Statistical Machine Learning

https://cvml.ist.ac.at/courses/SML_W20

Christoph Lampert

Overview (tentative)

Date		no.	Topic
Oct 05	Mon	1	A Hands-On Introduction
Oct 07	Wed	2	Bayesian Decision Theory, Generative Probabilistic Models
Oct 12	Mon	3	Discriminative Probabilistic Models
Oct 14	Wed	4	Maximum Margin Classifiers, Generalized Linear Models
Oct 19	Mon	5	Estimators; Overfitting/Underfitting, Regularization, Model Selection
Oct 21	Wed	6	Bias/Fairness, Domain Adaptation
Oct 26	Mon	-	no lecture (public holiday)
Oct 28	Wed	7	Learning Theory I, Concentration of Measure
Nov 02	Mon	8	Learning Theory II
Nov 04	Wed	9	Deep Learning I
Nov 09	Mon	10	Deep Learning II
Nov 11	Wed	11	Unsupervised Learning
Nov 16	Mon	12	project presentations
Nov 18	Wed	13	buffer

The Holy Grail of Statistical Machine Learning

Inferring the test loss
 from the training loss

The Holy Grail of Statistical Machine Learning

Inferring the test loss
 from the training loss

Generalization Bound

For every $f \in \mathcal{H}$ it holds:

Standard learning setting:

- input data \mathcal{X}, output set \mathcal{Y}, data distribution p over $\mathcal{X} \times \mathcal{Y}$,
- loss function, $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}_{+}$(with some assumption),
- hypothesis set $\mathcal{H} \subset\{f: \mathcal{X} \rightarrow \mathcal{Y}\}$,

Generalization bounds: generic structure

For any $\delta>0$, the following statement holds with probablity at least $1-\delta$ over the (random) training set $\mathcal{D}_{n}=\left\{\left(x^{1}, y^{1}\right), \ldots,\left(x^{n}, y^{n}\right)\right\} \stackrel{\text { i.i.d. }}{\sim} p$.

For all $f \in \mathcal{H}$:

$$
\mathcal{R}(f) \leq \hat{\mathcal{R}}(f) \quad+\quad \text { something }
$$

where the "something" typically increases for $\delta \rightarrow 0$ and decreases for $n \rightarrow \infty$.

Observation: if the inequality holds, it holds uniformly for all f.
\rightarrow by minimizing the right hand side, we can find the "most promising" f

Example: SVM radius/margin bound

Let $\ell(x, y ; w):=\max \{0,1-y\langle w, x\rangle\}$ be the hinge loss. Let p be a distribution on $\mathbb{R}^{d} \times \mathcal{Y}$ such that $\operatorname{Pr}\{\|x\| \leq R\}=1$ and let $\mathcal{H}=\left\{f(x)=w^{\top} x: \quad w \in \mathbb{R}^{d} \wedge\|w\| \leq B\right\}$.

Then, with prob. at least $1-\delta$ over $\mathcal{D}_{m} \stackrel{\text { i.i.d. }}{\sim} p$ the following inequality holds for all $w \in \mathcal{H}$:

$$
\begin{equation*}
\underset{(x, y) \sim p}{\mathbb{E}} \llbracket\langle w, x\rangle \neq y \rrbracket \leq \frac{1}{m} \sum_{i=1}^{m} \ell\left(x_{i}, y_{i}, w\right)+\frac{2 R B}{\sqrt{m}}+\sqrt{\frac{\log \frac{1}{\delta}}{2 m}} . \tag{1}
\end{equation*}
$$

Example: SVM radius/margin bound

Let $\ell(x, y ; w):=\max \{0,1-y\langle w, x\rangle\}$ be the hinge loss. Let p be a distribution on $\mathbb{R}^{d} \times \mathcal{Y}$ such that $\operatorname{Pr}\{\|x\| \leq R\}=1$ and let $\mathcal{H}=\left\{f(x)=w^{\top} x: \quad w \in \mathbb{R}^{d} \wedge\|w\| \leq B\right\}$.

Then, with prob. at least $1-\delta$ over $\mathcal{D}_{m} \stackrel{\text { i.i.d. }}{\sim} p$ the following inequality holds for all $w \in \mathcal{H}$:

$$
\begin{equation*}
\underset{(x, y) \sim p}{\mathbb{E}} \llbracket\langle w, x\rangle \neq y \rrbracket \leq \frac{1}{m} \sum_{i=1}^{m} \ell\left(x_{i}, y_{i}, w\right)+\frac{2 R B}{\sqrt{m}}+\sqrt{\frac{\log \frac{1}{\delta}}{2 m}} . \tag{1}
\end{equation*}
$$

This results provides a good justification for using SVMs:

- (1) holds uniformly in w, including for the w that minimizes the right hand side \rightarrow hinge loss on training set should be small
\rightarrow we should only consider w with small $\|w\|$, such that B can be chosen small
Reminder: (soft-margin) support vector machine (SVM):

$$
\min _{w} \frac{\lambda}{2}\|w\|^{2}+\frac{1}{m} \sum_{i} \max \left\{0,1-y_{i}\left\langle w, x_{i}\right\rangle\right\}
$$

Classical Generalization Bounds

Example: Finite Hypothesis Sets

Setup:

- $\ell(y, \bar{y})=\llbracket y \neq \bar{y} \rrbracket \quad$ (0-1 loss)
- finite number of possible classifiers $\mathcal{H}=\left\{f_{1}, \ldots, f_{T}\right\} \subset\{f: \mathcal{X} \rightarrow \mathcal{Y}\}$

For any $\delta>0$, the following statement holds with probability at least $1-\delta$ over the training set $\mathcal{D}=\left\{\left(x^{1}, y^{1}\right) \ldots,\left(x^{n}, y^{n}\right)\right\} \stackrel{\text { i.i.d. }}{\sim} p(x, y)$:

For all $f \in \mathcal{H}: \quad \mathcal{R}(f) \leq \hat{\mathcal{R}}(f)+\sqrt{\frac{\log |\mathcal{H}|+\log 1 / \delta}{2 n}}$.
This is essentially the lemma about uniform approximation we proved in lecture 7.

- Bound prob. of undesired outcome, $\mathcal{R}(f)-\hat{\mathcal{R}}(f)>\epsilon$, separately for each classifier f
- Combine by union bound \rightarrow factor $|\mathcal{H}|$ (but ultimately enters only logarithmically)

Illustration: union bound

Union bound is "worst case": usually overly pessimistic

Union bound will only work for finite \mathcal{H}, otherwise even logarithm will not save us.
Can we find a better way to characterize hypothesis classes than simply the number of their elements? Can we benefit from redundancy among hypotheses?

Suggested complexity measures:

- covering numbers
- growth function
- VC dimension
- Rademacher complexity

In particular, these work also for infinitely large (continuous) hypothesis sets.

Covering Numbers

Definition (Covering)

Let \mathcal{F} be a set of functions. We say \mathcal{F} is ϵ-covered by \mathcal{F}^{\prime} with respect to a norm $\|\cdot\|$:

$$
\forall f \in \mathcal{F} \quad \exists f^{\prime} \in \mathcal{F}^{\prime} \quad\left\|f-f^{\prime}\right\| \leq \epsilon
$$

\mathcal{F}^{\prime} is called an ϵ-cover of \mathcal{F}.

Definition (Covering Number)

Let \mathcal{F} be a set of functions. The ϵ-covering number, $\mathcal{N}(\epsilon, \mathcal{F},\|\cdot\|)$, is the size of the smallest ϵ-cover of \mathcal{F} with respect to $\|\cdot\|$.

Main idea: $\mathcal{N}(\epsilon, \mathcal{F},\|\cdot\|)$ can be small (finite), even if \mathcal{F} is large (infinite). We can use the cover \mathcal{F}^{\prime} for everything, yet still only make a small error.

Definition (Growth function)

Let $\mathcal{H} \subset\{f: \mathcal{X} \rightarrow\{ \pm 1\}\}$ be a set of binary-valued hypotheses. The growth function $\Pi_{\mathcal{H}}: \mathbb{N} \rightarrow \mathbb{N}$ of \mathcal{H} is defined as:

$$
\Pi_{\mathcal{H}}(n)=\max _{x_{1}, \ldots, x_{n} \in \mathcal{X}}\left|\left\{\left(h\left(x_{1}\right), \ldots, h\left(x_{n}\right)\right): h \in \mathcal{H}\right\}\right|
$$

For any $n \in \mathbb{N}, \Pi_{\mathcal{H}}(n)$ is the largest number of different labelings that can be produced with functions in \mathcal{H}.

```
Examples: Growth function
```

Growth function: $\quad \Pi_{\mathcal{H}}(n)=\max _{x_{1}, \ldots, x_{n} \in \mathcal{X}}\left|\left\{\left(h\left(x_{1}\right), \ldots, h\left(x_{n}\right)\right): h \in \mathcal{H}\right\}\right|$

Examples: growth function

- $\mathcal{H}=\left\{f_{+}, f_{-}\right\}$, where $f_{+}(x)=+1$ and $f_{-}(x)=-1$ (for all $\left.x \in \mathcal{X}\right)$
$\rightarrow \Pi_{\mathcal{H}}(n)=2$ for all $n \geq 1$

```
Examples: Growth function
```

Growth function: $\quad \Pi_{\mathcal{H}}(n)=\max _{x_{1}, \ldots, x_{n} \in \mathcal{X}}\left|\left\{\left(h\left(x_{1}\right), \ldots, h\left(x_{n}\right)\right): h \in \mathcal{H}\right\}\right|$

Examples: growth function

- $\mathcal{H}=\left\{f_{+}, f_{-}\right\}$, where $f_{+}(x)=+1$ and $f_{-}(x)=-1$ (for all $\left.x \in \mathcal{X}\right)$
$\rightarrow \Pi_{\mathcal{H}}(n)=2$ for all $n \geq 1$
- $\mathcal{H}=\left\{f_{1}, \ldots, f_{T}\right\} \quad \rightarrow \quad \Pi_{\mathcal{H}}(n) \leq \min \left\{2^{n},|\mathcal{H}|\right\}$

```
Examples: Growth function
```

Growth function: $\quad \Pi_{\mathcal{H}}(n)=\max _{x_{1}, \ldots, x_{n} \in \mathcal{X}}\left|\left\{\left(h\left(x_{1}\right), \ldots, h\left(x_{n}\right)\right): h \in \mathcal{H}\right\}\right|$

Examples: growth function

- $\mathcal{H}=\left\{f_{+}, f_{-}\right\}$, where $f_{+}(x)=+1$ and $f_{-}(x)=-1$ (for all $\left.x \in \mathcal{X}\right)$
$\rightarrow \Pi_{\mathcal{H}}(n)=2$ for all $n \geq 1$
- $\mathcal{H}=\left\{f_{1}, \ldots, f_{T}\right\} \quad \rightarrow \quad \Pi_{\mathcal{H}}(n) \leq \min \left\{2^{n},|\mathcal{H}|\right\}$
- $\mathcal{H}=\{f: \mathcal{X} \rightarrow\{ \pm 1\}\}$ (all binary values functions) and $|\mathcal{X}|=\infty$ $\rightarrow \Pi_{\mathcal{H}}(n)=2^{n}$

Growth function: $\quad \Pi_{\mathcal{H}}(n)=\max _{x_{1}, \ldots, x_{n} \in \mathcal{X}}\left|\left\{\left(h\left(x_{1}\right), \ldots, h\left(x_{n}\right)\right): h \in \mathcal{H}\right\}\right|$

Examples: growth function

- $\mathcal{H}=\left\{f_{+}, f_{-}\right\}$, where $f_{+}(x)=+1$ and $f_{-}(x)=-1$ (for all $\left.x \in \mathcal{X}\right)$
$\rightarrow \Pi_{\mathcal{H}}(n)=2$ for all $n \geq 1$
- $\mathcal{H}=\left\{f_{1}, \ldots, f_{T}\right\} \quad \rightarrow \quad \Pi_{\mathcal{H}}(n) \leq \min \left\{2^{n},|\mathcal{H}|\right\}$
- $\mathcal{H}=\{f: \mathcal{X} \rightarrow\{ \pm 1\}\}$ (all binary values functions) and $|\mathcal{X}|=\infty$ $\rightarrow \Pi_{\mathcal{H}}(n)=2^{n}$
- $\mathcal{X}=\mathbb{R}^{d}, \mathcal{H}=\left\{\operatorname{sign}(\langle w, x\rangle+b): w \in \mathbb{R}^{d}, b \in \mathbb{R}\right\}$ all linear classifiers
$\rightarrow \Pi_{\mathcal{H}}(n)=2^{n}$ for $n \leq d+1$, but $\Pi_{\mathcal{H}}(n)<2^{n}$ for $n>d+1$.

Growth function: $\quad \Pi_{\mathcal{H}}(n)=\max _{x_{1}, \ldots, x_{n} \in \mathcal{X}}\left|\left\{\left(h\left(x_{1}\right), \ldots, h\left(x_{n}\right)\right): h \in \mathcal{H}\right\}\right|$

Examples: growth function

- $\mathcal{H}=\left\{f_{+}, f_{-}\right\}$, where $f_{+}(x)=+1$ and $f_{-}(x)=-1$ (for all $\left.x \in \mathcal{X}\right)$
$\rightarrow \Pi_{\mathcal{H}}(n)=2$ for all $n \geq 1$
- $\mathcal{H}=\left\{f_{1}, \ldots, f_{T}\right\} \quad \rightarrow \quad \Pi_{\mathcal{H}}(n) \leq \min \left\{2^{n},|\mathcal{H}|\right\}$
- $\mathcal{H}=\{f: \mathcal{X} \rightarrow\{ \pm 1\}\}$ (all binary values functions) and $|\mathcal{X}|=\infty$ $\rightarrow \Pi_{\mathcal{H}}(n)=2^{n}$
- $\mathcal{X}=\mathbb{R}^{d}, \mathcal{H}=\left\{\operatorname{sign}(\langle w, x\rangle+b): w \in \mathbb{R}^{d}, b \in \mathbb{R}\right\}$ all linear classifiers
$\rightarrow \Pi_{\mathcal{H}}(n)=2^{n}$ for $n \leq d+1, \quad$ but $\Pi_{\mathcal{H}}(n)<2^{n}$ for $n>d+1$.
- $\mathcal{X}=[0,1], \mathcal{H}=\{\operatorname{sign}(\sin (\omega x)), \quad \omega \in \mathbb{R}\} \quad \rightarrow \Pi_{\mathcal{H}}(n)=2^{n}$

Classical Generalization Bounds

Growth Function Generalization Bound

Setup:

- $\ell(y, \bar{y})=\llbracket y \neq \bar{y} \rrbracket \quad$ (0-1 loss)
- $\mathcal{H} \subset\{f: \mathcal{X} \rightarrow\{ \pm 1\}\}$

For any $\delta>0$, the following statement holds with probability at least $1-\delta$ over the training set $\mathcal{D}=\left\{\left(x^{1}, y^{1}\right) \ldots,\left(x^{n}, y^{n}\right)\right\} \stackrel{\text { i.i.d. }}{\sim} p(x, y)$:

For all $f \in \mathcal{H}$:

$$
\mathcal{R}(f) \leq \hat{\mathcal{R}}(f)+\sqrt{\frac{2 \log \Pi_{\mathcal{H}}}{n}}+\sqrt{\frac{\log 1 / \delta}{2 n}}
$$

Classical Generalization Bounds

Growth Function Generalization Bound

Setup:

- $\ell(y, \bar{y})=\llbracket y \neq \bar{y} \rrbracket \quad$ (0-1 loss)
- $\mathcal{H} \subset\{f: \mathcal{X} \rightarrow\{ \pm 1\}\}$

For any $\delta>0$, the following statement holds with probability at least $1-\delta$ over the training set $\mathcal{D}=\left\{\left(x^{1}, y^{1}\right) \ldots,\left(x^{n}, y^{n}\right)\right\} \stackrel{\text { i.i.d. }}{\sim} p(x, y)$:

For all $f \in \mathcal{H}$:

$$
\mathcal{R}(f) \leq \hat{\mathcal{R}}(f)+\sqrt{\frac{2 \log \Pi_{\mathcal{H}}}{n}}+\sqrt{\frac{\log 1 / \delta}{2 n}}
$$

- for $|\mathcal{H}|<\infty$, we (almost) recover the bound for finite hypothesis sets
- bound is vacuous for $\Pi_{\mathcal{H}}(n)=2^{n}$, but interesting for $\Pi_{\mathcal{H}}(n) \ll 2^{n}$

Problem: growth function (for all $n \in \mathbb{N}$) can be hard to determine precisely Easier: at what value does it change from $\Pi_{\mathcal{H}}(n)=2^{n}$ to $\Pi_{\mathcal{H}}(n)<2^{n}$?

Definition (VC Dimension)

The VC dimension of a hypothesis class \mathcal{H}, denoted $\operatorname{VCdim}(\mathcal{H})$, is the maximal value n, for which $\Pi_{\mathcal{H}}(n)=2^{n}$. If no such value exists, we say that $\operatorname{VCdim}(\mathcal{H})=\infty$.

Problem: growth function (for all $n \in \mathbb{N}$) can be hard to determine precisely Easier: at what value does it change from $\Pi_{\mathcal{H}}(n)=2^{n}$ to $\Pi_{\mathcal{H}}(n)<2^{n}$?

Definition (VC Dimension)

The VC dimension of a hypothesis class \mathcal{H}, denoted $\operatorname{VCdim}(\mathcal{H})$, is the maximal value n, for which $\Pi_{\mathcal{H}}(n)=2^{n}$. If no such value exists, we say that $\operatorname{VCdim}(\mathcal{H})=\infty$.

Examples:

- $\mathcal{H}=\left\{f_{+}, f_{-}\right\}$for $f_{+}(x)=+1$ and $f_{-}(x)=-1 . \rightarrow \operatorname{VCdim}(\mathcal{H})=1$
- $\mathcal{H}=\left\{f_{1}, \ldots, f_{T}\right\} \quad \rightarrow \operatorname{VCdim}(\mathcal{H}) \leq\left\lfloor\log _{2}|\mathcal{H}|\right\rfloor$
- $\mathcal{H}=\{f: \mathcal{X} \rightarrow\{ \pm 1\}\}$ (all binary values functions) and $|\mathcal{X}|=\infty$
$\rightarrow \quad \operatorname{VCdim}(\mathcal{H})=\infty$
- $\mathcal{X}=\mathbb{R}^{d}, \mathcal{H}=\left\{\operatorname{sign}(\langle w, x\rangle+b): w \in \mathbb{R}^{d}, b \in \mathbb{R}\right\} \quad$ (linear classifiers) $\rightarrow \quad \operatorname{VCdim}(\mathcal{H})=d+1$
- $\mathcal{X}=\mathbb{R}, \mathcal{H}=\{\operatorname{sign}(\sin (\omega x)), \quad \omega \in \mathbb{R}\}$
$\rightarrow \mathrm{VCdim}(\mathcal{H})=\infty$

Reminder:

VCdim (\mathcal{H}) is the maximal value n, for which $\Pi_{\mathcal{H}}(n)=2^{n}$, or ∞ if no such n exists.

Lemma (Sauer's Lemma)

For any \mathcal{H} with VCdim $(\mathcal{H})<\infty$, for any $m: \quad \Pi_{\mathcal{H}}(n) \leq \sum_{k=0}^{V C \operatorname{dim}(\mathcal{H})}\binom{n}{k}$.
Consequence:

- up to $n=\operatorname{VCdim}(\mathcal{H})$, growth function grows exponentially
- for $n \geq \operatorname{VCdim}(\mathcal{H})+1$, growth function grows only polynomially:

$$
\Pi_{\mathcal{H}}(n) \leq(e n / d)^{d}=O\left(n^{d}\right) . \quad \text { (proof: textbook) }
$$

- for $n>\operatorname{VCdim}(\mathcal{H})$, complexity term $\sqrt{\frac{2 \log \Pi_{\mathcal{H}}(n)}{n}}$ starts decreasing like $O\left(\sqrt{\frac{\log n}{n}}\right)$

VC-Dimension Generalization Bound

Setup: inputs \mathcal{X}, outputs $\mathcal{Y}=\{ \pm 1\}, \ell(y, \bar{y})=\llbracket y \neq \bar{y} \rrbracket, \mathcal{H} \subset\{f: \mathcal{X} \rightarrow \mathcal{Y}\}$.
For any $\delta>0$, the following statement holds with probability at least $1-\delta$ over the training set $\mathcal{D}=\left\{\left(x^{1}, y^{1}\right) \ldots,\left(x^{n}, y^{n}\right)\right\} \stackrel{\text { i.i.d. }}{\sim} p(x, y)$:

For all $f \in \mathcal{H}: \quad \mathcal{R}(f) \leq \hat{\mathcal{R}}(f)+\sqrt{\frac{2 d \log \frac{e n}{d}}{n}}+\sqrt{\frac{\log 1 / \delta}{2 n}} \quad$ where $d=\operatorname{VCdim}(\mathcal{H})$

Observations:

- Dimension of \mathcal{X} plays no role, only $d=\operatorname{VCdim}(\mathcal{H})$
- Crucial quantity: $\frac{d}{n}$. Non-trivial bound only for $n>d$.

More examples: VC dimension (from the literature)

1) polynomial classifiers,

$$
\begin{aligned}
\mathcal{H} & =\left\{h(x)=\operatorname{sign} f(x), \text { for } f \text { any polynomial of degree } k \text { in } \mathbb{R}^{d}\right\} \\
\text { VCdim }(\mathcal{H}) & =\sum_{i=0}^{k}\binom{d+1}{i}
\end{aligned}
$$

More examples: VC dimension (from the literature)

1) polynomial classifiers,

$$
\mathcal{H}=\left\{h(x)=\operatorname{sign} f(x), \text { for } f \text { any polynomial of degree } k \text { in } \mathbb{R}^{d}\right\} .
$$

$\operatorname{VCdim}(\mathcal{H})=\sum_{i=0}^{k}\binom{d+1}{i}$
2) boosting: base set, \mathcal{F}, of weak classifiers with VCdim D.

$$
\mathcal{H}=\left\{f(x)=\sum_{t=1}^{T} \alpha_{t} g_{t}(x), \text { for } g_{1}, \ldots, g_{T} \in \mathcal{F} \text { and } \alpha_{1}, \ldots, \alpha_{T} \in \mathbb{R}\right\}
$$

$\operatorname{VCdim}(\mathcal{H}) \leq T(D+1) \cdot(3 \log (T(D+1))+2)$

More examples: VC dimension (from the literature)

1) polynomial classifiers,

$$
\mathcal{H}=\left\{h(x)=\operatorname{sign} f(x), \text { for } f \text { any polynomial of degree } k \text { in } \mathbb{R}^{d}\right\}
$$

$\operatorname{VCdim}(\mathcal{H})=\sum_{i=0}^{k}\binom{d+1}{i}$
2) boosting: base set, \mathcal{F}, of weak classifiers with VCdim D.

$$
\mathcal{H}=\left\{f(x)=\sum_{t=1}^{T} \alpha_{t} g_{t}(x), \text { for } g_{1}, \ldots, g_{T} \in \mathcal{F} \text { and } \alpha_{1}, \ldots, \alpha_{T} \in \mathbb{R}\right\}
$$

$\operatorname{VCdim}(\mathcal{H}) \leq T(D+1) \cdot(3 \log (T(D+1))+2)$
3) neural networks with threshold activation functions,
$\mathrm{VCdim}(\mathcal{H}) \leq O(W \log W)$ where W is number of network weights
4) neural networks with ReLU activation functions,
$\mathrm{VCdim}(\mathcal{H}) \leq O(W L \log W)$ where L is the number of network layers

From classical to modern generalization bounds

Towards Modern Generalization Bounds

Generalization bounds so far: with probability at least $1-\delta$:

$$
\forall f \in \mathcal{H}: \quad \mathcal{R}(f) \leq \hat{\mathcal{R}}(f)+B(\mathcal{H}, n, \delta)
$$

Observation:

- $B(\mathcal{H}, n, \delta)$ is data-independent
- data distribution does not show up anywhere \rightarrow holds for "easy" as well as "hard" learning problems
- minimizing right hand side is just ERM

More interesting: data-dependent or distribution-dependent bounds

- \mathcal{Z} : input set (later: $\mathcal{Z}=\mathcal{X}$ or $\mathcal{Z}=\mathcal{X} \times \mathcal{Y}$), $p(z)$: probability distribution over \mathcal{Z}
- $\mathcal{F} \subseteq\{f: \mathcal{Z} \rightarrow \mathbb{R}\}$: set of real-valued functions

Definition (Empirical Rademacher Complexity)

Let $\mathcal{F}=\{f: \mathcal{Z} \rightarrow \mathbb{R}\}$ be a set of real-valued functions and $\mathcal{D}_{m}=\left\{z_{1}, \ldots, z_{m}\right\}$ a finite set. The empirical Rademacher complexity of \mathcal{F} with respect to \mathcal{D}_{m} is defined as

$$
\hat{\mathfrak{R}}_{\mathcal{D}_{m}}(\mathcal{F})=\underset{\sigma}{\mathbb{E}}\left[\sup _{f \in \mathcal{F}}\left(\frac{1}{m} \sum_{i=1}^{m} \sigma_{i} f\left(z_{i}\right)\right)\right]
$$

where $\sigma_{1}, \ldots, \sigma_{m}$ are independent binary random variables with $p(+1)=p(-1)=\frac{1}{2}$ (called Rademacher variables).

Intuition: think of σ_{i} as random noise. The sup measures how well functions in \mathcal{F} can correlate to arbitrary values (=memorize random noise).
Note: $\hat{\mathfrak{R}}_{\mathcal{D}_{m}}$ is data-dependent, it depends on \mathcal{D}_{m}.

Example

Let $\mathcal{F}=\{f\}$ (a single function). Then, for any m,

$$
\hat{\mathfrak{R}}_{\mathcal{D}_{m}}(\mathcal{F})=\underset{\sigma}{\mathbb{E}}\left(\frac{1}{m} \sum_{i=1}^{m} \sigma_{i} f\left(z_{i}\right)\right)=\frac{1}{m} \sum_{i=1}^{m} \underset{\sigma}{\mathbb{E}}\left[\sigma_{i}\right] f\left(z_{i}\right)=0
$$

Example

Let $\mathcal{F}=\{f: \mathcal{Z} \rightarrow[-B, B]\}$ all bounded functions. Then, when there are no duplicates in \mathcal{D},

$$
\hat{\mathfrak{R}}_{\mathcal{D}_{m}}(\mathcal{F})=\underset{\sigma}{\mathbb{E}} \sup _{f \in \mathcal{F}}\left(\frac{1}{m} \sum_{i=1}^{m} \sigma_{i} f\left(z_{i}\right)\right)^{f\left(z_{i}\right)=B \sigma_{i}} \underset{\sigma}{\mathbb{E}} \frac{1}{m} \sum_{i=1}^{m} B=\underset{\sigma}{\mathbb{E}} B=B
$$

(same argument would work also, e.g., for piecewise linear functions)

Example

Let $\mathcal{F}=\left\{f_{1}, \ldots, f_{K}\right\}$ with $f_{i}: \mathcal{X} \rightarrow[-B, B]$ for $i=1, \ldots, K$ (finitely many bounded functions). Then

$$
\hat{\mathfrak{R}}_{\mathcal{D}_{m}}(\mathcal{F}) \leq B \sqrt{\frac{2 \log K}{m}}
$$

Proof: textbook

Example

Let $\mathcal{F}=\left\{f=w^{\top} z: \mathbb{R}^{d} \rightarrow \mathbb{R}\right\}$ with $\|w\| \leq B$ all linear functions with bounded slope. If $m>d$, then z_{1}, \ldots, z_{m} are linearly dependent and sup can't fit all possible signs \rightarrow $\hat{\mathfrak{R}}_{\mathcal{D}_{m}}(\mathcal{F})$ will decrease with m.
(we'll prove a more rigorous statement later)

Definition

The Rademacher complexity of \mathcal{F} is defined as

$$
\mathfrak{R}_{m}(\mathcal{F})=\underset{\mathcal{D}_{m} \sim p^{\otimes m}}{\mathbb{E}}\left[\hat{\mathfrak{R}}_{\mathcal{D}_{m}}(\mathcal{F})\right]
$$

Note: \Re_{m} is a distribution-dependent quantity (w.r.t. p).
In some cases, more convenient to compute than the empirical one.

Slightly more general notation than before:

- hypothesis set $\mathcal{H} \subset\{\mathcal{X} \rightarrow \mathbb{R}\}$ (can be real-valued)
- loss $\ell: \mathcal{X} \times \mathcal{Y} \times \mathcal{H} \rightarrow \mathbb{R}$, e.g. $\ell(x, y, h)=\boldsymbol{\operatorname { m a x }}\{0,1-y h(x)\}$,
- $\mathcal{R}(h)=\mathbb{E}_{(x, y) \sim p} \ell(x, y, h), \quad \hat{\mathcal{R}}(h)=\frac{1}{m} \sum_{i=1}^{m} \ell\left(x_{i}, y_{i}, h\right)$

Slightly more general notation than before:

- hypothesis set $\mathcal{H} \subset\{\mathcal{X} \rightarrow \mathbb{R}\}$ (can be real-valued)
- loss $\ell: \mathcal{X} \times \mathcal{Y} \times \mathcal{H} \rightarrow \mathbb{R}$, e.g. $\ell(x, y, h)=\max \{0,1-y h(x)\}$,
- $\mathcal{R}(h)=\mathbb{E}_{(x, y) \sim p} \ell(x, y, h), \quad \hat{\mathcal{R}}(h)=\frac{1}{m} \sum_{i=1}^{m} \ell\left(x_{i}, y_{i}, h\right)$

Theorem (Rademacher-based generalization bound)

Let $\ell(x, y, h) \leq c$ be a bounded loss function and set

$$
\mathcal{F}=\{\ell \circ h: h \in \mathcal{H}\} \quad=\{\ell(x, y, h(x)): h \in \mathcal{H}\} \subset\{f: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}\}
$$

Then, with prob. at least $1-\delta$ over $\mathcal{D}_{m} \stackrel{i . i . d .}{\sim} p$, it holds for all $h \in \mathcal{H}$:

$$
\mathcal{R}(h) \leq \hat{\mathcal{R}}(h)+2 \mathfrak{R}_{m}(\mathcal{F})+c \sqrt{\frac{\log (1 / \delta)}{2 m}} .
$$

Also, with prob. at least $1-\delta$, it holds for all $h \in \mathcal{H}$:

$$
\mathcal{R}(h) \leq \hat{\mathcal{R}}(h)+2 \hat{\mathfrak{R}}_{\mathcal{D}_{m}}(\mathcal{F})+3 c \sqrt{\frac{2 \log (4 / \delta)}{m}} .
$$

Proof. textbook/notes

Useful properties:

Lemma

For $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ let $\mathcal{F}^{\prime}:=\left\{f+f_{0}: f \in \mathcal{F}\right\}$ be a translated version for some $f_{0}: \mathcal{X} \rightarrow \mathbb{R}$.
Then, for any m,

$$
\hat{\mathfrak{R}}_{\mathcal{D}_{m}}\left(\mathcal{F}^{\prime}\right)=\hat{\mathfrak{R}}_{\mathcal{D}_{m}}(\mathcal{F})
$$

Lemma

For $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ let $\mathcal{F}^{\prime}:=\{\lambda f: f \in \mathcal{F}\}$ be scaled by a constant $\lambda \in \mathbb{R}$. Then, for any m,

$$
\hat{\mathfrak{R}}_{\mathcal{D}_{m}}\left(\mathcal{F}^{\prime}\right)=\lambda \hat{\mathfrak{R}}_{\mathcal{D}_{m}}(\mathcal{F})
$$

Lemma

For $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ let $\mathcal{F}^{\prime}:=\{\phi \circ f: f \in \mathcal{F}\}$. If ϕ is L-Lipschitz continuous, i.e. $\left|\phi(t)-\phi\left(t^{\prime}\right)\right| \leq L\left|t-t^{\prime}\right|$, then for any m,

$$
\hat{\mathfrak{R}}_{\mathcal{D}_{m}}\left(\mathcal{F}^{\prime}\right) \leq L \cdot \hat{\mathfrak{R}}_{\mathcal{D}_{m}}(\mathcal{F})
$$

Lemma

Let \mathcal{Z} be an inner-product space (e.g. \mathbb{R}^{d} with $\langle\cdot, \cdot\rangle$). Let $\mathcal{F}=\{f=\langle w, z\rangle: \mathcal{X} \rightarrow \mathbb{R}\}$ be the set of linear functions with $\|w\| \leq B$. Then, for any $\mathcal{D}_{m}=\left\{z_{1}, \ldots, z_{m}\right\}$,

$$
\hat{\mathfrak{R}}_{\mathcal{D}_{m}}(\mathcal{F}) \leq \frac{B}{m} \sqrt{\sum_{i}\left\|z_{i}\right\|^{2}}
$$

Proof: textbook/notes

Lemma

Let $\mathcal{F}=\{f=\langle w, z\rangle: \mathcal{X} \rightarrow \mathbb{R}\}$ be linear functions with $\|w\| \leq B$ and let p be such that $\operatorname{Pr}\{\|z\|<R\}=1$ Then

$$
\mathfrak{R}_{m}(\mathcal{F}) \leq B R \sqrt{\frac{1}{m}}
$$

Proof: $\hat{\mathfrak{R}}_{\mathcal{D}_{m}}(\mathcal{F}) \leq \frac{B}{m} \sqrt{m R^{2}}$ with prob. 1 , so $\mathbb{E}_{\mathcal{D}} \hat{\mathfrak{R}} \leq \frac{B}{m} \sqrt{m R^{2}}$, too.

Reminder: (soft-margin) support vector machine (SVM):

$$
\min _{w} \frac{\lambda}{2}\|w\|^{2}+\frac{1}{m} \sum_{i} \max \left\{0,1-y_{i}\left\langle w, x_{i}\right\rangle\right\}
$$

Reminder: (soft-margin) support vector machine (SVM):

$$
\min _{w} \frac{\lambda}{2}\|w\|^{2}+\frac{1}{m} \sum_{i} \max \left\{0,1-y_{i}\left\langle w, x_{i}\right\rangle\right\}
$$

Example: SVM "radius/margin" bound

Let $\ell(x, y ; w):=\max \{0,1-y\langle w, x\rangle\}$ be the hinge loss. Let p be a distribution on $\mathbb{R}^{d} \times \mathcal{Y}$ such that $\operatorname{Pr}\{\|x\| \leq R\}=1$ and let $\mathcal{H}=\left\{h(x)=\langle w, x\rangle: w \in \mathbb{R}^{d} \wedge\|w\| \leq B\right\}$.
Then, with prob. at least $1-\delta$ over $\mathcal{D}_{m} \stackrel{i . i . d .}{\sim} p$ the following inequality holds for all $w \in \mathcal{H}$:

$$
\underset{(x, y) \sim p}{\mathbb{E} \llbracket \operatorname{sign}}\langle w, x\rangle \neq y \rrbracket \leq \frac{1}{m} \sum_{i=1}^{m} \max \left\{0,1-y^{i}\left\langle w, x^{i}\right\rangle\right\}+\frac{2 B R}{\sqrt{m}}+\sqrt{\frac{\log \frac{1}{\delta}}{2 m}}
$$

Properties:

- complexity terms decrease with rate $O\left(\sqrt{\frac{1}{m}}\right)$
- short $\|w\|$ is better than long $\|w\|$
- dimensionality of x does not show up, no curse of dimensionality!

Proof sketch:

- $\|x\| \leq R$ (with probability 1)
- "ramp loss": $\ell(x, y, h)=\min \{\max \{0,1-y h(x)\}, 1\} \in[0,1]$
- $\mathcal{H}=\{h(x)=\langle w, x\rangle:\|w\| \leq B\}, \quad \mathcal{F}=\{\ell \circ h, h \in \mathcal{H}\}$

With prob. $1-\delta: \quad \forall h \in \mathcal{H}: \mathcal{R}(h) \leq \hat{\mathcal{R}}(h)+2 \mathfrak{R}_{m}(\mathcal{F})+\sqrt{\frac{\log (1 / \delta)}{2 m}}$

- ℓ is 1-Lipschitz, i.e. for $\mathcal{F}=\{\ell \circ h: h \in \mathcal{H}\}$:

$$
\Re_{m}(\mathcal{F}) \stackrel{\text { 1-Lip. }}{\leq} \Re_{m}(\mathcal{H}) \stackrel{\text { Lemma }}{\leq} B R \sqrt{\frac{1}{m}}
$$

- ℓ is upper bounds to $0 / 1$ error and lower bound to hinge loss

$$
\operatorname{Pr}\{h(x) \neq y\} \leq \mathcal{R}(h) \quad \hat{\mathcal{R}}(h) \leq \frac{1}{m} \sum_{i=1}^{m} \boldsymbol{\operatorname { m a x }}\left\{0,1-y_{i} h\left(x_{i}\right)\right\}
$$

With prob. $1-\delta$ for every $h=\langle w, x\rangle \in \mathcal{H}$:

$$
\operatorname{Pr}\{\operatorname{sign}\langle w, x\rangle \neq y\} \leq \frac{1}{m} \sum_{i=1}^{m} \max \left\{0,1-y_{i}\left\langle w, x_{i}\right\rangle\right\}+\frac{2 R B}{\sqrt{m}}+\sqrt{\frac{\log (1 / \delta)}{2 m}}
$$

Theorem (Connections to other complexity measures)
Let $\mathcal{H}=\{h: \mathcal{X} \rightarrow\{ \pm 1\}\}$ be a hypothesis class. Then

$$
\begin{aligned}
& \hat{\Re}_{m}(\mathcal{H}) \leq \sqrt{\frac{2 \log |\mathcal{H}|}{m}} \quad \text { if }|\mathcal{H}| \text { is finite, } \\
& \hat{\Re}_{m}(\mathcal{H}) \leq \sqrt{\frac{2 \log \Pi_{\mathcal{H}}(m)}{m}} \quad \text { where } \Pi_{\mathcal{H}}(m) \text { is the growth function, } \\
& \hat{\mathfrak{R}}_{m}(\mathcal{H}) \leq \sqrt{\frac{2 d \log m}{m}} \quad \text { where } d=\operatorname{VCdim}(\mathcal{H}) .
\end{aligned}
$$

Theorem (Connections to covering numbers)

Let $\mathcal{H} \subset\{\mathcal{X} \rightarrow[-1,1]\}$ and $\mathcal{D} \stackrel{\text { i.i.d. }}{\sim} p(x, y)$ with $|\mathcal{D}|=m$. Then

$$
\hat{\mathfrak{R}}_{m}(\mathcal{H}) \leq \inf _{\alpha}\left[\alpha+\sqrt{\frac{\mathcal{N}\left(\alpha,\left.\mathcal{H}\right|_{\mathcal{D}},\|\cdot\|_{L_{1}}\right)}{m}}\right]
$$

where \mathcal{N} are covering numbers of the set of values that \mathcal{H} assigns to \mathcal{D}.

Beyond Complexity Measures

Algorithm-dependent bounds

Generalization bounds so far: with probability at least $1-\delta$:

$$
\forall f \in \mathcal{H}: \quad \mathcal{R}(f) \leq \hat{\mathcal{R}}(f)+\text { "something" }
$$

Observation:

- holds simultaneous for all hypotheses in \mathcal{H}, we can pick any we like
but: in practice, we have some algorithm that choses the hypothesis and we really only need the result for that

Algorithm-dependent bounds

Generalization bounds so far: with probability at least $1-\delta$:

$$
\forall f \in \mathcal{H}: \quad \mathcal{R}(f) \leq \hat{\mathcal{R}}(f)+\text { "something" }
$$

Observation:

- holds simultaneous for all hypotheses in \mathcal{H}, we can pick any we like but: in practice, we have some algorithm that choses the hypothesis and we really only need the result for that

Goal: algorithm-dependent bounds

Instead of

- "For which hypothesis sets does learning not overfit?"
ask
- "Which learning algorithms do not overfit?"
- hypothesis set \mathcal{H}, \quad write loss function in form $L(x, y, h)=\ell(y, h(x))$

Definition (Learning algorithm)

A learning algorithm, A, is a function that takes as input a finite subset, $\mathcal{D}_{m} \subset \mathcal{Z}$, and outputs a hypothesis $A\left[\mathcal{D}_{m}\right] \in \mathcal{H}$.

- hypothesis set \mathcal{H}, \quad write loss function in form $L(x, y, h)=\ell(y, h(x))$

Definition (Learning algorithm)

A learning algorithm, A, is a function that takes as input a finite subset, $\mathcal{D}_{m} \subset \mathcal{Z}$, and outputs a hypothesis $A\left[\mathcal{D}_{m}\right] \in \mathcal{H}$.

Definition (Uniform stability)

For a training set, $\mathcal{D}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}$, we define the training set with the i-th element removed

$$
\mathcal{D}^{\backslash i}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{i-1}, y_{i-1}\right),\left(x_{i+1}, y_{i+1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}
$$

A learning algorithm, A, has uniform stability β with respect to the loss ℓ if the following holds,

$$
\forall \mathcal{D}_{m} \subset \mathcal{X} \times \mathcal{Y} \forall i \in\{1,2, \ldots, m\} \quad\left\|L(\cdot, \cdot, A[\mathcal{D}])-L\left(\cdot, \cdot, A\left[\mathcal{D}^{\backslash i}\right]\right)\right\|_{\infty} \leq \beta
$$

A small change to the training does not affect on the quality of the learned function much ${ }_{3 i}$

Theorem (Stable algorithms generalize well [Bousquet et al., 2002])
Let A be a β-uniformly stable learning algorithm. For a training set \mathcal{D}_{m} that consists of m i.i.d. samples, denote by $f=A\left[\mathcal{D}_{m}\right]$ be the output of A on \mathcal{D}_{m}. Let $\ell(y, \bar{y})$ be bounded by M.

Then, for any $\delta>0$, with probability at least $1-\delta$,

$$
\mathcal{R}(f) \leq \hat{\mathcal{R}}(f)+2 \beta+(4 m \beta+M) \sqrt{\frac{\log (1 / \delta)}{2 m}}
$$

Note: for the bound to be useful, the stability β should decrease faster than $\sqrt{\frac{1}{m}}$ (but preferably least like $\frac{1}{m}$)

Reminder: stochastic gradient descent (SGD): minimize a function

$$
f(\theta)=\frac{1}{m} \sum_{i=1}^{m} f\left(x_{i}, y_{i} ; \theta\right)
$$

Theorem (Stability of Stochastic Gradient Descent [Hardt et al., 2016])

Let $f(x, y ; \cdot)$ be γ-smooth, convex and L-Lipschitz for every (x, y). Suppose that we run SGD with step sizes $\alpha_{t} \leq 2 / \gamma$ for T steps. Then, SGD satisfies uniform stability with

$$
\beta \leq \frac{2 L^{2}}{m} \sum_{t=1}^{T} \alpha_{t}
$$

Let $f(x, y ; \cdot)$ be γ-smooth and L-Lipschitz, but not necessarily convex. Assume we run SGD with monotonically non-increasing step sizes $\alpha_{t} \leq c / t$ for some c. Then, SGD satisfies uniform stability with

$$
\beta \leq \frac{1+\frac{1}{\gamma c}}{m-1}\left(2 c L^{2}\right)^{\frac{1}{\gamma c+1}} T^{\frac{\gamma c}{\gamma c+1}} .
$$

The Power of Compression

Reminder:

Perceptron - Training

input training set $\mathcal{D} \subset \mathbb{R}^{d} \times\{-1,+1\}$
initialize $w=(0, \ldots, 0) \in \mathbb{R}^{d}$.
repeat
for all $(x, y) \in \mathcal{D}$: do
compute $a:=\langle w, x\rangle \quad$ ('activation')
if $y a \leq 0$ then
$w \leftarrow w+y x$
end if
end for
until w wasn't updated for a complete pass over \mathcal{D}
Let's assume \mathcal{D} is very large, so we don't need multiple passes.
Properties:

- sequential training, one pass over data
- only those examples matter, where perceptron made a mistake (only those affect w)

Towards Sample Compression Bounds

- Take training set as a sequence:

$$
T=\left(\left(x^{1}, y^{1}\right),\left(x^{2}, y^{2}\right), \ldots,\left(x^{n}, y^{n}\right)\right)
$$

- algorithm A processes T in order, producting output $f:=A(T)$
- What if only a subset of examples influence the algorithm output?
- for increasing subsequence, $I \subset\{1, \ldots, n\}$, with $|I|=l$, set

$$
T_{I}=\left(\left(x^{i_{1}}, y^{i_{1}}\right),\left(x^{i_{2}}, y^{i_{2}}\right), \ldots,\left(x^{i_{l}}, y^{i_{l}}\right)\right)
$$

Definition

I is a compression set for T, if $A(T)=A\left(T_{I}\right)$.
Example: $I=\{$ set of examples where Perceptron made a mistake $\}$

Definition (Compression scheme [Littlestone/Warmuth, 1986])

A learning algorithm A is called compression scheme, if there is a pair of functions: C (called compression function), and L (called reconstruction function), such that:

- C takes as input a finite dataset and outputs a subsequence of indices
- L takes as input a finite dataset and outputs a predictor
- A is the result of applying L to the data selected by C

$$
A=L\left(T_{I}\right) \text { for } I=C(T)
$$

Examples:

- C selects half of the data from T at random
- C run a clustering algorithm on T and returns the cluster centers as I

Examples, where $A=L\left(T_{I}\right)$ equals $L(T)$:

- Perceptron ($I=$ indices of examples where will be updated)
- SVMs ($I=$ set of support vectors)
- k-NN ($I=$ set of examples that support the decision boundaries)

$$
\hat{\mathcal{R}}_{I}(h)=\frac{1}{|I|} \sum_{i \in I} \ell\left(y^{i}, h\left(x^{i}\right)\right) \quad \text { and } \quad \hat{\mathcal{R}}_{\neg I}(h)=\frac{1}{n-|I|} \sum_{i \notin I} \ell\left(y^{i}, h\left(x^{i}\right)\right)
$$

Theorem (Compression Bound [Littlestone/Warmuth, 1986: Graepel 2005])

Let A be a compression scheme with compression function C. Let the loss ℓ be bounded by $[0,1]$. Then, with probability at least $1-\delta$ over the random draw of T, we have that:

If $\hat{\mathcal{R}}_{\neg I}(A(T))=0$:

$$
\mathcal{R}(A(T)) \leq \frac{1}{n-l}\left((l+1) \log n+\log \frac{1}{\delta}\right)
$$

$$
\rightarrow O\left(\frac{1}{n}\right)
$$

For general $\hat{\mathcal{R}}_{\neg I}(A(T))$:

$$
\mathcal{R}(A(T)) \leq \frac{n}{n-l} \hat{\mathcal{R}}_{\neg I}(A(T))+\sqrt{\frac{(l+2) \log n+\log \frac{1}{\delta}}{2(n-l)}} \quad \rightarrow O\left(\frac{1}{\sqrt{n}}\right)
$$

where $I=C(T)$ and $l=|I|$.

