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Abstract

We present a new method for spectral clustering with
paired data based on kernel canonical correlation analy-
sis, called correlational spectral clustering. Paired data are
common in real world data sources, such as images with
text captions. Traditional spectral clustering algorithms ei-
ther assume that data can be represented by a single simi-
larity measure, or by co-occurrence matrices that are then
used in biclustering. In contrast, the proposed method uses
separate similarity measures for each data representation,
and allows for projection of previously unseen data that are
only observed in one representation (e.g. images but not
text). We show that this algorithm generalizes traditional
spectral clustering algorithms and show consistent empir-
ical improvement over spectral clustering on a variety of
datasets of images with associated text.

1. Introduction
Image categorization is often approached in a supervised

setting. The image categories are selected by hand a priori
and typically involve tens to hundreds of classes [12, 14].
Other approaches involve many human participants label-
ing objects in images, requiring processing with a language
model to identify labels with the same semantic meaning
due to misspellings, polysemy, closely related topics, mul-
tiple languages, etc. [26, 31]. To truly scale with the range
of semantic visual information experienced in a typical col-
lection of images, unsupervised or weakly supervised meth-
ods are required to leverage information sources that do
not require extra human effort to generate. In this work,
we propose to make use of correlations between the visual
content of images and other sources of paired information,
such as image captions or associated spatiotemporal cues
from video sequences, in order to find clusters that are more
closely related to the underlying semantics of the content.

A paired dataset is one in which the data are simulta-
neously represented in two (or more) different spaces. A
common latent aspect relates the representations, which can
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Figure 1. A paired dataset. A latent aspect z relates the observed
values φx(x) and φy(y).

be thought of as embeddings of an underlying object into
the respective feature spaces (Figure 1). Paired datasets are
common in practice due to different methods of measure-
ment, which may have different associated costs (e.g. in-
frared and visual imagery), or the use of different media
such as images, text, and video. We assume here that one
representation, images, are always available, but only some
portion of these images will have associated media. We will
use the images with associated media for training, and will
learn representations that allow for the projection of previ-
ously unobserved images without associated media.

Specifically, we propose a generalization of spectral
clustering based on kernel canonical correlation analysis
that makes use of associated media at training time, but al-
lows for projection of images without the associated media
at test time. This is possible because kernel-CCA simulta-
neously learns linear projections from multiple spaces into a
common latent space. In the kernelization of the algorithm,
solutions are constrained to lie in the span of the projection
of the training data, and projection is achieved by a linear
combination of kernel evaluations between the training and
test data.

Kernel-CCA generalizes Fisher linear discriminant anal-
ysis (LDA), which uses ground truth labels to find discrimi-
nant projections. Therefore, the additional modalities can
be thought of as a weak form of labels. Because many
sources of additional modalities are available, e.g. using
text surrounding images on webpages, correlational spec-
tral clustering allows for more accurate category learning
without requiring expensive manual labels.

The rest of the paper is organized as follows: in Sec-
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tion 2 we discuss related work in the area and its relation to
the proposed method. In Section 3 we define correlational
spectral clustering and give an overview of kernel canonical
correlation analysis. We relate the proposed clustering al-
gorithm to spectral clustering in Section 4.1 and show that
the former is a generalization of the latter. In Section 4.2 we
explore how canonical correlation analysis reduces the ef-
fect of noise, and in Section 5 we describe our experimental
setup, datasets, and results. We analyze why the proposed
method shows empirical improvement over spectral cluster-
ing in Section 6. Finally, we end with concluding remarks
in Section 7.

2. Related Work
A variety of methods have been proposed to model the

relationship between images and text. Much of this work
has been done in the context of finding associations be-
tween image content and individual words, noun phrases, or
named entities [3, 7, 18, 19]. Blei and Jordan proposed cor-
respondence latent Dirichlet allocation to model the joint
distribution of images and text, and the conditional distri-
bution of text given the image [8]. This has a natural appli-
cation in automatic image annotation. Bekkerman and Jeon
have recently proposed an image clustering algorithm based
on a variation on combinatorial Markov random fields [5].
Additional modalities (e.g. text) are represented as nodes in
the graph that are attached to the target modality (images),
which is clustered using a local search to find an approx-
imate solution to the combinatorial partitioning problem.
Quattoni et al. devise a semi-supervised learning algorithm
that exploits text captions to linearly constrain the visual
representation to one that predicts well the presence or ab-
sence of individual words [1].

Another important set of approaches for clustering im-
ages with additional modalities belong to the family of spec-
tral clustering algorithms [24, 28, 32]. Dhillon expressed
the co-clustering problem in the framework of spectral clus-
tering by considering bipartite graph structures where edge
strengths are computed from co-occurrence matrices [11].
More recently, this has been extended from bipartite graphs
to multipartite graphs in order to include additional modal-
ities and has been applied to image and text data [13, 25].
Alternatively, one can build a matrix that combines simi-
larities from both image and text representations [9, 22]. It
is straightforward to then apply a standard spectral cluster-
ing technique [24, 28, 32]. Zhou and Burges combine the
spectral clustering objectives for each of the modalities in
order to trade off the costs of making a cut in each modal-
ity [33]. In contrast, our technique generalizes the family of
spectral clustering algorithms to data with multiple modal-
ities, but does not require any notion of co-occurrences be-
tween images and individual words, or similarities for both
images and text in order to assign clusters to previously un-

Algorithm 1 Correlational Spectral Clustering
Require: xtrain, ytrain, xtest, kx(·, ·), ky(·, ·)
Ensure: c are the cluster ids assigned to the test data

Training:
[Kx]i,j = kx(xtraini , xtrainj )
[Ky]i,j = ky(ytraini , ytrainj )
α, β computed using KCCA on Kx and Ky

centroids = k-means(Kxα)
Testing:
cj = the centroid nearest to

∑
i αikx(xtraini , xtestj )

seen data. Instead, correlational spectral clustering allows
for the assignment of labels to unseen images that do not
have associated text, and allows more flexibility in the rep-
resentation used for the similarity matrices than is afforded
by techniques built on co-occurrence matrices.

The proposed technique relies on kernel canonical corre-
lation analysis to find projections of image representations
that are correlated to the paired text. Kernel canonical cor-
relation analysis has previously been employed with images
and text in an image retrieval context [16], but has not been
explored as a component of a clustering algorithm. Song
et al. have considered the case of clustering with struc-
tured labels (e.g. hierarchical labels, ring structured data)
by maximizing a norm of the cross-covariance operator be-
tween the projections of the input and the structure of the
labels [29]. They have not, however, considered the case of
multiple modalities or made use of the advantages of corre-
lation rather than covariance.

3. Correlational Spectral Clustering

The clustering algorithm proposed in this paper, cor-
relational spectral clustering, consists of kernel canoni-
cal correlation analysis computed with a training set fol-
lowed by k-means in the projected space (Algorithm 1).
At test time, the data are projected using linear combina-
tions of kernel evaluations and assigned to the nearest clus-
ter center. MatLab source code is available for download at
http://www.kyb.mpg.de/∼blaschko.

The subsequent sections give a brief introduction to ker-
nel canonical correlation analysis and introduce notation.

3.1. Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) seeks to utilize
paired datasets to simultaneously find projections from each
feature space that maximize the correlation between the
projected representations [17]. Given a sample from a
paired dataset {(x1, y1), . . . , (xn, yn)} we would like to si-
multaneously find directions wx and wy that maximize the
correlation of the projections of x onto wx with the projec-



tions of y onto wy . This is expressed as

max
wx,wy

Ê [〈x,wx〉〈y, wy〉]√
Ê [〈x,wx〉2] Ê [〈y, wy〉2]

, (1)

where Ê denotes the empirical expectation. We denote the
covariance matrix of (x, y) by C and use the notation Cxy
(Cxx) to denote the cross (auto) covariance matrices be-
tween x and y. Equation (1) is equivalent to

max
wx,wy

wTxCxywy√
wTxCxxwx w

T
y Cyywy

. (2)

This Rayleigh quotient can be optimized as a generalized
eigenvalue problem, or by decomposing the problem using
the Schur complement as described in [16].

There is a natural extension of CCA in the event where
there are more than two modalities. This can be written as
a generalized eigenvector problem that subsumes two-way
CCA as a special caseC11 . . . C1k

...
. . .

...
Ck1 . . . Ckk


w1

...
wk

= λ

C11 . . . 0
...

. . .
...

0 . . . Ckk


w1

...
wk

 .

(3)

3.2. Kernel Canonical Correlation Analysis

We define kernels over x and y: kx(xi, xj) =
〈φx(xi), φx(xj)〉 and ky(yi, yj) = 〈φy(yi), φy(yj)〉. CCA
is readily kernelized (KCCA) by searching for solutions that
lie in the span of φx(x) and φy(y): wx =

∑
i αiφx(xi) and

wy =
∑
i βiφy(yi) [21]. Denoting the kernel matrices de-

fined by our samples as Kx and Ky , we wish to optimize

max
α,β

αTKxKyβ√
αTK2

xαβ
TK2

yβ
. (4)

As discussed in [16] this optimization leads to degenerate
solutions in the case that either Kx or Ky is invertible so
we maximize the following regularized expression

αTKxKyβ√
αT ((1− τx)K2

x + τxKx)αβT
(
(1− τy)K2

y + τyKy

)
β

(5)
In the case that τx and τy are both set to 0, we have the
same optimization as Equation (4). In the case that τx =
τy = 1, this is equivalent to maximizing covariance instead
of correlation.

The formulation of CCA in Equation (3) is also readily
regularized and kernelized, and allows one to take advan-
tage of additional modalities such as spatiotemporal fea-
tures in video, higher resolution imagery, and other modali-
ties that indirectly contain label information but are not nec-
essarily available at test time.

4. Analysis of the Algorithm
4.1. Relation to Spectral Clustering

Spectral clustering algorithms make use of the spectrum
of a similarity matrix to embed data into a vector space in
a way that separates natural clusters in the data. After this
projection, another technique such as k-means can be em-
ployed to determine the final labeling (see e.g. [32] for a
tutorial introduction). Given a similarity matrix K, we de-
fine the unnormalized Laplacian L ≡ D − K where D is
a diagonal matrix that contains the row sums of K, and the
normalized Laplacian L ≡ D−1L. The Laplacian eigen-
map of L is defined as the embedding of the data that solves

min
α,αTDα=1

αTLα = min
α

αTLα

αTDα
= max

α

αTKα

αTDα
. (6)

This embedding, followed by k-means forms one of the
main spectral clustering techniques [32]. It is also possi-
ble to recover this algorithm using kernel-PCA rather than
the above generalized eigenvector problem with a kernel de-
fined to be the negative commute distance on the graph de-
fined by the similarity matrix K [15].

Kernel-PCA can be recovered with KCCA by setting
Kx = Ky and by setting τx and τy to 1. If Kx is set to the
negative commute distance, we have recovered the above
spectral clustering method. Correlational spectral cluster-
ing therefore is a generalization of spectral clustering to the
case of arbitrary kernels and paired data.

4.2. A Latent Variable Interpretation

We can see why using paired data can be helpful in
reducing the effects of noise by considering the covari-
ance matrix of paired data with independent additive noise
x̃ = x + ε and ỹ = y + η. Their empirical covariance and
cross-covariance matrices are

Cx̃x̃ = Cxx + 2Cxε + Cεε︸ ︷︷ ︸
=:Cnoise

xx

, Cỹỹ = Cyy + 2Cyη + Cηη︸ ︷︷ ︸
=:Cnoise

yy

,

Cx̃ỹ = Cxy + Cxη + Cεy + Cεη︸ ︷︷ ︸
=:Cnoise

xy

. (7)

In contrast to Cnoise
xx and Cnoise

yy , which contain the noise
auto-covariances,Cnoise

xy contains only cross-covariances of
independent terms and will therefore be quite small. This
shows that whenever there is paired data available, it makes
sense to rely on the cross-covariance matrix, because this
reduces the influence of noise in the data.

In the limit case of infinite data Cnoise
xy will tend to zero.

However, when dealing with finite sample sets, it can still
have a spectrum that is large compared to that of Cxy . This
is in particular the case for image data, where the noise con-
sists not only of measurement errors, but also of varying



lighting conditions, changes in perspective etc. Text can
contain irrelevant variances due to, e.g., misspellings and
use of synonyms, or differences in morphology.

We can reduce this effect further by normalizing with
the auto-covariance matrices. Making the noise contribu-
tion explicit in Equation (2), we obtain

wTx (Cxy + Cnoise
xy )wy√

wTx (Cxx + Cnoise
xx )wx wTy (Cxx + Cnoise

xx )wy
. (8)

For projection directions wx, wy that are correlated
only to the noise, the quotient will be dominated
by wTxC

noise
xy wy/

√
wTxC

noise
xx wywTxC

noise
yy wy , which we

know is close to 0 because Cnoise
xy is much smaller than

Cnoise
xx and Cnoise

yy . In contrast, in noise-free directions,
the quotient becomes wTxCxywy/

√
wTxCxxwyw

T
xCyywy

which we can expect to be large for correlated signals x, y.
This argument shows that the directions found by CCA are
less influenced by noise than those found by maximizing
cross-covariance.

Bach and Jordan have proposed a probabilistic interpre-
tation of CCA that is analogous to a maximum likelihood
interpretation of PCA [2]. We denote the dimensionalities
of the vectors φx(x) and φy(y) as dx and dy , respectively,
and interpret the diagram of a paired dataset in Figure 1 as
a graphical model with parameters distributed

z ∼ N (0, Id) (9)
φx(x)|z ∼ N (uxz + µx,Ψx) (10)
φy(y)|z ∼ N (uyz + µy,Ψy) (11)

where min{dx, dy} ≥ d ≥ 1 is the dimensionality of
the projected output, ux ∈ Rdx×d and uy ∈ Rdy×d are
parameters of the different modalities, and Ψx � 0 and
Ψy � 0 are arbitrary noise covariance matrices. The max-
imum likelihood estimates of the parameters ux and uy are
closely related to the first d canonical directions. Specifi-
cally, ûx = Cxxwxρ

1
2R and ûy = Cyywyρ

1
2R where ρ is

the diagonal matrix that contains the first d canonical cor-
relations, and R is an arbitrary orthogonal matrix [2]. Be-
cause R is orthogonal, it does not affect the pairwise dis-
tances of the projection, and can be ignored. We see that the
main difference between the canonical directions computed
by CCA, wx and wy , and maximum likelihood estimators
ûx and ûy is that the latter include the auto-covariance ma-
trices Cxx and Cyy . We have argued above that the use of
auto-covariance matrices is undesirable due to the poten-
tial effects of high noise variance that is not related to the
underlying semantic problem. Canonical correlation anal-
ysis computes directions that relate the two observations in
a latent variable model that is derived from the generation
of paired data, and that remove the influence of potentially
irrelevant auto-covariance terms.

5. Experimental Results
5.1. Evaluation Methodology

To evaluate the quality of the clustering, we have cho-
sen paired datasets that contain images with associated text,
as well as a human defined category label. We use the
conditional entropy, H(l|c), between the category labels,
l, and the cluster ids, c, computed by the algorithm [10].
An important advantage of this evaluation is that we do
not have to explicitly compute correspondences between
class labels and cluster ids, which would involve searching
through O(n!) possible assignments, where n is the num-
ber of classes. Conditional entropy is intimately related to
mutual information

I(l; c) = H(l)−H(l|c). (12)

Because H(l) is fixed for a given dataset

max
c
I(l; c) = min

c
H(l|c) (13)

and H(l|c) ≥ 0 with equality only in the case that knowing
the cluster id, c, allows one to compute the label, l, with
certainty, i.e. the clusters are pure. Thus, for a fixed dataset
and number of clusters, the clustering with the lowest con-
ditional entropy score gives the clusters most related to the
semantic grouping assigned by a human. Note, however,
that conditional entropy scores are not comparable across
different datasets.

We have used the following experimental protocol in all
of the results reported here, unless explicitly indicated oth-
erwise. The data are randomly split into equally sized train
and test portions. The train portion is used to compute the
projection and cluster-centroids using k-means, while the
test portion is simply projected and assigned the cluster id
of the nearest centroid in the projected space. In each train-
ing phase, k-means is trained 10 times with random initial-
ization and the run with the smallest k-means objective is
used. We compute the conditional entropy between the la-
bels of the test set and the predicted cluster ids. The labels
are never observed by the clustering algorithm, and the text
annotations are only observed for the training portion of the
dataset. The resulting conditional entropy scores are com-
puted for 20 random splits of the data into train and test and
visualized using a box plot [23].

5.2. Data

In order to demonstrate the broad applicability of corre-
lational spectral clustering, we have done tests on a range
of published datasets of images and text. We have used
the Israeli-Images dataset described in [5] which consists
of 1823 image-text pairs from 11 classes. We extracted
SURF descriptors without rotation invariance and with the
keypoint threshold set to 0 [4] and constructed a codebook



of 1000 visual words using k-means with 50000 sampled
descriptors. Images were represented by a normalized his-
togram of these visual words. Additionally, we extracted
HSV color histograms using 8 uniformly spaced bins for
hue, 4 for saturation, and 2 for value, and represented each
image by the normalized histogram. The histograms of vi-
sual words and of HSV colors were appended and the χ2

kernel

k(x, x′) = e
− 1

2A

Pd
i=1

(xi−x′i)
2

xi+x′
i (14)

was used with normalization parameter A set to the mean
of the χ2 distances in the training set. Similarly, for text,
we computed term frequency histograms, filtering special
characters and stop words using the list from [30], and also
used a χ2 kernel.

Additionally, we have used the multimedia image-text
web database used in [16, 20] which consists of samples
from three classes: sports, aviation, and paintball, with 400
image-text pairs each. Images were represented using HSV
color and Gabor textures as in [16, 20]. Text was repre-
sented using term frequencies. As in [16] we have used a
Gaussian kernel for the image space, and a linear kernel for
text.

Finally, we have used the three datasets included in the
UIUC-ISD collection [22]. These consist of images col-
lected from search engines using ambiguous search terms,
“bass,” “crane,” and “squash,” the webpages in which the
images originally appeared, and an annotation of which
sense of the word the image represents, e.g. fish vs. mu-
sical instrument. There are 2881 images in the Bass dataset
which have been grouped into 6 categories, 2650 in the
Crane dataset grouped into 9 categories, and 1948 images in
the Squash dataset grouped into 6 categories. For all three
datasets, we have represented images by 128 dimensional
SURF features that have been vector quantized into 1000
bins using k-means on 50000 sampled features. For the text
representation, we used word histograms extracted from the
webpage title, removing special characters and stop words.
Both image and text similarities were computed using a χ2

kernel.

5.3. Parameter Selection

In our experiments we have used the implementation of
KCCA described in [16], which makes use of Partial Gram-
Schmidt Orthogonalization. As in [16] we fix the Gram-
Schmidt precision parameter to 0.5 and have not optimized
over this value. τx and τy are determined automatically by
maximizing the `2 norm of the difference between the spec-
trum of correlations for randomized image and text asso-
ciations, and the spectrum for the original unrandomized
database (see [16] for details). The number of dimensions
to project in KCCA has been set to the number of clusters,
and the number of clusters has been set to the true number

PCA CCA KPCA KCCA
Israeli 3.1318 3.0638 2.9722 2.8046∗

S.A.P. 0.9224 1.4699 0.8957 0.8588
Bass 2.2372 2.1880 2.1825 2.1053∗

Crane 2.6416 2.6297 2.5642 2.5075∗

Squash 2.3485 2.3452 2.2697 2.2517

Table 1. Mean conditional entropy scores. Lower values indicate
better clusters, and ∗ indicates statistical significance. The pro-
posed method, labeled KCCA, outperforms the other methods.

of classes. This last choice is chosen to avoid the compar-
ison of algorithms that select different numbers of clusters;
conditional entropy scores are not directly comparable in
this case.

5.4. Results

As baseline methods, we have selected linear PCA on
image descriptors, kernel-PCA [27] on image descriptors,
and CCA without kernelization. This gives an indication of
the improvements that are gained by kernelization and by
having text available at training time. Kernel-PCA can be
viewed as a variant of spectral clustering that allows for the
projection of unseen data, which allows us to compare in
our experimental framework correlational spectral cluster-
ing to spectral clustering with only one modality [6]. Ad-
ditionally, we have included results for KCCA experiments
using the true labels for training. As discussed in [2] this is
equivalent to Fisher linear discriminant analysis (LDA) in
the case that τx = τy = 0. Using the labels at training time
is not comparable to our previous results, but gives a form
of upper bound on the improvement we could achieve us-
ing additional modalities. Figures 2(a)–2(e) give box plots
of the conditional entropy scores for the five datasets de-
scribed in Section 5.2, while Table 1 gives mean conditional
entropy for the same experiments. We see that correlational
spectral clustering (labeled KCCA) outperforms or is statis-
tically tied with the previous methods for all datasets.

6. Discussion
Some clear patterns emerge from the plots in Fig-

ures 2(a)–2(e). Both applying linear CCA before cluster-
ing and kernelization of PCA tend to improve results over
linear PCA, with the exception of the Sports Aviation Paint-
ball dataset. In all datasets, correlational spectral clustering
gave the best conditional entropy scores on average, with
statistical significance in a majority of datasets. The LDA
column of the figures indicates an upper bound of the im-
provement that is possible using correlational spectral clus-
tering, since the second modality contains perfect informa-
tion about the clustering task. We see that text provides a
proxy for the labels; it informs the relevant directions with-
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Figure 2. Box plot results for each dataset. Conditional entropy scores are calculated across 20 runs of the various clustering algorithms. A
lower score indicates better clusters. The proposed method, labeled KCCA, outperforms or is statistically tied with the previous methods
for all datasets. The LDA column is shown separately because, unlike the other methods, it made use of the labels during training. See
Section 5.4 for details.

out having access to the labels directly. The improvement
gained by having access to the labels at training time is, as
expected, significantly better than that from text for the ma-
jority of datasets. This indicates that additional paired data
could improve results further by using additional modalities
as in Equation (3).

In the two datasets that did not show statistical signifi-
cance, Sports Aviation Paintball and UIUC-ISD Squash, we
also did not see an improvement with linear CCA. For the
Sports Aviation Paintball dataset, we also did not see a sta-
tistically significant improvement of LDA over kernel PCA.
It appears that for this dataset, the noise is low enough that
the maximum variance directions in the image representa-
tion are already well suited to the clustering task, and there
is no significant improvement to be had by searching for
different directions.

To further understand the causes of the differences in
performance between the different datasets, we have per-
formed additional experiments to evaluate the amount of in-
formation present in the text component of the datasets. We
have run experiments where the text was available not only
at training time, but at test time as well. We have computed
conditional entropy results for clustering after linear pro-
jections of the text using PCA, and for KPCA with kernels
that combine the text and images using the sum of the two

kernels ksum(xi, yi, xj , yj) = kx(xi, xj) + ky(yi, yj), and
the product of the two kernels, kproduct(xi, yi, xj , yj) =
kx(xi, xj) · ky(yi, yj). Figure 3 shows box plots for the
conditional entropy in this modified setting. We see that for
the Israeli Images, UIUC-ISD Bass, and UIUC-ISD Crane
datasets having text available at test time significantly im-
proves performance over the setting where text is available
only at training time (Figure 2). These are also the datasets
where we have significant improvements from using corre-
lational spectral clustering. Both the Sports Aviation Paint-
ball and UIUC-ISD Squash datasets showed decreased per-
formance when using the text representations, which indi-
cates the text is not informative for the clustering task. Nev-
ertheless, correlational spectral clustering was not adversely
affected by the text as it ensures that the directions in the
text are also correlated to a signal present in the images,
which in these cases provided a more reliable cue.

7. Conclusions

We have proposed a new method, correlational spectral
clustering, for clustering images given associated paired
data, such as text or video information. This is achieved
by finding non-linear projections of the images that are
correlated with the associated data. Correlational spectral
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Figure 3. Box plot results for the text experiments. Conditional entropy scores are calculated for 20 runs of clustering using text data. The
first column indicates projection with PCA only on the text representations. The second and third columns are for kernel PCA projections
using the sum of the kernels for images and text, and the product of the kernels, respectively.

clustering generalizes spectral clustering to data with an
arbitrary number of modalities. By examining the effect
of using empirical covariance matrices on noise processes,
and by employing a probabilistic interpretation of CCA, we
have shown why correlational spectral clustering improves
spectral clustering with one modality. We have shown sta-
tistically significant empirical improvement over traditional
spectral clustering on a range of publicly available datasets.

Acknowledgements

The first author is supported by a Marie Curie fellowship
under the EC funded project PerAct, EST 504321. This
work is funded in part by the CLASS project, IST 027978.
The authors would like to thank Ulrike von Luxburg and
Arthur Gretton for helpful discussions.

References
[1] T. D. Ariadna Quattoni, Micheal Collins. Learning Visual

Representations using Images with Captions. In CVPR,
2007.

[2] F. R. Bach and M. I. Jordan. A Probabilistic Interpretation
of Canonical Correlation Analysis. Technical Report 688,
Department of Statistics, University of California, Berkeley,
2005.

[3] K. Barnard, P. Duygulu, D. Forsyth, N. de Freitas, D. M.
Blei, and M. I. Jordan. Matching Words and Pictures. JMLR,
3:1107–1135, 2003.

[4] H. Bay, T. Tuytelaars, and L. J. V. Gool. SURF: Speeded Up
Robust Features. In ECCV, pages 404–417, 2006.

[5] R. Bekkerman and J. Jeon. Multi-modal Clustering for Mul-
timedia Collections. In CVPR, 2007.

[6] Y. Bengio, O. Delalleau, N. Le Roux, J.-F. Paiement, P. Vin-
cent, and M. Ouimet. Learning Eigenfunctions Links Spec-
tral Embedding and Kernel PCA. Neural Computation,
16(10):2197–2219, 2004.

[7] T. L. Berg, A. C. Berg, J. Edwards, M. Maire, R. White, Y.-
W. Teh, E. Learned-Miller, and D. A. Forsyth. Names and
Faces in the News. In CVPR, pages 848–854, 2004.

[8] D. M. Blei and M. I. Jordan. Modeling Annotated Data. In
SIGIR, pages 127–134, 2003.

[9] D. Cai, X. He, Z. Li, W.-Y. Ma, and J.-R. Wen. Hierar-
chical Clustering of WWW Image Search Results using Vi-
sual, Textual and Link Information. In MULTIMEDIA, pages
952–959, 2004.

[10] T. M. Cover and J. A. Thomas. Elements of Information
Theory. Wiley-Interscience, New York, NY, USA, 1991.

[11] I. S. Dhillon. Co-clustering Documents and Words using
Bipartite Spectral Graph Partitioning. In KDD, pages 269–
274, 2001.

[12] M. Everingham, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman. The PASCAL Visual Object



Classes Challenge 2007 (VOC2007) . http://www.pascal-
network.org/challenges/VOC/databases.html.

[13] B. Gao, T.-Y. Liu, T. Qin, X. Zheng, Q.-S. Cheng, and W.-
Y. Ma. Web Image Clustering by Consistent Utilization of
Visual Features and Surrounding Texts. In MULTIMEDIA,
pages 112–121, 2005.

[14] G. Griffin, A. Holub, and P. Perona. Caltech-256 object cat-
egory dataset. Technical Report 7694, California Institute of
Technology, 2007.

[15] J. Ham, D. D. Lee, S. Mika, and B. Schölkopf. A Ker-
nel View of the Dimensionality Reduction of Manifolds. In
ICML, pages 369–376, 2004.

[16] D. R. Hardoon, S. Szedmák, and J. R. Shawe-Taylor. Canon-
ical Correlation Analysis: An Overview with Application to
Learning Methods. Neural Computation, 16(12):2639–2664,
2004.

[17] H. Hotelling. Relations Between Two Sets of Variates.
Biometrika, 28:321–377, 1936.

[18] V. Jain, E. Learned-Miller, and A. McCallum. People-LDA:
Anchoring Topics to People using Face Recognition. In
ICCV, 2007.

[19] M. Jamieson, A. Fazly, S. Dickinson, S. Stevenson, and
S. Wachsmuth. Learning Structured Appearance Models
from Captioned Images of Cluttered Scenes. In ICCV, 2007.

[20] T. Kolenda, L. K. Hansen, J. Larsen, and O. Winther. Inde-
pendent Component Analysis for Understanding Multimedia
Content. In IEEE Workshop on Neural Networks for Signal
Processing, pages 757–766, 2002.

[21] P. L. Lai and C. Fyfe. Kernel and Nonlinear Canonical Cor-
relation Analysis. IJNS, 10(5):365–377, 2000.

[22] N. Loeff, C. O. Alm, and D. A. Forsyth. Discriminating
Image Senses by Clustering with Multimodal Features. In
ACL, 2006.

[23] R. McGill, J. W. Tukey, and W. A. Larsen. Variations of
Boxplots. The American Statistician, 32:12–16, 1978.

[24] A. Y. Ng, M. I. Jordan, and Y. Weiss. On Spectral Clustering:
Analysis and an Algorithm. In NIPS, pages 849–856, 2001.

[25] M. Rege, M. Dong, and J. Hua. Clustering Web Images with
Multi-modal Features. In MULTIMEDIA, pages 317–320,
2007.

[26] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Free-
man. Labelme: A database and web-based tool for image
annotation. Technical Report TR-2005-056, Massachusetts
Institute of Technology, 2005.

[27] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear Com-
ponent Analysis as a Kernel Eigenvalue Problem. Neural
Computation, 10(5):1299–1319, 1998.

[28] J. Shi and J. Malik. Normalized Cuts and Image Segmenta-
tion. PAMI, 22(8):888–905, 2000.

[29] L. Song, A. Smola, A. Gretton, and K. M. Borgwardt. A
Dependence Maximization View of Clustering. In ICML,
pages 815–822, 2007.

[30] C. J. van Rijsbergen. Information Retrieval. Butterworths,
1975.

[31] L. von Ahn and L. Dabbish. Labeling Images with a Com-
puter Game. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 319–326, 2004.

[32] U. von Luxburg. A Tutorial on Spectral Clustering. Statistics
and Computing, 17(4):395–416, 2007.

[33] D. Zhou and C. J. C. Burges. Spectral Clustering and Trans-
ductive Learning with Multiple Views. In ICML, pages
1159–1166, 2007.


