
Statistical Machine Learning
https://cvml.ist.ac.at/courses/SML_W20

Christoph Lampert (with material by Andrea Palazzi and others)

Fall Semester 2020/2021
Lecture 9

1 / 56

https://cvml.ist.ac.at/courses/SML_W20

Overview (tentative)

Date no. Topic
Oct 05 Mon 1 A Hands-On Introduction
Oct 07 Wed 2 Bayesian Decision Theory, Generative Probabilistic Models
Oct 12 Mon 3 Discriminative Probabilistic Models
Oct 14 Wed 4 Maximum Margin Classifiers, Generalized Linear Models
Oct 19 Mon 5 Estimators; Overfitting/Underfitting, Regularization, Model Selection
Oct 21 Wed 6 Bias/Fairness, Domain Adaptation
Oct 26 Mon - no lecture (public holiday)
Oct 28 Wed 7 Learning Theory I, Concentration of Measure
Nov 02 Mon 8 Learning Theory II
Nov 04 Wed 9 Learning Theory III, Deep Learning I
Nov 09 Mon 10 Deep Learning II
Nov 11 Wed 11 Deep Learning III
Nov 16 Mon 12 project presentations
Nov 18 Wed 13 buffer

2 / 56

The Holy Grail of Statistical Machine Learning

Inferring the test loss
from the training loss

Generalization Bound
For every f ∈ H it holds:

E
(x,y)

`(y, f(x))︸ ︷︷ ︸
generalization loss

≤ 1
n

∑
i

`(yi, f(xi))︸ ︷︷ ︸
training loss

+ something

Image: http://typemoon.wikia.com/

3 / 56

The Power of Randomization

4 / 56

PAC-Bayesian Generalization Bounds

The problem of overfitting emerges mainly because we pick only a single classifier, h, and
just by accident it can have R(h)� R̂(h).

Combining the decisions of many classifiers should lower the chances of overfitting.

Definition (Majority-vote)

Let Y = {±1} (only for convenience of notation). Let h1, . . . , hT ∈ H be a set of
hypotheses. We define the uniform majority vote classifier as

hmajority(x) = sign 1
T

T∑
i=1

hi(x)

5 / 56

Definition (Majority-vote)

More generally, for weights αi ∈ [0, 1],
∑
i αi = 1, the α-weighted majority vote classifier

is:

hαmajority(x) = sign
T∑
i=1

αihi(x) = E
i∼α

[hi(x)]

Weighting make a convenient framework:
• we can use a base set of many (even countably infinite) classifier
• we assign non-zero weights to good classifiers, e.g. based on training data
• classical setting is included: set αi = δi=j , then hαmajority = hj

Unfortunately, majority vote classifiers are not easy to categorize:
• classical bounds hold equally for any h ∈ H
• if hαmajority ∈ H, bound no better than for others
• if hαmajority 6∈ H, no bound at all

Trick: analyze stochastic classifiers

6 / 56

Definition (Majority-vote)

More generally, for weights αi ∈ [0, 1],
∑
i αi = 1, the α-weighted majority vote classifier

is:

hαmajority(x) = sign
T∑
i=1

αihi(x) = E
i∼α

[hi(x)]

Weighting make a convenient framework:
• we can use a base set of many (even countably infinite) classifier
• we assign non-zero weights to good classifiers, e.g. based on training data
• classical setting is included: set αi = δi=j , then hαmajority = hj

Unfortunately, majority vote classifiers are not easy to categorize:
• classical bounds hold equally for any h ∈ H
• if hαmajority ∈ H, bound no better than for others
• if hαmajority 6∈ H, no bound at all

Trick: analyze stochastic classifiers 6 / 56

Stochastic Classifiers

Standard scenario:
• X : input set, Y: output set, p probability distribution over X × Y
• H ⊂ {X → Y}: hypothesis set, `: loss function
• D = {(x1, y1) . . . , (xn, yn)} i.i.d.∼ p(x, y): training set

New:
• Q probability distribution over H

Definition (Gibbs classifier)

For a distribution Q over H ⊂ {h : X → Y}, the Gibbs classifier, hQ, is defined by the
procedure:
• input: x ∈ X
• sample h ∼ Q
• output: h(x)

The Gibbs classifier is a stochastic classifier, its output is a random variable (wrt Q).

7 / 56

Stochastic Classifiers

Standard scenario:
• X : input set, Y: output set, p probability distribution over X × Y
• H ⊂ {X → Y}: hypothesis set, `: loss function
• D = {(x1, y1) . . . , (xn, yn)} i.i.d.∼ p(x, y): training set

New:
• Q probability distribution over H

Definition (Gibbs classifier)

For a distribution Q over H ⊂ {h : X → Y}, the Gibbs classifier, hQ, is defined by the
procedure:
• input: x ∈ X
• sample h ∼ Q
• output: h(x)

The Gibbs classifier is a stochastic classifier, its output is a random variable (wrt Q).
7 / 56

Stochastic Classifiers

Definition (Gibbs classifier)

For a distribution Q over H ⊂ {h : X → Y}, the Gibbs classifier, hQ, is defined by the
procedure:
• input: x ∈ X
• sample h ∼ Q
• output: h(x)

Because the classifier output is random, so are the risks:

R(hQ) = E
(x,y)∼p

`(y, hQ(x)) R̂(hQ) =
n∑
i=1

`(yi, hQ(xi))

We can study their expected value:

R(Q) = E
h∼Q
R(h) = E

h∼Q
E

(x,y)∼p
`(y, h(x)) R̂(Q) = E

h∼Q

n∑
i=1

`(yi, h(xi))

8 / 56

Learning

• X : input set, Y: output set, p probability distribution over X × Y
• H ⊂ {X → Y}: hypothesis set, `: loss function

What’s the analog of deterministic learning?
Given a training set, D = {(x1, y1) . . . , (xn, yn)} i.i.d.∼ p(x, y), identify a distribution Q
(arbitrary, or from a parametric family), such that R(Q) is as small as possible.

What would a generalization bound look like?

R(Q) ≤ R̂(Q) + "something"

9 / 56

Gibbs classifier vs. majority vote

Majority vote classifier: (now calling weights Q instead of α)
• evaluate all classifiers, h(x) for h ∈ H
• combine their outputs according to their weights, Eh∼Q h(x)
• make one decision based on the result, signEh∼Q h(x)
• evaluate the loss of this decision, `(y, signEh∼Q h(x))

Gibbs classifier:
• evaluate all classifiers, h(x) for h ∈ H
• evaluate the loss of all their decisions, `(y, h(x)) for h ∈ H
• combine their losses according to their weights, Eh∼Q `(y, h(x))

How are the two situations related?

10 / 56

Lemma

Rmajority(Q) ≤ 2RGibbs(Q)

Observation:

hQmajority(x) = sign E
h∼Q

h(x) =

+1 if more than 50% (probability mass) of the in-

dividual classifiers say +1

−1 otherwise

`(y, hmajority(x)) = 1 ⇒ Pr
h∼Q
{`(y, h(x)) = 1} ≥ 0.5

`(y, hmajority(x)) = 1 ⇒ 2 E
h∼Q

[`(y, h(x))] ≥ 1

2 E
h∼Q

[`(y, h(x))] ≥ `(y, hmajority(x))

2RGibbs(Q) ≥ Rmajority(Q)
Generalization bounds for RGibbs also hold for Rmajority (up to factor 2).

11 / 56

Example: Generalization bound for Gibbs classifier

Theorem (PAC-Bayesian generalization bound [McAllester, 1999]; many others (also tighter ones) exist)

Let the loss, `, be a bounded in [0, 1]. Let P be a "prior" distribution of H, chosen
independently of D. With prob 1− δ over D i.i.d.∼ p⊗n, it holds for all "posterior" distributions
Q:

R(Q) ≤ R̂(Q) + 1√
n

(
KL(Q‖P) + 1

8 + log 1
δ

)

Called PAC-Bayesian, because it makes a PAC-style statement (different between finite
sample and expect error), but for Bayesian-style objects (distributions over predictors).

"Prior" and "posterior" are in quotation marks, because
• the prior is only a technical tool and shows up in the KL term. We don’t have to
"believe" in it or anything.
• the posterior is not the result of applying Bayes’ rule.

12 / 56

Towards a proof:

Theorem (Change of Measure Inequality)

For any distributions P,Q over H and function φ : H → R:

E
h∼Q

[φ(h)] ≤ 1
λ

(
KL(Q‖P) + log E

h∼P
eλφ(h))

with KL(Q‖P) = E
h∼Q

[
log Q(h)

P (h)
]

We shift from an expectation over Q to an expectation over P .

Very useful, e.g.
• P will be a typically a simple, data-independent, distribution
• Q will depend on a training set → "trained classifier"

The price we "pay" for this: 1) KL(Q‖P) and 2) EQ(·) turns into logEP exp(·)
13 / 56

Proof sketch, pretending P and Q have densities.
General observation:

E
h∼P

[f(h)] =
∫
H
P (h)f(h)dh =

∫
H
Q(h)P (h)

Q(h)f(h)dh = E
h∼Q

[P (h)
Q(h)f(h)

]

log E
h∼P

[eλφ(h)] = log E
h∼Q

[
eλφ(h)P (h)

Q(h)
]

Jensen’s ineq.
≥ E

h∼Q

[
log eλφ(h)P (h)

Q(h)
]

= E
h∼Q

[
λφ(h)− log Q(h)

P (h)
]

= λ E
h∼Q

[φ(h)]− KL(Q‖P)

rearrange, · 1
λ⇒ E

h∼Q
[φ(h)] ≤ 1

λ

(
log E

h∼P
[eλφ(h)] + KL(Q‖P)

)
14 / 56

Theorem (Change of Measure Inequality)

For any distributions P,Q over H and function φ : H → R:

E
h∼Q

[φ(h)] ≤ 1
λ

(
KL(Q‖P) + log E

h∼P
eλφ(h))

Theorem (PAC-Bayesian generalization bound [McAllester, 1999])

` bounded in [0, 1]. P independent of D.
With prob 1− δ over D i.i.d.∼ p⊗n, it holds for all distributions Q:

R(Q)− R̂(Q) ≤ 1√
n

(
KL(Q‖P) + 1

8 + log 1
δ

)

15 / 56

PAC-Bayesian generalization bound

Proof sketch.

• Change of measure inequality:

E
h∼Q

[φ(h)] ≤ 1
λ

(
KL(Q‖P) + log E

h∼P
eλφ(h)

)
• apply with prior P , posterior Q and φ(h) = R(h)− R̂(h):

R(Q)− R̂(Q) ≤ 1
λ

(
KL(Q‖P) + log E

h∼P
eλ[R(h)−R̂(h)]

)
• P and φ are independent (in contrast to Q), so with prob. ≥ 1− δ

log E
h∼P

eλ[R(h)−R̂(h)] Hoeffing’s lemma, Markov ineq.
≤ λ2n

8 + log(1/δ)

• theorem follows by setting λ = 1√
n
.

16 / 56

Example: reproving a bound for finite hypothesis sets

• H = {h1, . . . , hT } finite
• P (h) = (1

T , . . . ,
1
T) uniform distribution

• Q(h) = δh=hk(h) indicator on one hypothesis (can depend on D)
• KL(Q‖P) =

∑
tQ(t) log Q(t)

P (t) = log 1
P (hk) = log T

The PAC-Bayesian statement for Gibbs classifiers:

For every dist. Q: R(Q) ≤ R̂(Q) + 1√
n

(
KL(Q‖P) + 1

8 + log 1
δ

)
translates into a bound for a ordinary (deterministic) classifiers:

For every h ∈ H: R(h) ≤ R̂(h) + 1√
n

(
log T + 1

8 + log 1
δ

)
which is similar to the previous bound for finite hypotheses sets.

17 / 56

Example: reproving a bound for finite hypothesis sets

• H = {h1, . . . , hT } finite
• P (h) = (1

T , . . . ,
1
T) uniform distribution

• Q(h) = δh=hk(h) indicator on one hypothesis (can depend on D)
• KL(Q‖P) =

∑
tQ(t) log Q(t)

P (t) = log 1
P (hk) = log T

The PAC-Bayesian statement for Gibbs classifiers:

For every dist. Q: R(Q) ≤ R̂(Q) + 1√
n

(
KL(Q‖P) + 1

8 + log 1
δ

)
translates into a bound for a ordinary (deterministic) classifiers:

For every h ∈ H: R(h) ≤ R̂(h) + 1√
n

(
log T + 1

8 + log 1
δ

)
which is similar to the previous bound for finite hypotheses sets.

17 / 56

Example: weighted finite hypothesis set bound

New feature: we can freely chose the prior, it does not have to be uniform.

• H = {h1, . . . , hT } finite (or countable infinite)
• P (h) = (π1, . . . , πT) arbitrary prior distribution (fixed before seeing D)
• Q(h) = δh=hk(h) indicator on one hypothesis (can depend on D)
• KL(Q‖P) =

∑
tQ(t) log Q(t)

P (t) = log 1
πk

For every hk ∈ H:
R(hk) ≤ R̂(hk) + 1√

n

(
log 1

πk
+ 1

8 + log 1
δ

)
Tighter bound, if well-working hypotheses are (a priori) more likely.

Popular example: "Occam razor bound"
• P (h) ∝ "simplicity"(h), e.g. length of an encoding

18 / 56

Example: justifying L2-regularization

• H =
{
hw(x) : X → Y, w ∈ Rd

}
parameterized by w ∈ Rd

• P (w) ∝ e−λ‖w‖2 prior: Gaussian around 0
• Q(w) ∝ e−λ‖w−v‖2 posterior: Gaussian around v
• KL(Q‖P) = λ‖v‖2

R(Q) ≤ R̂(Q) + 1√
n

(
λ‖v‖2 + 1

8 + log 1
δ

)
• most promising classifier: minimize right hand side w.r.t v
→ "regularizer" ‖v‖2 appears naturally in the objective

Caveat: ‖ · ‖2 appears because we put it into the exponents of P and Q. Other distributions
(which are our choice) yield other bounds/regularizers.

"PAC-Bayes is a bound-generation machine."

19 / 56

Example: justifying L2-regularization

• H =
{
hw(x) : X → Y, w ∈ Rd

}
parameterized by w ∈ Rd

• P (w) ∝ e−λ‖w‖2 prior: Gaussian around 0
• Q(w) ∝ e−λ‖w−v‖2 posterior: Gaussian around v
• KL(Q‖P) = λ‖v‖2

R(Q) ≤ R̂(Q) + 1√
n

(
λ‖v‖2 + 1

8 + log 1
δ

)
• most promising classifier: minimize right hand side w.r.t v
→ "regularizer" ‖v‖2 appears naturally in the objective

Caveat: ‖ · ‖2 appears because we put it into the exponents of P and Q. Other distributions
(which are our choice) yield other bounds/regularizers.

"PAC-Bayes is a bound-generation machine."

19 / 56

Example: SVM-style bound

• H =
{
h(x) = sign〈w, x〉, w ∈ Rd

}
linear classifiers

• P (w) ∝ e−‖w‖2 prior: Gaussian around 0
• Q(w) ∝ e−‖w−v‖2 posterior: Gaussian around v

P

Q

prior: uniform w.r.t. direction posterior: not uniform, some preferred directions

20 / 56

Example: SVM-style bound

• H =
{
h(x) = sign〈w, x〉, w ∈ Rd

}
linear classifiers

• P (w) ∝ e−‖w‖2 prior: Gaussian around 0
• Q(w) ∝ e−‖w−v‖2 posterior shifted by v (non-uniform)

R(Q) ≤ R̂(Q) + 1√
n

(
‖v‖2 + 1

8 + log 1
δ

)

When ` is 0-1 loss:
• deterministic classifier sign〈v, x〉 is identical to majority vote of Q
• we can relate R̂(Q) to R̂(v):

R̂(Q) = 1
n

n∑
i=1

Φ̄(yi〈v, xi〉
‖xi‖

) for Φ̄(t) = 1
2
(
1− erf(t√

2
)
)
,

Together:
1
2R(v) ≤ 1

n

n∑
i=1

Φ̄(yi〈v, xi〉
‖xi‖

) + 1√
n
‖v‖2 +

1
8 + log 1

δ√
n

21 / 56

Example: SVM-style bound

• H =
{
h(x) = sign〈w, x〉, w ∈ Rd

}
linear classifiers

• P (w) ∝ e−‖w‖2 prior: Gaussian around 0
• Q(w) ∝ e−‖w−v‖2 posterior shifted by v (non-uniform)

R(Q) ≤ R̂(Q) + 1√
n

(
‖v‖2 + 1

8 + log 1
δ

)
When ` is 0-1 loss:
• deterministic classifier sign〈v, x〉 is identical to majority vote of Q
• we can relate R̂(Q) to R̂(v):

R̂(Q) = 1
n

n∑
i=1

Φ̄(yi〈v, xi〉
‖xi‖

) for Φ̄(t) = 1
2
(
1− erf(t√

2
)
)
,

Together:
1
2R(v) ≤ 1

n

n∑
i=1

Φ̄(yi〈v, xi〉
‖xi‖

) + 1√
n
‖v‖2 +

1
8 + log 1

δ√
n

21 / 56

Example: Transfer bound

• H =
{
hw(x) : X → Y, w ∈ Rd

}
parameterized by w ∈ Rd

• P (w) ∝ e−‖w−v0‖2 prior: Gaussian around v0

• Q(w) ∝ e−‖w−v‖2 posterior: Gaussian around v
• KL(Q‖P) = ‖v − v0‖2

R(Q) ≤ R̂(Q) + 1√
n

(
‖v − v0‖2 + 1

8 + log 1
δ

)

Typical situation for fine-tuning:
• inititalize classifier parameters as v0

• train on D using (stochastic) gradient descent

Good generalization guarantees, if parameters stay close to initialization.

22 / 56

"A PAC-Bayesian Tutorial with A Dropout Bound" [McAllester, 2013]

• "dropout rate" α ∈ [0, 1]
• set of posterior distributions: Qθ,α:

for each weight: wi =
{

0 with prob. α
θi + εi otherwise, for εi ∼ N (0, 1)

• prior distribution: P = Q0,α

• KL(Q‖P) = 1−α
2 ‖θ‖

2

Zero-ing out weights reduces complexity by factor 1−α
2 :

R(Qθ,α) ≤ R̂(Qθ,α) + 1√
n

(1− α
2 ‖θ‖2 + 1

8 + log 1
δ

)
Training: optimize R̂(Qθ,α) + . . . via SGD → "dropout training"

Prediction: majority vote over many stochastic networks
23 / 56

(Deep) Neural Networks

24 / 56

Here’s is the Hype

25 / 56

What is Deep Learning

• Deep Learning is name used since the mid 2000s for machine learning when the
hypothesis set consists of deep neural networks.

• Deep neural networks are artificial neural networks with "many" layers (e.g. ≥ 5).

• Artificial neural networks are predictive models inspired by (early) Neuroscience.

Main idea:
• build a complex function out of
simple units ("neurons")
• arrange neurons in layers
• any layer’s outputs are the next
layer’s input

26 / 56

Neural Networks are NOT new

Observation:
Despite the current hype on the deep learning (or even "artificial intelligence") revolution,
neural networks algorithms are far from a new concept.

This is already the third time that neural networks were popular:

• 1940s–1960s: biological inspired learning is proposed, single-neuron models are trained

• 1980s–1990s: neural networks with a couple of hidden layers are trained by means of
backpropagation, first systems doing useful tasks

• 2006–now: current wave of research, really taking off since 2012

27 / 56

28 / 56

More Fun Examples

https://youtu.be/aygSMgK3BEM https://youtu.be/FwFduRA_L6Q

29 / 56

https://youtu.be/aygSMgK3BEM
https://youtu.be/FwFduRA_L6Q

Neural Networks are NOT new

What’s different now than it was before?
Today, NNs really do work well, often better than other methods.

This is due to a few complementary factors:
• large labeled datasets

I digitalization made data readable for computers
I the Internet made large amounts of data, e.g. images, publicly and freely available
I crowd-sourcing, e.g. Amazon MTurk, allows collecting large amounts of annotation

• more computational power
I graphics cards (GPUs) were originally developed exclusively for computer games
I today, they are heavily used for AI, in particular deep learning

I e.g., this year, ≈50% of NVIDIA revenue came from data centers
• some methodological progress, as well

I ReLU activation function
I batch normalization
I generative adversarial networks
I transformer networks

30 / 56

Dataset Sizes

Figure: Size of publicly available datasets has grown tremendously over time.

31 / 56

Number of Neural Network Layers

Figure: Size and complexity of models (e.g. number of layers) over time.

32 / 56

Computational Resources

Figure: Amount of compute operations used to train machine learning models. Image: OpenAI
33 / 56

Why Size Matters

Figure: Andrew Ng. "What data scientists should know about deep learning".

34 / 56

Neural Networks

Notation:
• inputs: x ∈ X = Rd, outputs: y ∈ Y, e.g. Y = {1, . . . ,K}, or Y = RK .

• neural networks consist of layers,
I first layer has original x as input: input layer,
I all other layers have output of previous layer as input,
I last layer has prediction h(x) as output: output layer,
I layers that are neither input nor output are called hidden layers,

35 / 56

Neural Networks

Each such neural network architecture parametrized a set of functions, h : X → RK

• each layer, l computes an output h(l)(v) from its input v, where

h(l)(v) = σl(Wlv + bl) for l = 1, . . . , L

I Wl is a weight matrix of size (number of layer outputs) × (number of layer inputs),
I bl is a vector of bias terms (as many elements as layer has outputs),
I σl is a non-linear function, called activation function, that is applied componentwise.

I typically σl is the same for all neurons and all layers, except probably the output layer

Overall:
h(x) = h(L)(h(L−1)(. . . h(2)(h(1)(x))))

• h is parametrized by θ = (W1, b1, . . . ,WL, bL)
• the non-linearities, σl, usually have no free parameters to learn (but exceptions exist)

36 / 56

Forward propagation

The process of computing the network output given its input is also called forward
propagation.

Forward propagation just means evaluating the definition of f step-by-step:

h(x) = h(L)(h(L−1)(. . . h(2)(h(1)(x))))

37 / 56

Example
The 4-layer network from the picture encodes the function:

h(x) = b3 +W3σ(b2 +W2σ(b1 +W1x)) (1)

where we have integrate

• σ is the activation function
• x ∈ R6 is the input
• W1 ∈ R4×6 and b1 ∈ R4 are the weight
matrix and bias vector of the first layer
• W2 ∈ R3×4 and b2 ∈ R3 are the weight
matrix and bias vector of the second layer
• W3 ∈ R1×3 are b3 ∈ R are the weight

matrix and bias vector of the third layer

Total number of parameters: 24 + 4 + 12 + 3 + 3 + 1 = 47
38 / 56

Activation Functions

Tanh activation

ReLu activation

tanh is a symmetric sigmoid function: tanh(t) = et − e−t

et + e−t
.

• most popular activation function from classic era of neural
networks
• symmetric, differentiable
• costly to implement (several evaluations of trigonometric)
• value and gradient saturate for t→ ±∞

ReLU stands for Rectified Linear Unit, ReLU(t) = max(0, t)
• most popular activation function from deep learning era
• not differentiable, not symmetric, not saturating
• very efficient to implement
• observed to result in networks that are easier to train than,
e.g., with tanh

39 / 56

Activation Functions

leaky ReLU activation

-0.5

0

0.5

1

1.5

2

-4 -3 -2 -1 0 1 2

swish(x)

Swish activation

leaky ReLU is a generalization of ReLU,
LReLU(t) = max(0, t) + αmin(0, t) for small α > 0.
• not differentiable, not symmetric, not saturating
• still very efficient to implement
• avoids problem that ReLU is constant 0 for negative inputs

swish is a "soft" alternative to ReLU: swish(t) = t

1 + e−βt

• recent competitor to ReLU
• differentiable, not symmetric, not monotonic
• often β = 1
• β interpolates between linear (β = 0) and ReLU (β →∞)

... and many more...
40 / 56

Neuron Activation

Why using non-linear activations at all?

Neural network function (ignoring bias vectors):

h(x) = WLσ(. . . σ(W2σ(W1 x))

Without σ, we’d have

h(x) = WLWL−1 . . .W2W1 x = W̃x for W̃ = WLWL−1 · · ·W2W1

so h(x) would simply be a linear function, parametrized in a very wasteful way.

(analogously, if σ is linear or affine itself)

Note: linear activation functions are sometimes used as simplifying assumptions in NN
theory, → "linear networks"

41 / 56

Network architectures

How deep should my network be (i.e. how many layers)?
• Mathematically, two-layer networks are enough to represent any target function.

Theorem (Universal approximation)

For any continuous function, g : X → R, and any ε > 0, there is a two-layer neural network,
f , that approximates g up to precision ε in L∞-norm.

• Practically, such networks would have a huge number of neurons.
• Deeper network allow building complex functions with overall fewer neurons.
• But: deeper network take longer to evaluate

How wide should my network be (i.e. how many neurons in each layer)?
• Wider networks have higher capacity, they can represent more functions.
• Wider networks are easier to train.
• But: wider networks need more memory and computation

"As deep and wide as the available resources allow."
42 / 56

Training (Deep) Neural Networks

43 / 56

Training (Deep) Neural Networks

Training a deep network for classification typically looks like training a generalized linear
model in which the feature map that is also parameterized and learned:

Generalized Linear Model Neural Network
fθ(x) = Wφ(x) fθ(x) = WLφ(x) with φ(x) = σ(WL−1σ(. . . σ(W1x))))

θ = W θ = (W1, . . . ,WL)

Parameters are learned by (surrogate) risk minimization: min
θ

1
n

n∑
i=1
L(yi, fθ(xi))

• binary classification L(yi, fθ(xi)) = − log(1 + e−yifθ(xi)) "log-loss"

• multi-class classification L(yi, fθ(xi)) = − log efθ(x)[y]∑K

k=1 e
fθ(x)[k]

"cross-entropy" /
"soft-max" loss

• regression L(yi, fθ(xi)) = (yi − fθ(xi)2 "squared loss"

In contrast to linear models, the resulting optimization problems are non-convex!

44 / 56

Training (Deep) Neural Networks

Training a deep network for classification typically looks like training a generalized linear
model in which the feature map that is also parameterized and learned:

Generalized Linear Model Neural Network
fθ(x) = Wφ(x) fθ(x) = WLφ(x) with φ(x) = σ(WL−1σ(. . . σ(W1x))))

θ = W θ = (W1, . . . ,WL)

Parameters are learned by (surrogate) risk minimization: min
θ

1
n

n∑
i=1
L(yi, fθ(xi))

• binary classification L(yi, fθ(xi)) = − log(1 + e−yifθ(xi)) "log-loss"

• multi-class classification L(yi, fθ(xi)) = − log efθ(x)[y]∑K

k=1 e
fθ(x)[k]

"cross-entropy" /
"soft-max" loss

• regression L(yi, fθ(xi)) = (yi − fθ(xi)2 "squared loss"

In contrast to linear models, the resulting optimization problems are non-convex!
44 / 56

(Non-convex) Numeric Optimization

45 / 56

Numeric Optimization

Numeric optimization of a differentiable function, F , is a rather well understood field.
E.g., the gradient descent method will usually converge to a locally optimal solution!
(Steepest) Gradient Descent Minimization

input α > 0, step size (=learning rate), ε > 0, tolerance (for stopping criterion)
1: initialize θ
2: repeat
3: v ← ∇θ F (θ)
4: θ ← θ − αv
5: until ‖v‖ < ε
output θ ∈ Rd learned parameter vector

Many variants, to increase generality or efficiency. Some we’ll discuss later today:
• stochastic gradient descent
• non-differentiable objectives
• changing stepsize over time (manually or automatically)
• faster convergence through momentum

46 / 56

Gradient Descent

Gradient descent searches a minimum of
a differentiable function by iterative steps
in the opposite direction of the gradient
of the function.

Gradient descent on a series of level sets
47 / 56

Gradient Descent

If the objective function is convex, e.g. linear logistic regression, gradient descent converges
to a global minimum (in fact, it still converges to a local minimum, but all local minima are
actual global minima)

For neural networks, the objective function is non-convex, so gradient descent might only
find a local minimum.

Convex Function Non-Convex Function
48 / 56

Stochastic Optimization

In ML, the function we want to minimize is often a sum over many training examples:

min
θ∈Rd

F (θ) for F (θ) = 1
n

n∑
i=1
L(yi, fθ(xi))

Every computation of the gradient of F needs at least like O(nd) operations:
• d is the dimensionality of the parameters
• n is the number of training examples.

Both d and n can be big (millions). How to speed this up?
• we’ll not get rid of O(d), if we want to change θ ∈ Rd,
• but we can get rid of the scaling with O(n) for each update!

49 / 56

Stochastic Optimization

F (θ) = 1
n

∑n

i=1
fi(θ), for differentiable functions f1, . . . , fn.

Stochastic Gradient Descent (SGD)

input step sizes α1, α2, . . .
input number of iterations, T

1: initialize θ0
2: for t = 1, . . . , T do
3: i← random index in 1, 2, . . . , n
4: v ← ∇fi(θt−1)
5: θt ← θt−1 − αtv
6: end for
output θT , or average 1

T−T0

∑T
t=T0 θt

• Time for each iteration is independent of n

• Gradient is "wrong" is each step, but correct
in expectation.

• Objective does not decrease in every step,
• In practice, one typically does not pick a

random i in each step, but creates a random
permutation of indices and goes through it
sequentially.

• Each pass through the training set is called
an epoch.

50 / 56

Stochastic Optimization

F (θ) = 1
n

∑n

i=1
fi(θ), for differentiable functions f1, . . . , fn.

Minibatch SGD

input step sizes α1, α2, . . .
input number of iterations, T
input batchsize B

1: initialize θ0
2: for t = 1, . . . , T do
3: i1, . . . , iB ← B random indices
4: v ← 1

B

∑B
j=1∇fij (θt−1)

5: θt ← θt−1 − αtv
6: end for
output θT , or average 1

T−T0

∑T
t=T0 θt

• Time for each iteration is proportional to B

• Variance of gradient estimate is reduced by 1
B

• Optimal batchsize is problem dependent

• The computation of v can be performed in a
parallel/distributed way.

51 / 56

Advanced Optimizers

In practice, one rarely uses the procedure described above (so called vanilla SGD).

Rather, additional tricks are added, resulting in a number of popular optimizers,e.g.
• momentum
• non-uniform step size: AdaGrad, RMSProp, Adam
• both

Not popular: second order optimization e.g. Newton

52 / 56

Optimization with Momentum

In vanilla gradient descent, the update is a negative multiple of the current gradient:

vt ← αt∇fi(θt−1)

(Stochastic) Gradient Descent with
Momentum
In gradient descent with momentum, part of
the previous update direction is preserved for
the next step:

vt ← ηvt−1 +∇fi(θt−1)

η is a decay factor, e.g. η = 0.9

Main idea: directions that appear consistently in updates get amplified, inconsistent
directions do not. This can lead to substantial speedups, especially if the objective has
"narrow valleys".

53 / 56

	Gradient Descent

