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Abstract

Recent research has shown that the use of contextual cues significantly improves per-
formance in sliding window type localization systems. In this work, we propose a method
that incorporates both global and local context information through appropriately defined
kernel functions. In particular, we make use of a weighted combination of kernels defined
over local spatial regions, as well as a global context kernel. The relative importance of
the context contributions is learned automatically, and the resulting discriminant function
is of a form such that localization at test time can be solved efficiently using a branch
and bound optimization scheme. By specifying context directly with a kernel learning
approach, we achieve high localization accuracy with a simple and efficient representa-
tion. This is in contrast to other systems that incorporate context for which expensive
inference needs to be done at test time. We show experimentally on the PASCAL VOC
datasets that the inclusion of context can significantly improve localization performance,
provided the relative contributions of context cues are learned appropriately.

1 Introduction

Sliding window classifiers in their original form attempt to decide the presence or absence of
an object at a specific location using only local information. However, experiments in human
psychophysics, e.g. by Palmer [27], indicate that context is a crucial cue in object detection.
Torralba [34] and Bar [3] show that humans are capable of correctly identifying faces and
objects of very similar or even identical appearance if they occur in their natural context.
Consequently, the incorporation of contextual cues in computer vision tasks has received a
large amount of attention.

There are many different forms of contextual cues that can be used. In the case of still
image classification, recent work has exploited external context, such as EXIF tags [37],
Flickr tags [30], and geo tags [25]. Rather than relying on meta-data, we focus in this work
on the use of visual contextual cues that are present within the image itself. Visual context
has been studied on different levels. As global context, Torralba et al. [35] and Murphy et al.
[26] proposed to represent the full image by its gist, and to include this global representation
as an additional feature in object classifiers Hoiem et al. [16] propose to first infer the 3D
scene geometry from an image in order to help a subsequent object detection step.
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On the other end of the size scale, context has been used on a per-pixel level. Introduc-
ing the concept of Things and Stuff, Adelson [1] shows that context is beneficial to identify
material from otherwise ambiguous local features. Similarly, Shotton et al. [32] use the rela-
tive neighborhoods of pixels to improve object-based segmentation results, an approach that
recently has been extended by Gould et al. [14] to also include the locations of pixels within
a neighborhood. Lazebnik and Raginsky use pixel neighborhoods in a largely unsupervised
fashion to improve per pixel classification [24].

Several approaches for the integration of higher level context rely on a pre-segmentation
of the image. Information about the labels of neighboring then allows better classification of
each segment. Corresponding models have been proposed e.g. Baumgartner et al. [4] for road
detection in aerial images, Singhal et al. [33] for scene classification and [8] for image label-
ing. Kumar and Hebert [18] extended this idea and constructed a two-layer Markov Random
field that is able to balance the pixel-level evidence against the context information from
the neighboring image segments’ class labels. Rabinovich et al. [28] also use the relation
between neighboring segments, but they propose a two-stage procedure that first classifies
each region separately, and then performs a post-processing operation that can change the
region labels based on the observed context. Similar post-processing operations have also
been used in face detection, e.g. by Bergboer et al. [6].

Our own work targets object localization in images, a topic for which context has also
successfully been applied: Kruppa and Schiele use a fixed region surrounding a detection
window to improve the detection of face with very low resolution [17]. Dalal and Triggs
showed that one achieves better results in pedestrian detection if a detection window larger
than the actual person is used [9]. Uijlings et al. evaluate the best size of bounding box to
improve localization performance [38]. An empirical evaluation of several different kinds of
contextual cues is given in [10].

Although the dominant opinion is that the inclusion of context is always helpful, Wolf
and Bileschi [39] argue against this view and show that the relevance of context depends
strongly on the situation at hand. Therefore, it makes sense to not use fixed context mod-
els, but to learn also about the context from data. This has specifically been proposed in
multi-class boosting scenario, e.g. by Fink and Perona [13] and Torralba et al. [36]. Heitz
and Koller [15] construct a probabilistic model that learns which stuff in an image helps in
the identification of things. For multi-class object localization, Lampert and Blaschko [20]
propose to learn a discriminative classifier that takes into account which object class is useful
as context for which other class, and apply it as post-processing operation to the detections
of a context-unaware detection system.

The primary contributions of this work is two-fold. Firstly, we introduce the concept of
global and local context kernels that allow us to combine different context models into a
single discriminative kernel classifiers, learning the importance of each contributions as part
of the training step. Secondly, we show how to integrate the resulting context-aware kernels
into the recently proposed efficient subwindow search framework for object localization [21,
22], thereby allowing extremely efficient evaluation.

2 Global and Local Context Kernels

We formalize our notions of global and local context in the framework of kernel classifiers,
i.e. support vector machines [31]. In particular, we make use of the concept of joint ker-
nels [2]. Joint kernels are positive definite functions operating jointly on both input and
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Figure 1: Illustration of the restriction kernel: (image, box) pairs are compared by restricting
the image to box region and applying a traditional image kernel &; to the resulting subimages.
The kernel value in the top row will be larger than the one in the bottom row, because the
subregions are more similar.

output spaces, denoted X and )/, respectively. A joint kernel, &k : (X x V) x (X x V) — R,
takes two input-output pairs as arguments, and returns a value of similarity between these
pairs. As a concrete example, we take the restriction kernel introduced in [7]. We denote
an image in the space of possible images as x € X', and a bounding box as y € ). The re-
striction kernel is defined by restricting (cropping) each image to its corresponding bounding
box (denoted x|,), and then applying a standard image kernel to the resulting cropped regions
(Figure 1)

Krestr((i5 Y1), (xjv)’j)) = kl(xi|ynxj|y_/ )- (1)

Analogously, we define a local context kernel to be an image kernel on a region around
the object of interest. The spatial extent of this region defines the amount of local context to
use. In order to be invariant to scale change, we define the spatial extent of the contextual re-
gions relative to the bounding box of interest. Specifically, if (/,z,r,b) defines the coordinates
of the left, top, right, and bottom of a bounding box around the object of interest, respectively
(Figure 2(a)), we define the contextual region to be the region between the box (I,¢,r,b) and
the larger rectangle (I — Ow,t — 6h,r+ Ow,b+ Oh) where w = r — [ and h = b —r are width
and height of the bounding box (Figure 2(b)). The scalar 6 parameterizes the size of the
contextual region relative to the size of the bounding box. For 8 =1/ /2, the contextual
region has the same area as the bounding box. We have used this value in the experiments in
Section 5. Using the notation ®(y) to denote the contextual region defined by the parameter
0 for a bounding box y, we define a context kernel analogously to the restriction kernel by
also leveraging an existing image kernel, k;,

Krocar((xi,yi), (x7,57):0) = ki (xilo(y,): %) lo(y,)) )

where we have made the kernel’s dependence on 6 explicit. '
In contrast to local context, we define a global context kernel to be one that incorporates

Note that because the region ©(y) is not a rectangle, but the difference region between two rectangles, not all
kernels defined for images might be applicable for the context region. However, most popular image kernels are
able to handle regions of such shape, in particular the ones based on bag-of-visual-word histograms that we use for
our experiments.
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(a) Parameterization of a bounding box by its left, (b) The spatial extent of a local context kernel is in-
top, right, and bottom coordinates in the image plane. dicated by the shaded region.

Figure 2: The parameterization of a bounding box as the left, top, right, and bottom in the
image plane (a), and the spatial extent of a local context kernel (b).

information from the entire image, but does not depend on the bounding box coordinates:

kglobal((xhyi)a (xjayj)) :kf(xi7xj) 3

for an arbitrarily chosen image kernel k;. Note that this definition incorporates previous
notions of global contextual including gist [26, 35].

In choosing the restriction kernel, context kernels, and global context kernels, we are free
to rely on different image kernels. This is of particular interest in the context of branch-and-
bound optimization (as will be presented in Section 4) where we require efficiently com-
putable bounding functions for the restriction and local context kernels, while there is no
such requirement for the global context kernel.

Given these ingredients, we define a joint kernel function that can perform object local-
ization with global and local context

k( (xiayi)a (xj?yj)) = Blkrestr( (xi’yi)a (xjvyj) ) +ﬁ2klocal( (xivyi)’ (xj7yj) ) 4
+ Bakgtovar ( (xi, i), (xj,¥5) )

Through the weight parameters 8; > 0 we can control the relative importance of the individ-
ual contributions.

3 Learning Procedure

Let {(xi, y,')},-:L_._’m be a sample of training images and bounding boxes indicating the
presence of an object of our current class. From the same images we sample additional
bounding boxes that do not have significant overlap with the y;, forming additional samples
{(xi,i) }i=m+1....n- We combine both sets into a training set of images and bounding boxes,

{(x, yl-,é,-)},-zli_,_’n, where ¢; = +1 if y; specifies the location of an instance of our object
class, and ¢; = —1 otherwise. From the representer theorem [31], it follows that the optimal
maximum margin classifier (SVM) in this setup must have the form
f(x7y):Zaik(x7yaxiayi)+b (5)
i

for some parameters ¢ and b. Substituting the expression (4) for k, we obtain

f(xvy):ZaiZBjkj(xvy7xi1yi)+b (6)
! J
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where the inner summation ranges over the restriction, local, and global context kernels.
Because of the additive structure, it is possible to simultaneously learn optimal SVM param-
eters o and the weight coefficients 8 using multiple kernel learning [23, 29]. Once we have
learned an appropriate function, f, that measures the quality of a bounding box y in an image
x, we obtain a localization function, g : X — ), that predicts bounding boxes from images
by selecting the best possible bounding box as measured by f:

g(x) = argmax, f(x,y). )

In [21], an efficient branch-and-bound technique is proposed to solve (7) for classifiers based
on the restriction kernel. In the next section we discuss to extend this approach in order to
allow efficient object localization with the global and local context kernels.

4 Branch-and-Bound Optimization

Efficient subwindow search (ESS) is a branch and bound framework for object localization
first introduced in [21]. ESS searches the space of possible bounding boxes by keeping a
priority queue that stores sets of possible bounding boxes ordered by an upper bound, 7.
on a given quality function, f. At each stage in the search procedure, the set of bounding
boxes with highest upper bound is dequeued and split into two disjoint subsets. Each of these
are inserted into the priority queue with an upper bound computed over a smaller region of
uncertainty [21, 22]. When an item is dequeued that consists of only one bounding box,
we have converged to the solution. The returned bounding box is optimal over all possible
bounding boxes given two conditions on the upper bound, f:

f(x,Y)> f(x,y) forally€ey, (8)
fxY)=f(xy) ifY={} 9)

for all sets of bounding boxes ¥ C ). The condition in Equation (8) guarantees that f is a
true upper bound, while the condition in Equation (9) ensures global optimality at the time
of convergence, by specifying that the bound must be equal to the true function value in the
event that the set of bounding boxes contains only one item, y.

In order to apply the ESS optimization to the problem of maximizing kernelized func-
tions of the form given in Equation (6), we first reorder the summation and separate the
right hand side into three terms based on their dependence on the restriction kernel, the local
context kernel, and the global context kernel, respectively. As we are only interested in the
argmax, we can discard the bias term, b, that is a constant independent of x and y.

frestr X y ﬁlzalkll x‘V7-xl|),) (10)
Jiocal(x,y;0) = /322 ik, (X o) Xilo(y)) (11)
Sotoba(x,) ﬁ%ZOﬂl kry (x,x;) (12)

If we can provide upper bounds for each of these functions, we can upper bound their sum
by the sum of their upper bounds.

We note first that fgjope in Equation (12) has no dependence on y. We can therefore set
fgl{,bal(xj) = falobar(x,y) for arbitrary y € Y, thereby fulfilling both (8) and (9). Next, we
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observe that, up to a multiplicative constant, Equation (10) is in exactly the form that was
analyzed in [21, 22]. A selection of suitable upper bounds as well as a recipe for constructing
bounds with interval arithmetic was given in that work. Therefore, we only need to provide a
bound for fj,..;. As for the restriction kernel, this bound will dependent on the image kernel
used. In the next section, we discuss the construction of bounds for the concrete example of
local context kernels based on a bag of visual words representation.

4.1 A Bound for Local Context Kernels

We illustrate the construction of a quality bound for kj,.4;, using the visual words kernel dis-
cussed in [21]. In this model, we represent image regions by histograms of vector quantized
local features, and compute the kernel k; (x;,x ,) <hx, 7hx/> where Ay, is the histogram com-
puted from x;. Due to the linearity of the kernel, we can rewrite the resulting expression as a
sum over individual contributions for each local feature point in a query region:

Jiocat(x,y:0) = B2 Y ks, (x|o(y) Xilop) = Y, We (13)
i kEX‘@(y)
where w = 3, Y, Qi - is a vector of positive and negative per-feature weights, and ¢y is

the cluster id of the kth local feature point.

Following [21, 22] we represent sets of boxes Y as intervals over the left, top, right,
and bottom coordinates of the bounding box in the image plane. Using ideas from interval
arithmetic, we propagate the uncertainty in Y through the transformation ®: denoting ¥ =
([1 ,l_J ,18,7), [r, 7, [Q,B]), we specify intervals

o) = ( [L—6w,1—6w]|,[t—6w,i—6h], [r+ 6w, 7+ 6w, [b+6h,b+ 6h] ) (14)

where W=7 — [, h=b —t, w=max(0,r — ) and & = max(0,b — ), such that ©(Y) specifies
the intervals for the external boundary of the local contextual region parameterized by 6.
The region of uncertainty for the interior boundary of the local contextual region is simply
Y itself. In order to compute an upper bound for which condition (8) holds, we overestimate
the number of positive w, that will fall in the region x|@(y>, for y € Y, and underestimate the
number of negative w,,. We do so by defining four rectangular regions in the image plane:
the largest possible rectangle in ®(Y), which we denote ®(Y ),,.; the smallest possible rect-
angle, @(Y)mi,,; the largest possible rectangle in Y, denoted Y,,,y; and finally the smallest
possible rectangle, Y,,;,. For each of these rectangles, we denote the sum of positive weights
of features that fall within these regions in the image plane with a superscript ™, and the
sum of negative weights with a superscript ~. With this notation, we can write a valid upper
bound compactly as:

Note that this construction automatically fulfills the condition (9): if ¥ = {y}, it follows
that @(Y ) pin = O(Y ) ax = O(Y) and Yiin = Ypax = Y such that fipear(x,Y;0) = (O(Y)*+ +
Q)" )— (YT +Y7) = fipcar(x,y). Using integral images, as in [21], we can compute this
upper bound in constant time, in particular independently of the number of elements in Y. We
now have all the necessary ingredients to apply ESS with global and local context kernels.
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4.2 Simultaneous Search Over Multiple Images

For localization within a single image, the global context term does not influence the result
returned by ESS. However, if we simultaneously search over multiple images, we can gain
from increased computational efficiency. The global context term acts as a prior over images,
focusing the search on images that are most likely to contain an object of interest. Unpromis-
ing images will have low upper bounds, and will be less likely to arrive at the head of the
priority queue. Consequently, fewer splits of the search space will be performed for im-
ages with low contextual score, instead focusing the computational effort on more promising
images.

5 Experimental Results

To show the performance of the global and local context kernels, we performed experiments
on the publicly available PASCAL VOC 2006 and VOC 2007 datasets. In all cases, we
represented images by bag of visual word histograms and used linear image kernels for k.,
and kj,eq, and a y2-kernel for kgiobai- Subsequently, we trained a classifier using ground
truth bounding box on the training sets as positive examples, and we randomly sampled
background regions so that the ratio of positive to negative training data was 1:5. We used
the multiple kernel learning algorithm described in [29]. For the detection step, we extended
the publicly available version of ESS to incorporate local and global context kernels.”

As baseline methods, we compare to the case without context, i.e. only the restriction
kernel, and the case where the importance of the different context components is fixed instead
of learned, by setting ; = B, = B3 = % Additionally, we compare to previously reported
state of the art results from [21] (Figure 3).

The PASCAL VOC 2006 [11] and VOC 2007 [12] datasets are amongst the most difficult
datasets currently in use to benchmark object classification and object localization systems.
For our experiments, we extract local SURF descriptors [5] from interest points, random
positions and on the regular grid, and quantize them into a 3000-bin bag of visual word
histogram using a codebook that was created using k-means clustering.

Because we are interested in localization performance only, we follow the evaluation
procedure proposed in [21] instead of one used in the VOC challenges, as those yield a com-
bined measure of classification and localization performance. To evaluate the performance
for any of the 10 object categories (2006) or 20 object categories (2007), we measure the av-
erage precision (AP) score (see [11]) achieved on only the test images that actually contain
the current object class. Table | summarizes the resulting scores in numeric form. Addition-
ally, Figure 3 shows the precision recall curves for the VOC 2006 categories cat and dog that
were also reported in [21].

From the tables one can see that the use of context consistently improves the localization
quality (here and in the following we disregard the 8 categories where all methods have AP
scores below 0.1, because the measure is dominated by random effects in this range). For
19 of the 22 relevant categories, the global and local context kernels with learned weights
achieved better results than the equally weighted version. Compared to the setup without
context, one achieves an improvement in average AP scores from 0.17 to 0.29 when per-
forming localization on VOC 2006 with learned context weights (0.22 for fixed averaging),
and from 0.14 to 0.23 on VOC 2007 (0.17 for fixed averaging). Figure 3 supports this

2Source code will be made available at the time of publication.
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bicycle | bus car cat dog cow horse | m.bike | person | sheep
learned 0.410 0.253 | 0.268 | 0.415 | 0.332 | 0.286 | 0.206 | 0.413 0.049 0.229
fixed 0.429 0.177 | 0.263 | 0.251 | 0.178 | 0.194 | 0.167 | 0.344 0.015 0.182
no context | 0.396 0.100 | 0.145 | 0.259 | 0.170 | 0.118 | 0.165 | 0.276 0.036 0.027
aeroplane | bicycle | bird | boat bottle bus car cat chair | cow
learned 0.114 0.122 | 0.088 | 0.060 | 0.000 0.254 | 0.140 | 0.356 | 0.091 | 0.137
fixed 0.105 0.115 | 0.123 | 0.049 | 0.003 0.252 | 0.150 | 0.231 | 0.091 | 0.119
no context | 0.050 0.064 | 0.069 | 0.036 | 0.026 0.106 | 0.068 | 0.312 | 0.019 | 0.121
d.table dog horse | m.bike | person | p.plant | sheep | sofa | train | tv
learned 0.242 0.321 | 0.273 | 0.344 | 0.026 0.016 | 0.091 | 0.301 | 0.295 | 0.078
fixed 0.030 0.220 | 0.262 | 0.187 | 0.028 0.013 | 0.091 | 0.131 | 0.292 | 0.045
no context | 0.147 0.228 | 0.153 | 0.165 | 0.091 0.022 | 0.091 | 0.160 | 0.193 | 0.030

Table 1: Average precision on PASCAL VOC 2006 (top) and VOC 2007 (bottom) dataset
using local and global context kernel with learned weighted, fixed weights and with no
context (only restriction kernel). We indicate the best result for each category by bold print,
except for AP scores below 0.1, which we do not consider significant, as the AP measure is
very unstable in this regime.

VOC 2006 cat VOC 2006 dog

—Learned weights - 0.415
—Averaged weights - 0.251
—Restriction kernel - 0.259
—Lampert et al., 2008 - 0.340

—Learned weights - 0.332
—Averaged weights - 0.178
—Restriction kernel - 0.170
—Lampert et al., 2008 - 0.307

o
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Figure 3: Precision-Recall curves for categories cat and dog of PASCAL VOC 2006.

observation: localization with the (context-unaware) restriction kernel and with the fixed
averaging context-aware kernel achieve approximately the same performance in this case.
The localization with learned weights achieves clearly higher precision and recall than both.
Its results also improve over the best results reported in the literature so far (Lampert et al.
[21]). Note that this work uses the same restriction kernel that we use as baseline, but with a
different ranking function.

Note that it is really the per-class selection of context weights that has this positive effect.
Averaged over all classes, the coefficients B = (Byestr, Biocat, Betobar) are (0.48 £0.13,0.39
0.10,0.24 £0.21) for VOC 2006 and (0.30+0.16,0.31 +0.19,0.39 + 0.32) for VOC 2007.
This shows that, overall, all kernels are of roughly equal importance. Therefore, it is the
significant variations that occur for the different classes that cause the positive effect on
localization accuracy.

6 Conclusions

In this work, we have proposed a method for the integration of local and global context into
kernel-based classifiers (SVMs) that can learn the importance of different context contribu-
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tions efficiently as part of the training procedure. The local and global kernels framework
combines the advantages of efficient inference with rectangular context regions with the
ability to learn the importance of different context contributions from the training data. Ex-
periments on the PASCAL VOC 2006 and VOC 2007 datasets showed that the ability to
adapt the context influence to the target class at hand is a crucial factor in order to benefit
from the use of context.

The flexibility of local and global kernels makes possible several future extensions. As
it is generally accepted that the use of more training data and the combinations of more
feature types improves the performance of object localization systems, we presume that the
use of more than two context kernels in Equation 4 will improve the performance as well.
Additionally, the spatial extent of informative contextual regions is likely to be class de-
pendent, suggesting that this should be included in the learning procedure. An interesting
aspect would also be the extension to other shapes than just rectangular context, e.g. the use
of superpixel segmentations. Finally, it has recently been shown that structured regression
training can lead to improved detection even for otherwise identical setups [2, 7, 19]. We
plan to make use of this in future work.
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