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Paired Datasets

Realistic data comes in many different modalities: text, images...

We call data paired, if the samples come in more than one such
representation at the same time, e.g.

@ images + captions,

@ audio + transscript,

o multi-language text documents
e MRI + CT scans

We assume a latent aspect that relates the representations.




A fully paired dataset has correspondences for all samples:

X:{ X1, X2, A Xn }v
1 !
Y={ v y» ... ¥ }

H

"Miss Summers?" "Good call." I'm Mr Giles The librarian.



However, data is often only partially paired:

)A(:{ X1, X2, ... Xn. Xngl, --or Xnpe I
1 (R ?
Y:{ )/L .y2v g )/n 1 )/n+11 LR | )/nery }

"l was looking for some, well, books." "Miss Summers?"
= "Goodcall" = 'm Mr Giles. _ The librarian"

"l know what you're after."
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Review of Canonical Correlation Analysis

Principal Component Analysis (PCA)
@ Single dataset xi, ..., Xp.
@ Find projections that maximize the variance of the projected data.

@ simple eigenvalue problem.

Canonical Correlation Analysis (CCA)
o Fully paired data x3 <> y1,... ,Xn < V.

e Find projection directions w, and w, that maximize the correlation
between the projected data.

T .
i w, Cywy Cy/Cu/Cyy: _ _
Wi, Wy TC TC (cross) correlation matrices
Wy Cxx Wx Wy yyWy

@ generalized eigenvalue problem.
@ supervised situation: y €{—1,1} ground truth labels — CCA = LDA!



Why is Correlation better than Variance?

e Toy dataset: 1 signal direction, 1 (high variance) noise direction.
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@ CCA can ignore noise that is uncorrelated between X and Y.



Kernelization

Kernel Canonical Correlation Analysis

@ Kernelize CCA, to use it for arbitrary input domains, and (latent)
data embeddings ¢, : X — Hx, ¢, : Y — Hy.

o ke(xi,xj) = (0x(xi), ox(xi)),  ky(yi, ¥) = (Dy(¥i), Dy (¥)))
o wi =) aidx(xi),  wy =3 Bidy(yi)
@ KCCA = CCA in Hx/Hy: Solve

aT KK, B

max Kx, Ky: kernel matrices of X, Y,
P\ JaTK2a BT K23

equivalent to the constrained optimization problem

max a'KK,3 sbt. a'Kla=1 and B'KIB=1.

aHB



Need for Regularization

@ Problem: Maximization is degenerate for invertible K, or K.

max aTKXKyﬂ sb.t. aTKfazl and ﬂTKfﬁzl

a,B

allows «, 8 with perfect correlation but without learning anything!

@ We need to regularize!



Need for Regularization

@ Problem: Maximization is degenerate for invertible K, or K.

max o KK,B sbt. a'KZa=1 and BTKZ3=1

&2

allows «, 8 with perfect correlation but without learning anything!

o Tikhonov regularization:

max e Gty
0 ST G+ ol 2) (57 Gy + 2 )
TK.K.
= maxX c = yﬁ

o\ JaT (K2 + 2K a BT (K2 +2,K,) 8

@ Regularization parameters €, €, need to be model selected.
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Proposed Laplacian Regularization

Manifold assumption:

@ The data lie on a lower-dimensional manifold M C H.

X
X
X X y
X X Yy
y oy y

@ Use the Laplace operator A to measure smoothness along M.

Laplacian regularization:
o Approximate A by Graph Laplacian £ = D~Y/?(D — W)D~1/?
(W similarity matrix, D diagonal matrix with Dj;; = ZJ- Wj).

max aTKXKyﬂ
«,
sb.t. aT<KXKX + ek + fnyxﬁxKX>a —1,

BT (KK + 2K, +K L K, )B =1

Tikhonov Laplacian

e Favour projections that vary smoothly wrt. the manifold structure.



Partially paired data revisited

Making use of unpaired data:
@ We don't need correspondences to compute Laplacian.

@ More data allows a better estimate of the manifold structure.
X * * X Y
X X Yy



Partially paired data revisited

Making use of unpaired data:
@ We don't need correspondences to compute Laplacian.

@ More data allows a better estimate of the manifold structure.
X R A yyy yyy, oYYy,

x
O 22 AR
)’(S(xxxx’&xxxg( ’)éxx;éxxxx vy yyyyyyy}'wy’yyyyyy’y
Notation:
e Paired training data {x1,...,x,} and {y1,...,¥n},
o Additional unpaired data {Xny1,...,Xntp } aNd {yni1, .- Yaip, }-
o Data matrix X = (x1,...,x,)] € HY,
o Extended data matrix X = (x1,...,Xo1p,) € HP,
o Kernel matrix Ky = XXT € R"™",
o Extended kernel matrices Kz, = XXT € R(ntp)xn,
0 Kys = XXT g R(ntp)x(ntpx),
@ etc.



Semi-Supervised Laplacian Regularization

o Semi-Supervised KCCA with Laplacian Regularization:

max aTK;(XKy;,ﬂ

a,B
sbt. aT<K;<XKX;< teKss + (an—Xp)zK”Lng)a _1
/8T<K§,yKy}7 + gyKyy + ’y—yzKy}vﬁyKyy )ﬂ =1
—— (n + py)

Tikhonov ~
“semi-supervised” Laplacian

o Finds data projections that

> achieve high correlation when applied to X < Y
» vary smoothly on manifolds defined by X, Y.

@ Four regularization parameters: ex,€y,,7x,7, — model selection
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Model Selection

@ Supervised szenario: cross-validation or similar.
@ Unsupervised szenario: dependence maximization HSNIC

@ HSNIC: kernel measure of dependence between random variables
(Fukumizu, Bach, & Gretton 2007)

> Hilbert-Schmidt norm of normalized cross-covariance operator V,,
HSNIC(x,y) = [[Vyy llis

> Closely related to KCCA

Regularization with Laplace-Beltrami operators on data manifolds

1 _1
Vx — Zxx xI xA T2 Zx > / A 2
y =(Tc+ &l +%Brm,) y  (Ty eyl +yhAm,)

Tikhonov  Laplacian covariance
operator

@ Finite sample set: closed form expression ny (see paper or poster)



Model Selection: Concluded

° | \A/Xy||f_,5 estimates correlation achievable by KCCA.

@ But beware: overfitting! trivial maximum at ex = ¢, = 7 =, = 0.

@ Better model selection criterion:
Maximize increase in correlation only due to the data pairing

Vg llss

p(5X’5y57X77y) = N
||VXI'I(y)”?-IS

with M(y) randomly reshuffled version(s) of y.
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Example Results

o Four datasets of images + associated text
> Multiple train / test splits
» Vary percentage of correspondences

@ Example results: UIUC-ISD Bass, 6 semantic classes
> Perform (semi-supervised) KCCA on training set
» Measure correlations on test set
> Measure scatter ratio on test set (larger is better)
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@ More results in paper.



Summary & Future Work

Summary:
@ Laplacian regularization for KCCA
@ Allows straight-forward semi-supervised extension

@ Model selection: closed form expression for Laplacian regularized
kernel independence measure (HSNIC)

@ Experimental results: projections better respect latent aspect

Future work:
@ Improved model selection criterion
> ratio used somewhat heuristic
@ Other application of Laplacian regularized HSNIC

» Causality inference
> ICA
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Thank you.



More about V,,

o Covariance operator: ¥, : Hy — Hx defined by

(f, Xxy8)Hx = Exylf(x)g(y)] — Ex[f(x)]Ey[g(y)]

forall f € Hx, g € Hg.



More about V,,

o Covariance operator: ¥, : Hy — Hx defined by

(f, Xxy8)Hx = Exylf(x)g(y)] — Ex[f(x)]Ey[g(y)]

forall f € Hx, g € Hg.

@ Normalized Cross-covariance operator, V., such that

1 1
Loy = Vg gy



Model Selection: Laplacian Regularized HSNIC

@ Empirical estimate of V,,:

Nl

~

1 21
Ve = (=XTX 4ol + X XT Lo X —XTY-
Y n n

X

|
Nl

(1 YTY +e,l+ 7—2\”@?’)
n my

@ Closed form solution

~

Vs liBis = Tr | Vs 7| = Tr (M)

with

-1

-1
M, =1—n <n/ e o Lk ('" YN Kﬂ) LQKQX)

Ex Ex Vx



