+ something

Image: http://typemoon.wikia.com/
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Standard learning setting:
• input data X , output set Y, data distribution p over X × Y,
• loss function, ` : Y × Y → R+ (with some assumption),
• hypothesis set H ⊂ {f : X → Y},

Generalization bounds: generic structure
For any δ > 0, the following statement holds with probablity at least 1− δ over the (random)
training set Dn = {(x1, y1), . . . , (xn, yn)} i.i.d.∼ p.

For all f ∈ H:
R(f) ≤ R̂(f) + something

where the "something" typically increases for δ → 0 and decreases for n→∞.

Observation: if the inequality holds, it holds uniformly for all f .
→ by minimizing the right hand side, we can find the "most promising" f
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Example: SVM radius/margin bound

Let `(x, y;w) := max{0, 1− y〈w, x〉} be the hinge loss. Let p be a distribution on Rd × Y
such that Pr{ ‖x‖ ≤ R } = 1 and let H = {f(x) = w>x : w ∈ Rd ∧ ‖w‖ ≤ B}.

Then, with prob. at least 1− δ over Dm
i.i.d.∼ p the following inequality holds for all w ∈ H:

E
(x,y)∼p

J〈w, x〉 6= yK ≤ 1
m

m∑
i=1

`(xi, yi, w) + 2RB√
m

+

√
log 1

δ

2m . (1)

This results provides a good justification for using SVMs:
• (1) holds uniformly in w, including for the w that minimizes the right hand side
→ hinge loss on training set should be small
→ we should only consider w with small ‖w‖, such that B can be chosen small

Reminder: (soft-margin) support vector machine (SVM):

min
w

λ

2 ‖w‖
2 + 1

m

∑
i

max{0, 1− yi〈w, xi〉}
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Classical Generalization Bounds

Example: Finite Hypothesis Sets
Setup:
• `(y, ȳ) = Jy 6= ȳK (0-1 loss)
• finite number of possible classifiers H = {f1, . . . , fT } ⊂ {f : X → Y}

For any δ > 0, the following statement holds with probability at least 1− δ over the training
set D = {(x1, y1) . . . , (xn, yn)} i.i.d.∼ p(x, y):

For all f ∈ H: R(f) ≤ R̂(f) +

√
log |H|+ log 1/δ

2n .

This is essentially the lemma about uniform approximation we proved in lecture 7.
• Bound prob. of undesired outcome, R(f)− R̂(f) > ε, separately for each classifier f
• Combine by union bound → factor |H| (but ultimately enters only logarithmically)
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Illustration: union bound

Union bound is "worst case": usually overly pessimistic
Image: https://work.caltech.edu/library/ 7 / 38



Classical Generalization Bounds

Union bound will only work for finite H, otherwise even logarithm will not save us.

Can we find a better way to characterize hypothesis classes than simply the number
of their elements? Can we benefit from redundancy among hypotheses?

Suggested complexity measures:
• covering numbers
• growth function
• VC dimension
• Rademacher complexity

In particular, these work also for infinitely large (continuous) hypothesis sets.
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Covering Numbers

Definition (Covering)

Let F be a set of functions. We say F is ε-covered by F ′ with
respect to a norm ‖ · ‖:

∀f ∈ F ∃f ′ ∈ F ′ ‖f − f ′‖ ≤ ε

F ′ is called an ε-cover of F .

Definition (Covering Number)

Let F be a set of functions. The ε-covering number, N (ε,F , ‖ · ‖), is the size of the
smallest ε-cover of F with respect to ‖ · ‖.

Main idea: N (ε,F , ‖ · ‖) can be small (finite), even if F is large (infinite). We can use the
cover F ′ for everything, yet still only make a small error.

Image: Lee Wee Sun. https://slideplayer.com/slide/7277867/
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Growth function

Definition (Growth function)

Let H ⊂ {f : X → {±1}} be a set of binary-valued hypotheses. The growth function
ΠH : N→ N of H is defined as:

ΠH(n) = max
x1,...,xn∈X

∣∣∣{(h(x1), . . . , h(xn)
)

: h ∈ H
}∣∣∣

For any n ∈ N, ΠH(n) is the largest number of different labelings that can be produced with
functions in H.
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Examples: Growth function

Growth function: ΠH(n) = max
x1,...,xn∈X

∣∣∣{(h(x1), . . . , h(xn)
)

: h ∈ H
}∣∣∣

Examples: growth function
• H = {f+, f−}, where f+(x) = +1 and f−(x) = −1 (for all x ∈ X )
→ ΠH(n) = 2 for all n ≥ 1

• H = {f1, . . . , fT } → ΠH(n) ≤min{2n, |H|}

• H = {f : X → {±1} } (all binary values functions) and |X | =∞ → ΠH(n) = 2n

• X = Rd, H = {sign(〈w, x〉+ b) : w ∈ Rd, b ∈ R } all linear classifiers
→ ΠH(n) = 2n for n ≤ d+ 1, but ΠH(n) < 2n for n > d+ 1.

• X = [0, 1], H = {sign(sin(ωx)), ω ∈ R } → ΠH(n) = 2n
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Classical Generalization Bounds

Growth Function Generalization Bound
Setup:
• `(y, ȳ) = Jy 6= ȳK (0-1 loss)
• H ⊂ {f : X → {±1}}

For any δ > 0, the following statement holds with probability at least 1− δ over the training
set D = {(x1, y1) . . . , (xn, yn)} i.i.d.∼ p(x, y):

For all f ∈ H:

R(f) ≤ R̂(f) +

√
2 log ΠH

n
+

√
log 1/δ

2n

• for |H|<∞, we (almost) recover the bound for finite hypothesis sets
• bound is vacuous for ΠH(n) = 2n, but interesting for ΠH(n)� 2n
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Problem: growth function (for all n ∈ N) can be hard to determine precisely
Easier: at what value does it change from ΠH(n) = 2n to ΠH(n) < 2n ?

Definition (VC Dimension)

The VC dimension of a hypothesis class H, denoted VCdim(H), is the maximal value n, for
which ΠH(n) = 2n. If no such value exists, we say that VCdim(H) =∞.

Examples:
• H = {f+, f−} for f+(x) = +1 and f−(x) = −1. → VCdim(H) = 1

• H = {f1, . . . , fT } → VCdim(H) ≤ blog2 |H|c

• H = {f : X → {±1} } (all binary values functions) and |X | =∞
→ VCdim(H) =∞

• X = Rd, H = {sign(〈w, x〉+ b) : w ∈ Rd, b ∈ R } (linear classifiers)
→ VCdim(H) = d+ 1

• X = R, H = {sign(sin(ωx)), ω ∈ R } → VCdim(H) =∞
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Reminder:
VCdim(H) is the maximal value n, for which ΠH(n) = 2n, or ∞ if no such n exists.

Lemma (Sauer’s Lemma)

For any H with VCdim(H) <∞, for any m: ΠH(n) ≤
VCdim(H)∑

k=0

(
n

k

)
.

Consequence:
• up to n = VCdim(H), growth function grows exponentially
• for n ≥ VCdim(H)+1, growth function grows only polynomially:

ΠH(n) ≤ (en/d)d = O(nd). (proof: textbook)

• for n > VCdim(H), complexity term
√

2 log ΠH(n)
n starts decreasing like O(

√
logn
n )
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Classical Generalization Bounds

VC-Dimension Generalization Bound
Setup: inputs X , outputs Y = {±1}, `(y, ȳ) = Jy 6= ȳK, H ⊂ {f : X → Y}.

For any δ > 0, the following statement holds with probability at least 1− δ over the training
set D = {(x1, y1) . . . , (xn, yn)} i.i.d.∼ p(x, y):

For all f ∈ H: R(f) ≤ R̂(f) +

√
2d log en

d

n
+

√
log 1/δ

2n where d = VCdim(H)

Observations:
• Dimension of X plays no role, only d = VCdim(H)
• Crucial quantity: d

n . Non-trivial bound only for n > d.
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More examples: VC dimension (from the literature)

1) polynomial classifiers,
H = {h(x) = sign f(x), for f any polynomial of degree k in Rd}.

VCdim(H) =
k∑
i=0

(d+1
i

)

2) boosting: base set, F , of weak classifiers with VCdim D.

H=
{
f(x)=

T∑
t=1

αtgt(x), for g1, . . . , gT ∈ F and α1, . . . , αT ∈ R
}

VCdim(H) ≤ T (D + 1) · (3 log(T (D + 1)) + 2)

3) neural networks with threshold activation functions,
VCdim(H) ≤ O(W logW ) where W is number of network weights

4) neural networks with ReLU activation functions,
VCdim(H) ≤ O(WL logW ) where L is the number of network layers

16 / 38



More examples: VC dimension (from the literature)

1) polynomial classifiers,
H = {h(x) = sign f(x), for f any polynomial of degree k in Rd}.

VCdim(H) =
k∑
i=0

(d+1
i

)
2) boosting: base set, F , of weak classifiers with VCdim D.

H=
{
f(x)=

T∑
t=1

αtgt(x), for g1, . . . , gT ∈ F and α1, . . . , αT ∈ R
}

VCdim(H) ≤ T (D + 1) · (3 log(T (D + 1)) + 2)

3) neural networks with threshold activation functions,
VCdim(H) ≤ O(W logW ) where W is number of network weights

4) neural networks with ReLU activation functions,
VCdim(H) ≤ O(WL logW ) where L is the number of network layers

16 / 38



More examples: VC dimension (from the literature)

1) polynomial classifiers,
H = {h(x) = sign f(x), for f any polynomial of degree k in Rd}.

VCdim(H) =
k∑
i=0

(d+1
i

)
2) boosting: base set, F , of weak classifiers with VCdim D.

H=
{
f(x)=

T∑
t=1

αtgt(x), for g1, . . . , gT ∈ F and α1, . . . , αT ∈ R
}

VCdim(H) ≤ T (D + 1) · (3 log(T (D + 1)) + 2)

3) neural networks with threshold activation functions,
VCdim(H) ≤ O(W logW ) where W is number of network weights

4) neural networks with ReLU activation functions,
VCdim(H) ≤ O(WL logW ) where L is the number of network layers

16 / 38



From classical to modern generalization bounds
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Towards Modern Generalization Bounds

Generalization bounds so far: with probability at least 1− δ:

∀f ∈ H : R(f) ≤ R̂(f) +B(H, n, δ)

Observation:
• B(H, n, δ) is data-independent
• data distribution does not show up anywhere
→ holds for "easy" as well as "hard" learning problems

• minimizing right hand side is just ERM

More interesting: data-dependent or distribution-dependent bounds
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• Z: input set (later: Z = X or Z = X × Y), p(z): probability distribution over Z
• F ⊆ {f : Z → R}: set of real-valued functions

Definition (Empirical Rademacher Complexity)

Let F = {f : Z → R} be a set of real-valued functions and Dm = {z1, . . . , zm} a finite set.
The empirical Rademacher complexity of F with respect to Dm is defined as

R̂Dm(F) = E
σ

[
sup
f∈F

(
1
m

m∑
i=1

σif(zi)
)]

where σ1, . . . , σm are independent binary random variables with p(+1) = p(−1) = 1
2 (called

Rademacher variables).

Intuition: think of σi as random noise. The sup measures how well functions in F can
correlate to arbitrary values (=memorize random noise).

Note: R̂Dm is data-dependent, it depends on Dm.
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Example
Let F = {f} (a single function). Then, for any m,

R̂Dm(F) = E
σ

(
1
m

m∑
i=1

σif(zi)
)

= 1
m

m∑
i=1

E
σ

[σi]f(zi) = 0

Example
Let F = {f : Z → [−B,B]} all bounded functions. Then, when there are no duplicates in D,

R̂Dm(F) = E
σ

sup
f∈F

(
1
m

m∑
i=1

σif(zi)
)
f(zi)=Bσi= E

σ

1
m

m∑
i=1

B = E
σ
B = B

(same argument would work also, e.g., for piecewise linear functions)
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Example
Let F = {f1, . . . , fK} with fi : X → [−B,B] for i = 1, . . . ,K (finitely many bounded
functions). Then

R̂Dm(F) ≤ B

√
2 logK
m

Proof: textbook

Example
Let F = {f = w>z : Rd → R} with ‖w‖ ≤ B all linear functions with bounded slope. If
m > d, then z1, . . . , zm are linearly dependent and sup can’t fit all possible signs →
R̂Dm(F) will decrease with m.

(we’ll prove a more rigorous statement later)
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Definition
The Rademacher complexity of F is defined as

Rm(F) = E
Dm∼p⊗m

[ R̂Dm(F) ]

Note: Rm is a distribution-dependent quantity (w.r.t. p).

In some cases, more convenient to compute than the empirical one.
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Slightly more general notation than before:
• hypothesis set H ⊂ {X → R} (can be real-valued)
• loss ` : X × Y ×H → R, e.g. `(x, y, h) = max{0, 1−yh(x)},
• R(h) = E(x,y)∼p `(x, y, h), R̂(h) = 1

m

∑m
i=1 `(xi, yi, h)

Theorem (Rademacher-based generalization bound)

Let `(x, y, h) ≤ c be a bounded loss function and set
F = {` ◦ h : h ∈ H} = {`(x, y, h(x)) : h ∈ H} ⊂ {f : X × Y → R}

Then, with prob. at least 1− δ over Dm
i.i.d.∼ p, it holds for all h ∈ H:

R(h) ≤ R̂(h) + 2Rm(F) + c

√
log(1/δ)

2m .

Also, with prob. at least 1− δ, it holds for all h ∈ H:

R(h) ≤ R̂(h) + 2R̂Dm(F) + 3c

√
2 log(4/δ)

m
.

Proof. textbook/notes 2
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Useful properties:

Lemma
For F ⊂ RX let F ′ := {f + f0 : f ∈ F} be a translated version for some f0 : X → R .
Then, for any m,

R̂Dm(F ′) = R̂Dm(F)

Lemma
For F ⊂ RX let F ′ := {λf : f ∈ F} be scaled by a constant λ ∈ R. Then, for any m,

R̂Dm(F ′) = λR̂Dm(F)

Lemma
For F ⊂ RX and φ : R→ R let F ′ := {φ ◦ f : f ∈ F}. If φ is L-Lipschitz continuous, i.e.
|φ(t)− φ(t′)| ≤ L|t− t′|, then for any m,

R̂Dm(F ′) ≤ L · R̂Dm(F)
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Lemma
Let Z be an inner-product space (e.g. Rd with 〈·, ·〉). Let F = {f = 〈w, z〉 : X → R} be the
set of linear functions with ‖w‖ ≤ B. Then, for any Dm = {z1, . . . , zm},

R̂Dm(F) ≤ B

m

√∑
i

‖zi‖2

Proof: textbook/notes

Lemma
Let F = {f = 〈w, z〉 : X → R} be linear functions with ‖w‖ ≤ B and let p be such that
Pr{‖z‖ < R} = 1 Then

Rm(F) ≤ BR
√

1
m

Proof: R̂Dm(F) ≤ B
m

√
mR2 with prob. 1, so ED R̂ ≤ B

m

√
mR2, too.
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Reminder: (soft-margin) support vector machine (SVM):

min
w

λ

2 ‖w‖
2 + 1

m

∑
i

max{0, 1− yi〈w, xi〉}

Example: SVM "radius/margin" bound

Let `(x, y;w) := max{0, 1− y〈w, x〉} be the hinge loss. Let p be a distribution on Rd × Y
such that Pr{ ‖x‖ ≤ R } = 1 and let H = {h(x) = 〈w, x〉 : w ∈ Rd ∧ ‖w‖ ≤ B}.
Then, with prob. at least 1− δ over Dm

i.i.d.∼ p the following inequality holds for all w ∈ H:

E
(x,y)∼p

Jsign〈w, x〉 6= yK ≤ 1
m

m∑
i=1

max{0, 1− yi〈w, xi〉}+ 2BR√
m

+

√
log 1

δ

2m .

Properties:
• complexity terms decrease with rate O(

√
1
m)

• short ‖w‖ is better than long ‖w‖
• dimensionality of x does not show up, no curse of dimensionality!
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Proof sketch:
• ‖x‖ ≤ R (with probability 1)
• "ramp loss": `(x, y, h) = min{ max{0, 1− yh(x)}, 1 } ∈ [0, 1]
• H = {h(x) = 〈w, x〉 : ‖w‖ ≤ B}, F = {` ◦ h, h ∈ H}

With prob. 1− δ: ∀h ∈ H : R(h) ≤ R̂(h) + 2Rm(F) +

√
log(1/δ)

2m

• ` is 1-Lipschitz, i.e. for F = {` ◦ h : h ∈ H}:

Rm(F)
1-Lip.
≤ Rm(H)

Lemma
≤ BR

√
1
m

• ` is upper bounds to 0/1 error and lower bound to hinge loss

Pr{h(x) 6= y} ≤ R(h) R̂(h) ≤ 1
m

m∑
i=1

max{0, 1− yih(xi)}

With prob. 1− δ for every h = 〈w, x〉 ∈ H:

Pr{sign〈w, x〉 6= y} ≤ 1
m

m∑
i=1

max{0, 1− yi〈w, xi〉}+ 2RB√
m

+

√
log(1/δ)

2m
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Theorem (Connections to other complexity measures)

Let H = {h : X → {±1} } be a hypothesis class. Then

R̂m(H) ≤

√
2 log |H|

m
if |H| is finite,

R̂m(H) ≤

√
2 log ΠH(m)

m
where ΠH(m) is the growth function,

R̂m(H) ≤

√
2d logm

m
where d = VCdim(H).

Theorem (Connections to covering numbers)

Let H ⊂ {X → [−1, 1]} and D i.i.d.∼ p(x, y) with |D| = m. Then

R̂m(H) ≤ inf
α

[
α+

√
N
(
α,H|D, ‖ · ‖L1

)
m

]
where N are covering numbers of the set of values that H assigns to D.

28 / 38



Beyond Complexity Measures
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Algorithm-dependent bounds

Generalization bounds so far: with probability at least 1− δ:

∀f ∈ H : R(f) ≤ R̂(f) + "something"

Observation:
• holds simultaneous for all hypotheses in H, we can pick any we like

but: in practice, we have some algorithm that choses the hypothesis and we really only
need the result for that

Goal: algorithm-dependent bounds
Instead of
• "For which hypothesis sets does learning not overfit?"

ask
• "Which learning algorithms do not overfit?"
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• hypothesis set H, write loss function in form L(x, y, h) = `(y, h(x))

Definition (Learning algorithm)

A learning algorithm, A, is a function that takes as input a finite subset, Dm ⊂ Z, and
outputs a hypothesis A[Dm] ∈ H.

Definition (Uniform stability)

For a training set, D = {(x1, y1), . . . , (xm, ym)}, we define the training set with the i-th
element removed

D\i = {(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xm, ym)}.

A learning algorithm, A, has uniform stability β with respect to the loss ` if the following
holds,

∀Dm ⊂ X × Y ∀i ∈ {1, 2, . . . ,m} ‖L(·, ·, A[D] )− L(·, ·, A[D\i] )‖∞ ≤ β

A small change to the training does not affect on the quality of the learned function much.
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Theorem (Stable algorithms generalize well [Bousquet et al ., 2002])

Let A be a β-uniformly stable learning algorithm. For a training set Dm that consists of m
i.i.d. samples, denote by f = A[Dm] be the output of A on Dm. Let `(y, ȳ) be bounded by
M .

Then, for any δ > 0, with probability at least 1− δ,

R(f) ≤ R̂(f) + 2β + (4mβ +M)

√
log(1/δ)

2m

Note: for the bound to be useful, the stability β should decrease faster than
√

1
m (but

preferably least like 1
m)
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Reminder: stochastic gradient descent (SGD): minimize a function

f(θ) = 1
m

m∑
i=1

f(xi, yi; θ)

Theorem (Stability of Stochastic Gradient Descent [Hardt et al ., 2016])

Let f(x, y; ·) be γ-smooth, convex and L-Lipschitz for every (x, y). Suppose that we run
SGD with step sizes αt ≤ 2/γ for T steps. Then, SGD satisfies uniform stability with

β ≤ 2L2

m

T∑
t=1

αt.

Let f(x, y; ·) be γ-smooth and L-Lipschitz, but not necessarily convex. Assume we run SGD
with monotonically non-increasing step sizes αt ≤ c/t for some c. Then, SGD satisfies
uniform stability with

β ≤
1 + 1

γc

m− 1 (2cL2)
1

γc+1T
γc
γc+1 .
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The Power of Compression
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Reminder:
Perceptron – Training

input training set D ⊂ Rd × {−1,+1}
initialize w = (0, . . . , 0) ∈ Rd.
repeat
for all (x, y) ∈ D: do

compute a := 〈w, x〉 (’activation’)
if ya ≤ 0 then
w ← w + yx

end if
end for

until w wasn’t updated for a complete pass over D

Let’s assume D is very large, so we don’t need multiple passes.
Properties:
• sequential training, one pass over data
• only those examples matter, where perceptron made a mistake (only those affect w)
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Towards Sample Compression Bounds

• Take training set as a sequence:

T =
(
(x1, y1), (x2, y2), . . . , (xn, yn)

)
• algorithm A processes T in order, producting output f := A(T )

• What if only a subset of examples influence the algorithm output?

• for increasing subsequence, I ⊂ {1, . . . , n}, with |I| = l, set

TI =
(
(xi1 , yi1), (xi2 , yi2), . . . , (xil , yil)

)
Definition
I is a compression set for T , if A(T ) = A(TI).

Example: I = {set of examples where Perceptron made a mistake}
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Definition (Compression scheme [Littlestone/Warmuth, 1986])

A learning algorithm A is called compression scheme, if there is a pair of functions: C
(called compression function), and L (called reconstruction function), such that:
• C takes as input a finite dataset and outputs a subsequence of indices
• L takes as input a finite dataset and outputs a predictor
• A is the result of applying L to the data selected by C

A = L(TI) for I = C(T )

Examples:
• C selects half of the data from T at random
• C run a clustering algorithm on T and returns the cluster centers as I

Examples, where A = L(TI) equals L(T ):
• Perceptron (I = indices of examples where will be updated)
• SVMs (I = set of support vectors)
• k-NN (I = set of examples that support the decision boundaries)
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R̂I(h) = 1
|I|
∑
i∈I

`( yi, h(xi) ) and R̂¬I(h) = 1
n− |I|

∑
i 6∈I

`( yi, h(xi) )

Theorem (Compression Bound [Littlestone/Warmuth, 1986; Graepel 2005] )

Let A be a compression scheme with compression function C. Let the loss ` be bounded by
[0, 1]. Then, with probability at least 1− δ over the random draw of T , we have that:

If R̂¬I(A(T )) = 0:

R(A(T )) ≤ 1
n− l

(
(l + 1) logn+ log 1

δ

)
. → O( 1

n
)

For general R̂¬I(A(T )):

R(A(T )) ≤ n

n− l
R̂¬I(A(T )) +

√
(l + 2) logn+ log 1

δ

2(n− l) → O( 1√
n

)

where I = C(T ) and l = |I|.
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