Statistical Machine Learning

https://cvml.ist.ac.at/courses/SML_W20

Christoph Lampert (with material by Andrea Palazzi and others)

| ANIY N AUSTRIA

Institute of Science and Technology

Fall Semester 2020/2021
Lecture 9

1/56


https://cvml.ist.ac.at/courses/SML_W20

Date no. | Topic

Oct 05 | Mon | 1 | A Hands-On Introduction

Oct 07 | Wed | 2 | Bayesian Decision Theory, Generative Probabilistic Models
Oct 12 | Mon | 3 | Discriminative Probabilistic Models

Oct 14 | Wed | 4 | Maximum Margin Classifiers, Generalized Linear Models
Oct 19 | Mon | 5 | Estimators; Overfitting/Underfitting, Regularization, Model Selection
Oct 21 | Wed | 6 | Bias/Fairness, Domain Adaptation

Oct 26 | Mon | - | no lecture (public holiday)

Oct 28 | Wed | 7 | Learning Theory I, Concentration of Measure

Nov 02 | Mon | 8 | Learning Theory Il

Nov 04 | Wed | 9 | Learning Theory Ill, Deep Learning |

Nov 09 | Mon | 10 | Deep Learning Il

Nov 11 | Wed | 11 | Deep Learning Ill

Nov 16 | Mon | 12 | project presentations

Nov 18 | Wed | 13 | buffer

2/56



The Holy Grail of Statistical Machine Learning

D ———— —

Inferring the test loss
from the training loss

Generalization Bound
For every f € H it holds:

1 .
o ly. f(x) < —> Lyif(z)) + something
Z,Y .
N p 7
generalization loss training loss




The Power of Randomization

4/56



PAC-Bayesian Generalization Bounds

The problem of overfitting emerges mainly because we pick only a single classifier, h, and
just by accident it can have R(h) > R(h).

Combining the decisions of many classifiers should lower the chances of overfitting.

Definition (Majority-vote)

Let ¥ = {£1} (only for convenience of notation). Let hi,...,hr € H be a set of
hypotheses. We define the uniform majority vote classifier as

I
hmajority(x) = Sign T Z h; (.CC)
=1

5/56



Definition (Majority-vote)

More generally, for weights a; € [0,1], >, a; = 1, the a-weighted majority vote classifier
is:

h%aJorlty - Slgnzal i =E [h ( )]

i~

Weighting make a convenient framework:
we can use a base set of many (even countably infinite) classifier
we assign non-zero weights to good classifiers, e.g. based on training data

classical setting is included: set a; = d;—j, then hg i, = N

6 /56



Definition (Majority-vote)

More generally, for weights a; € [0,1], >, a; = 1, the a-weighted majority vote classifier
is:

h%aJorlty - Slgnzal i =E [h ( )]

i~

Weighting make a convenient framework:
we can use a base set of many (even countably infinite) classifier
we assign non-zero weights to good classifiers, e.g. based on training data

classical setting is included: set a; = d;—j, then hg i, = N

Unfortunately, majority vote classifiers are not easy to categorize:
classical bounds hold equally for any h € ‘H
if h& € H, bound no better than for others
if ho ¢ H, no bound at all

majority

majority

Trick: analyze stochastic classifiers 6,56



Stochastic Classifiers

Standard scenario:
X input set, Y: output set, p probability distribution over X x )
H C {X — Y}: hypothesis set, ¢: loss function

D={(zYy")..., (=", y")} g p(z,y): training set

7/56



Stochastic Classifiers

Standard scenario:
X input set, Y: output set, p probability distribution over X x )
H C {X — Y}: hypothesis set, ¢: loss function

D={(zYy")..., (=", y")} g p(z,y): training set

New:
() probability distribution over H

Definition (Gibbs classifier)

For a distribution @ over H C {h : X — )}, the Gibbs classifier, h¢, is defined by the
procedure:

input: x € X
sample h ~ @
output: h(x)

The Gibbs classifier is a stochastic classifier, its output is a random variable (wrt Q).
7 /56



Stochastic Classifiers

Definition (Gibbs classifier)

For a distribution @ over H C {h : X — )}, the Gibbs classifier, /¢, is defined by the
procedure:

input: x € X
sample h ~ Q)
output: h(x)

Because the classifier output is random, so are the risks:

n

R(hg)= B Uyho@)  Rlhq) =3 Uy ho(x")

)~

G i=1
We can study their expected value:
R(Q) = E R(h)=E E {(y,h RQ)= E S ¢y, h(z’
Q= BRI =B B Uyhix) R@ = B3 h)

8/56



X input set, ): output set, p probability distribution over X x )
H C {X — Y}: hypothesis set, £: loss function

What's the analog of deterministic learning?

Given a training set, D = {(z!,31) ..., (2" y™)} “&" p(z,y), identify a distribution Q
(arbitrary, or from a parametric family), such that R(Q) is as small as possible.

What would a generalization bound look like?

R(Q) < R(Q) + "something"

9/56



Gibbs classifier vs. majority vote

Majority vote classifier: (now calling weights (@ instead of «)
evaluate all classifiers, h(x) for h € H
combine their outputs according to their weights, Ej,.q h(x)
make one decision based on the result, sign Ej.q h(z)
evaluate the loss of this decision, £(y, sign E,q h(x))

Gibbs classifier:
evaluate all classifiers, h(x) for h € H
evaluate the loss of all their decisions, ¢(y, h(z)) for h € H
combine their losses according to their weights, Ej.q ¢(y, h(x))

How are the two situations related?

10 /56



Lemma

Rmajority(Q) < 27zGibbs(Q)

Observation:
if more than 50% (probability mass) of the in-

+ dividual classifiers say +1

hgajority(x) = sign hE h(l‘) =
~Q
—1 otherwise
(Y, hmajority (7)) =1 = hfw’lé{ﬁ(y,h(m)) =1}>05
Uy, hmajorey(@)) =1 = 2 E [y, h())] 2 1
2 h,I\E:Q[E(ya h(‘/E))] > E(ya hmajority(l'))

2,RGibbs(Q) Z Rmajority(Q)

Generalization bounds for Rgipps also hold for Rmajority (up to factor 2).
11 /56



Example: Generalization bound for Gibbs classifier

Theorem (PAC—BayeSian generalization bound [McAllester, 1999]; many others (also tighter ones) exist)

Let the loss, ¢, be a bounded in [0,1]. Let P be a "prior" distribution of H, chosen

independently of D. With prob 1 — § over D HG p®™, it holds for all "posterior" distributions
Q:

R(Q) < R(Q) + \}E(KL(QHP) + 5 +log)

Called PAC-Bayesian, because it makes a PAC-style statement (different between finite
sample and expect error), but for Bayesian-style objects (distributions over predictors).

"Prior" and "posterior" are in quotation marks, because
the prior is only a technical tool and shows up in the KL term. We don't have to
"believe" in it or anything.
the posterior is not the result of applying Bayes' rule.
12 /56



Towards a proof:

Theorem (Change of Measure Inequality)

For any distributions P, Q) over H and function ¢ : H — R:

E T¢(n)] <

Ao (h)
E A(KL(Q||P)+1og E e (M)

Q(h)]
P(h)

with — KL(@|P)= E_ [log

We shift from an expectation over () to an expectation over P.

Very useful, e.g.
P will be a typically a simple, data-independent, distribution
Q will depend on a training set — "trained classifier"

The price we "pay" for this: 1) KL(Q||P) and 2) Eg(-) turns into log Ep exp(-)

13 /56



Proof sketch, pretending P and () have densities.

General observation:

P(h)
E [f()] = / P(h) f(h)dh = / Q(h hEQ [Mf(h)]
P(h)
log h@ [**M)] = log hE [e)“z’(h)@]
Jensen's ineq. o e)«ﬁ(h)@
= % [Log Q(h)]
) Q)
- E (Ao (h) — log B (h)}

= A,E [6(h)] = KL(QIP)

rearrange, % 1 Ab(h)
JE Jo(h)] < 5 (log, E [®)] + KL(Q|IP))

14 /56



Theorem (Change of Measure Inequality)

For any distributions P, Q) over H and function ¢ : H — R:

1
JE [8(1)] < 1 (KL(Q|IP) +log E ™)

Theorem (PAC-Bayesian generalization bound [mcatester, 1999])

¢ bounded in [0,1]. P independent of D.
With prob 1 — & over D "% p&n it holds for all distributions Q:

1

— (KL(QIIP) + 1 +log 1)

R(@) - R(Q) < 5 +log 5

B

15 /56



PAC-Bayesian generalization bound

Proof sketch.

Change of measure inequality:

1
JE 6] < £ (KL(Q|IP) +log E )

apply with prior P, posterior @ and ¢(h) = R(h) — ﬁ(h):
A 1 AIR(B)=R (1)
R(Q) - R(Q) < 5 (KL@QIIP) +1og E e )

P and ¢ are independent (in contrast to @), so with prob. > 1 —¢

)\[R(h)ffl(h)] Hoeffing's Iemm<a Markov ineq. & n 10g(1/5)
8

log E
og E e
theorem follows by setting A = ﬁ

16 / 56



Example: reproving a bound for finite hypothesis sets

H ={hi,...,hp} finite

P(h) = (#,..., =) uniform distribution

Q(h) = dp=n, (h) indicator on one hypothesis (can depend on D)
KL(Q[P) = X, Q(t)log 3 = log 5 = log T

17 /56



Example: reproving a bound for finite hypothesis sets

H ={hi,...,hp} finite

P(h) = (#,..., =) uniform distribution

Q(h) = dp=n, (h) indicator on one hypothesis (can depend on D)
KL(Q[P) = X, Q(t)log 3 = log 5 = log T

The PAC-Bayesian statement for Gibbs classifiers:

For every dist. Q: R(Q) < R(Q) + \/1%<KL(Q||P) + é + log %)

translates into a bound for a ordinary (deterministic) classifiers:

N 1 1
For every h € H: R(h) < R(h) + logT + = + log

1
Vi (legT + g +1ox )
which is similar to the previous bound for finite hypotheses sets.

17 /56



Example: weighted finite hypothesis set bound

New feature: we can freely chose the prior, it does not have to be uniform.

H = {hi,...,hp} finite (or countable infinite)

P(h) = (m1,...,mr) arbitrary prior distribution (fixed before seeing D)
Q(h) = dp=n, (h) indicator on one hypothesis (can depend on D)
KL(Q|IP) = %2¢ Q(t) log 45 = log

For every hy € H:

. 1 11 1
hi) < R(hy) + —=(log — + < +log ~
R(hi) < R( k)—l—\/ﬁ(ong—i-g—Fog&)

Tighter bound, if well-working hypotheses are (a priori) more likely.

Popular example: "Occam razor bound"

P(h) < "simplicity"(h), e.g. length of an encoding

18 / 56



Example: justifying L?-regularization

H = {hy(z) : X - Y, w € R} parameterized by w € R?
P(w) o e vl prior: Gaussian around 0
Q(w) o e~ Mw=vl? posterior: Gaussian around v

KL(Q[P) = Allvlf?

R(Q) < R(Q) + = (Alol]* + § + 1oz )

most promising classifier: minimize right hand side w.r.t v
— "regularizer" ||v||? appears naturally in the objective

19 /56



Example: justifying L?-regularization

Caveat: || -

H = {hy(z) : X - Y, w € R} parameterized by w € R?
P(w) o e vl prior: Gaussian around 0

Q(w) o e~ Mw=vl? posterior: Gaussian around v
KL(Q[P) = Allvlf?

R(Q) < R(Q) + = (Alol]* + § + 1oz )

most promising classifier: minimize right hand side w.r.t v
— "regularizer" ||v||? appears naturally in the objective

| appears because we put it into the exponents of P and Q. Other distributions

(which are our choice) yield other bounds/regularizers.

"PAC-Bayes is a bound-generation machine.”

19 /56



Example: SVM-style bound

H = {h(z) = sign(w, z), w € R} linear classifiers

P(w) o« e lwll® prior: Gaussian around 0
Q(w) x e~ lhwo—vl? posterior: Gaussian around v
A A

prior: uniform w.r.t. direction posterior: not uniform, some preferred directions

20 /56



Example: SVM-style bound

H = {h(z) = sign(w, z), w € R} linear classifiers
P(w) o e~ lIwIP? prior: Gaussian around 0

Q(w) o e~ lw=vl? posterior shifted by v (non-uniform)

R(Q) < R(Q) + \}E(HUHQ + 5 +log )

21 /56



Example: SVM-style bound

H = {h(z) = sign(w, z), w € R} linear classifiers

P(w) o« e lwll® prior: Gaussian around 0
Q(w) o e~ lw=vl? posterior shifted by v (non-uniform)
. 1 , 1 1
R(Q) < R(@Q) + = (Il + § +log 5)

When ¢ is 0-1 loss:

deterministic classifier sign(v, x) is identical to majority vote of @
we can relate R(Q) to R(v):

R(Q) = iié(yiﬁ i >) for (t) = ;(1—erf(\;§)),

i=1

Together:

<y pitvzdy Ly e
. || ZH v

=1

1—|—log%

NG

21 /56



Example: Transfer bound

H = {hy(z) : X = Y, w € R} parameterized by w € R?
P(w) o e~ lw—oll® prior: Gaussian around vy

Q(w) o e~ o=l posterior: Gaussian around v
KL(QIIP) = [lv = vol?

R(@) < RQ) +—=(lv = vl + 5 +log 5)

§H

Typical situation for fine-tuning:
inititalize classifier parameters as v

train on D using (stochastic) gradient descent

Good generalization guarantees, if parameters stay close to initialization.

22 /56



"A PAC-Bayesian Tutorial with A Dropout Bound"' [mcatester, 2013]

"dropout rate" « € [0, 1]
set of posterior distributions: Qg 4:

0 with prob. «

for each weight: w; =
& ! {Gi +¢; otherwise, for ¢; ~ N (0,1)

prior distribution: P = Qo «
KL(Q[P) = 520

- : : l1—a.
Zero-ing out weights reduces complexity by factor ~5=:

R(Qua) < R(Qo) +—=(

Training: optimize 7%(@97,1) + ... via SGD — "dropout training"

11—«
2

1 1
2
1017 + 5 +1og )

Prediction: majority vote over many stochastic networks
23 /56



(Deep) Neural Networks

24 /56



Here's is the Hype

How Drive.ai Is Mastering Autonomou
Driving With Deep Learning

By Evan Ackerman n n n :

Posted 10 Mar 2017 | 21:30 GMT

WHY DEEP LEARNING IS SUDDENLY
CHANGING YOUR LIFE

Deep Learning Will Rai'cé\lly A New Company every

K's Al revolution
Change the Ways We
Interact with Technology e

by Aditya Singh

25 /56



What is Deep Learning

Deep Learning is name used since the mid 2000s for machine learning when the
hypothesis set consists of deep neural networks.

Deep neural networks are artificial neural networks with "many" layers (e.g. > 5).

Artificial neural networks are predictive models inspired by (early) Neuroscience.

hidden layers

Main idea:

output layer

build a complex function out of
simple units ("neurons")

input layer

arrange neurons in layers

any layer's outputs are the next
layer's input

26 /56



Neural Networks are NOT new

Observation:
Despite the current hype on the deep learning (or even "artificial intelligence") revolution,
neural networks algorithms are far from a new concept.

This is already the third time that neural networks were popular:
1940s—1960s: biological inspired learning is proposed, single-neuron models are trained

1980s—1990s: neural networks with a couple of hidden layers are trained by means of
backpropagation, first systems doing useful tasks

2006—now: current wave of research, really taking off since 2012

27 /56



Photo: Cornell University Library

Mark | Perceptron

NEW NAVY DEVICR
LEARNS BY DOING

Psychologist Shows Embryo

of Computer Designed to
Read and Grow Wiser

WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
abla to walk, talk, see, write,
reproduce itself and be  con-
scious of its existence,

Source: New York Times, 7/7/1958



More Fun Examples

o Convolutional Network Demo from 1993
Watch later

The Thinking Machine (Artificial Intelligence in the 1960s)

-

MORE VIDEOS

https://youtu.be/FwFduRA_L6Q

29 /56


https://youtu.be/aygSMgK3BEM
https://youtu.be/FwFduRA_L6Q

Neural Networks are NOT new

What'’s different now than it was before?

Today, NNs really do work well, often better than other methods.

This is due to a few complementary factors:
large labeled datasets
» digitalization made data readable for computers
> the Internet made large amounts of data, e.g. images, publicly and freely available
» crowd-sourcing, e.g. Amazon MTurk, allows collecting large amounts of annotation
more computational power

» graphics cards (GPUs) were originally developed exclusively for computer games
» today, they are heavily used for Al, in particular deep learning
> e.g., this year, ~50% of NVIDIA revenue came from data centers
some methodological progress, as well
» RelU activation function
batch normalization
generative adversarial networks
transformer networks

v VvYyy

30 /56



Dataset Sizes

Instagram dataset

several 3.5 billion images
10005 Mumber 17000 hashtags
of categories . IMAGENET
1.2 millkon
1000 images
Caltech 101
g
101
Caltech-4 B9
0 2003
COIL-20
4 1996.
1
time
simecke 1970 2000 1 oo 200 2020,

single digits

Figure: Size of publicly available datasets has grown tremendously over time.

31 /56



Number of Neural Network Layers

152 layers
A
\
\
\
\
\
\
\
22 layers 19 Iayers
\
\ 6.7

a > l_ N I 8 layers 8 layers shallow

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

Figure: Size and complexity of models (e.g. number of layers) over time.

32 /56



Computational Resources

le+h AlphaGoZero
Petaflop/s-days e
O
le+2 Neural Machine _
Translation g,

;
»®TI7Dota 1vl
’

le+0 ’
VGG
,’ ResNets
1e-2 ‘e
AIeXNei. f’
.,
| 3:4-month doubling
le-4 Deep Belief Nets and
layer-wise pretraining 3
] DON
le-6 -
TD-Gammon v2.1 e
_ ~BILSTM for Speech
- &
1o-8 o7 LeNets
NETtalk - ®RNN for Speech
_--7  ALVINN
1le-10 1--
1le-12 _ -~~~ "2-year doubling (Maore's Law)
le-1r ‘Perce.ntron « First Era  Modern Era &
1960 1970 1980 1990 2000 2010 2020
Figure: Amount of compute operations used to train machine learning models. Image: OpenAl

33 /56



Why Size Matters

Deep learning

Other super-cool
learning algorithms

Performance

Amount of data

Figure: Andrew Ng. "What data scientists should know about deep learning".

34 /56



Neural Networks

hidden layers

input layer

Notation:
inputs: z € X =R?, outputs: y€ ), eg. Y ={1,...,K}, or Y = RE,

neural networks consist of layers,

first layer has original z as input: input layer,

all other layers have output of previous layer as input,

last layer has prediction h(z) as output: output layer,

layers that are neither input nor output are called hidden layers,

v

vV vy

35 /56



Neural Networks

Each such neural network architecture parametrized a set of functions, h : X — R¥

each layer, I computes an output hY) (v) from its input v, where
W) =W +1b) forl=1,...,L
» W, is a weight matrix of size  (number of layer outputs) x (number of layer inputs),

» by is a vector of bias terms  (as many elements as layer has outputs),
» o, is a non-linear function, called activation function, that is applied componentwise.

> typically o; is the same for all neurons and all layers, except probably the output layer

Overall:
h(x) = KO BB (D (2))))

h is parametrized by 6 = (Wq,b1,..., W, br)

the non-linearities, o7, usually have no free parameters to learn (but exceptions exist)

36 /56



Forward propagation

The process of computing the network output given its input is also called forward
propagation.

hidden layers

=0
NS48 A

RNy

Forward propagation just means evaluating the definition of f step-by-step:

he) = KO (WED (AP ()

37 /56



Example

The 4-layer network from the picture encodes the function:
h(.%‘) =bs + WgU(bg aF WQU(bl + Wlm)) (1)

where we have integrate

o is the activation function

x € RO is the input

Wi € R**6 and b; € R* are the weight

matrix and bias vector of the first layer input laye
Wy € R3*4 and by € R? are the weight

matrix and bias vector of the second layer

W3 € RY™3 are b3 € R are the weight
matrix and bias vector of the third layer

Total number of parameters: 24 +4 + 12+ 3+ 3 + 1 = 47

38 /56



Activation Functions

t_ ot
. - , : e —e
tanh is a symmetric sigmoid function: tanh(¢) = P
iy pemin—— et+e
/ most popular activation function from classic era of neural
' networks
ﬁ symmetric, differentiable
~~~~~~~~~~~~~ ks costly to implement (several evaluations of trigonometric)
Tanh activation value and gradient saturate for t — o0
ReLU stands for Rectified Linear Unit, ReLU(t) = max(0, t)
o most popular activation function from deep learning era
§ not differentiable, not symmetric, not saturating

very efficient to implement

“10 7 4 5 10

observed to result in networks that are easier to train than,

RelLu activation _
e.g., with tanh

39 /56



Activation Functions

leaky RelLU is a generalization of RelLU,
/" LReLU(t) = max(0,t) + amin(0,¢) for small a > 0.
- / not differentiable, not symmetric, not saturating
N4 still very efficient to implement
— S T avoids problem that RelLU is constant 0 for negative inputs

leaky ReLU activation

t
swish is a "soft" alternative to ReLU: swish(t) = 1o o7
....... — €

recent competitor to ReLU

differentiable, not symmetric, not monotonic
often 5 =1
B interpolates between linear (5 = 0) and ReLU (8 — o0)

Swish activation

. and many more...
40 /56



Neuron Activation

Why using non-linear activations at all?
Neural network function (ignoring bias vectors):
h(z) = Wro(...0(Wao(W; x))
Without o, we'd have
h(z) =W Wiy .. WoWiz =Wz for W=W,Wr_1---WolW;

so h(z) would simply be a linear function, parametrized in a very wasteful way.

(analogously, if o is linear or affine itself)

Note: linear activation functions are sometimes used as simplifying assumptions in NN
theory, — "linear networks"

41 /56



Network architectures

How deep should my network be (i.e. how many layers)?
Mathematically, two-layer networks are enough to represent any target function.

Theorem (Universal approximation)

For any continuous function, g : X — R, and any € > 0, there is a two-layer neural network,
f, that approximates g up to precision € in L°°-norm.

Practically, such networks would have a huge number of neurons.
Deeper network allow building complex functions with overall fewer neurons.
But: deeper network take longer to evaluate

How wide should my network be (i.e. how many neurons in each layer)?
Wider networks have higher capacity, they can represent more functions.
Wider networks are easier to train.

But: wider networks need more memory and computation

"As deep and wide as the available resources allow."
42 /56



Training (Deep) Neural Networks

43 /56



Training (Deep) Neural Networks

Training a deep network for classification typically looks like training a generalized linear
model in which the feature map that is also parameterized and learned:

Generalized Linear Model Neural Network
fo(z) = Wo(x) Jo(x) = Wio(x) with ¢(z) = o(Wr—10(...0c(W1z))))
0=Ww 0=Wi,...,Wr)

44 /56



Training (Deep) Neural Networks

Training a deep network for classification typically looks like training a generalized linear
model in which the feature map that is also parameterized and learned:

Generalized Linear Model Neural Network
fo(z) = Wo(x) Jo(x) = Wio(x) with ¢(z) = o(Wr—10(...0c(W1z))))
0=Ww 0=Wi,...,Wr)

1 n
Parameters are learned by (surrogate) risk minimization: mein — g L(yi, fo(xi))
n
i=1

binary classification L(yi, fo(xi)) = —log(1 + e ¥fo@))  "og-loss"

1 efo (@) "cross-entropy" /

multi-class classification L(y;, fo(x;)) = — —
(i, fo(ws)) E::;lefﬁzﬂm "soft-max" loss
regression L(yi, fo(xi)) = (yi — fa(xi)?  “squared loss"

In contrast to linear models, the resulting optimization problems are non-convex!
44 /56



(Non-convex) Numeric Optimization

45 /56



Numeric Optimization

Numeric optimization of a differentiable function, F', is a rather well understood field.
E.g., the gradient descent method will usually converge to a locally optimal solution!

(Steepest) Gradient Descent Minimization

input  « > 0, step size (=learning rate), € > 0, tolerance (for stopping criterion)
1: initialize 6
2: repeat

3: v+ Vy F(@)

4 0+ 0—av

until ||| < e

output 0 € R? learned parameter vector

Many variants, to increase generality or efficiency. Some we'll discuss later today:
stochastic gradient descent
non-differentiable objectives
changing stepsize over time (manually or automatically)

faster convergence through momentum ,
46 / 56



Gradient Descent

Gradient descent searches a minimum of
a differentiable function by iterative steps
in the opposite direction of the gradient
of the function.

Gradient descent on a series of level sets
47 /56



Gradient Descent

If the objective function is convex, e.g. linear logistic regression, gradient descent converges
to a global minimum (in fact, it still converges to a local minimum, but all local minima are

actual global minima)

For neural networks, the objective function is non-convex, so gradient descent might only
find a local minimum.

o, 20 -20 6,

Convex Function Non-Convex Function
48 /56



Stochastic Optimization

In ML, the function we want to minimize is often a sum over many training examples:

n

min F(6) for F(Q):%Zﬁ(ymfe(l’z‘))

d
9eR P

Every computation of the gradient of F' needs at least like O(nd) operations:

d is the dimensionality of the parameters

n is the number of training examples.

Both d and n can be big (millions). How to speed this up?
we'll not get rid of O(d), if we want to change 6 € R,
but we can get rid of the scaling with O(n) for each update!

49 /56



Stochastic Optimization

1 n . . .
F(9) = - Zi:l 1:(0), for differentiable functions f,..., fy.
Stochastic Gradient Descent (SGD) Time for each iteration is independent of n
input step sizes a1, ag, . . . Gradient is."wrong" is each step, but correct
input number of iterations, T’ In expectation.
L:flinitialize 6o Objective does not decrease in every step,
2. fort=1,...,7T do | ) cally d -
3: i< random index in 1,2,....n : Zractlge., one ;ypllca 3{) toes nst pic ad
random i in each step, but creates a random
& v VEG) tation of indices and goes through it
5. 0, 0,1 — oy permuta ||T>n of indices and goes through i
6 end for sequentially.
output 07, or average T%TO ZtT:TO 0, Each pass through the training set is called
an epoch.

50 /56



Stochastic Optimization

F(0) = %ZLI fi(0), for differentiable functions fi,..., fn.

Minibatch SGD

input step sizes ag, as, ...
input number of iterations, T’ Time for each iteration is proportional to B
input batchsize B

1: initialize 6, Variance of gradient estimate is reduced by %

2 fort = 1’.' -+, T do o Optimal batchsize is problem dependent

3 i1,...,t5 + B random indices

4 oy % Zle V fi; (0i-1) The computation of v can be performed in a
5. O+ 0;1 — v parallel /distributed way.

6: end for

1 T
output 67, or average T > i=T, Ot

51 /56



Advanced Optimizers

In practice, one rarely uses the procedure described above (so called vanilla SGD).

Rather, additional tricks are added, resulting in a number of popular optimizers,e.g.
momentum
non-uniform step size: AdaGrad, RMSProp, Adam
both

Not popular: second order optimization e.g. Newton

52 /56



Optimization with Momentum

In vanilla gradient descent, the update is a negative multiple of the current gradient:

v <= oV fi(04—1)

(Stochastic) Gradient Descent with S
Momentum / )
/ 4

In gradient descent with momentum, part of /
the previous update direction is preserved for w )/ 7
the next step: / =4

,/'/ e / Path taken by

/ Gradient Descent

U € =L v Vfi(et_l) /,,/'/ ) Ideal Path

7 is a decay factor, e.g. n = 0.9 wl

Main idea: directions that appear consistently in updates get amplified, inconsistent
directions do not. This can lead to substantial speedups, especially if the objective has

"narrow valleys".
53 /56



	Gradient Descent

