Semi-Supervised Laplacian Regularization of Kernel Canonical Correlation Analysis

Matthew B. Blaschko, Christoph H. Lampert, & Arthur Gretton

Max Planck Institute for Biological Cybernetics
Tübingen, Germany

ECML KPDD, Antwerp, Belgium, September 16, 2008

Overview

- Paired Data
- Kernel Canonical Correlation Analysis
- Semi-Supervised Laplacian Regularization
- Model Selection
- Results
 - Summary and Outlook

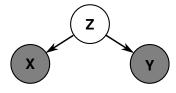
Paired Datasets

Realistic data comes in many different modalities: text, images...

We call data **paired**, if the samples come in more than one such representation at the same time, e.g.

- images + captions,
- audio + transscript,
- multi-language text documents
- MRI + CT scans

We assume a **latent aspect** that relates the representations.



Paired Datasets

A fully paired dataset has correspondences for all samples:

$$X = \{ x_1, x_2, \dots, x_n \},$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$Y = \{ y_1, y_2, \dots, y_n \}.$$

"Miss Summers?"

"Good call."

I'm Mr Giles

The librarian.

Paired Datasets

However, data is often only partially paired:

$$\hat{X} = \{ x_1, x_2, \dots, x_n, x_{n+1}, \dots, x_{n+p_x} \},
\downarrow \qquad \uparrow \qquad \uparrow \qquad ? \qquad ?
\hat{Y} = \{ y_1, y_2, \dots, y_n, y_{n+1}, \dots, y_{n+p_y} \}.$$

"I know

what you're after."

Overview

- Paired Data
- Kernel Canonical Correlation Analysis
- Semi-Supervised Laplacian Regularization
- Model Selection
- Results
 - Summary and Outlook

Review of Canonical Correlation Analysis

Principal Component Analysis (PCA)

- Single dataset x_1, \ldots, x_n .
- Find projections that maximize the **variance** of the projected data.
- simple eigenvalue problem.

Canonical Correlation Analysis (CCA)

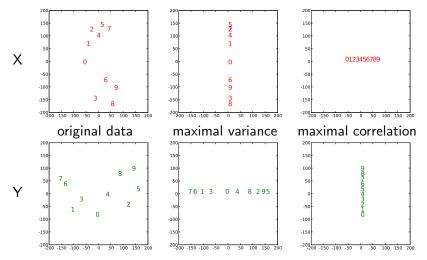
- Fully paired data $x_1 \leftrightarrow y_1, \dots, x_n \leftrightarrow y_n$.
- Find projection directions w_x and w_y that maximize the **correlation** between the projected data.

$$\max_{w_x, w_y} \frac{w_x^T C_{xy} w_y}{\sqrt{w_x^T C_{xx} w_x \ w_y^T C_{yy} w_y}} \qquad C_{xy}/C_{xx}/C_{yy}:$$
 (cross) correlation matrices

- generalized eigenvalue problem.
- supervised situation: $y \in \{-1, 1\}$ ground truth labels $\rightarrow CCA \equiv LDA!$

Why is Correlation better than Variance?

• Toy dataset: 1 signal direction, 1 (high variance) noise direction.



• **CCA** can ignore noise that is uncorrelated between *X* and *Y*.

Kernelization

Kernel Canonical Correlation Analysis

- Kernelize CCA, to use it for arbitrary input domains, and (latent) data embeddings $\phi_X : \mathcal{X} \to \mathcal{H}_X$, $\phi_Y : \mathcal{Y} \to \mathcal{H}_Y$.
- $k_x(x_i, x_j) = \langle \phi_x(x_i), \phi_x(x_j) \rangle$, $k_y(y_i, y_j) = \langle \phi_y(y_i), \phi_y(y_j) \rangle$
- $w_x = \sum_i \alpha_i \phi_x(x_i)$, $w_y = \sum_i \beta_i \phi_y(y_i)$
- KCCA \equiv CCA in $\mathcal{H}_X/\mathcal{H}_Y$: Solve

$$\max_{\alpha,\beta} \frac{\alpha^T K_x K_y \beta}{\sqrt{\alpha^T K_x^2 \alpha \beta^T K_y^2 \beta}} \qquad K_x, K_y: \text{ kernel matrices of } X, Y,$$

equivalent to the constrained optimization problem

$$\max_{\alpha,\beta} \quad \alpha^T K_x K_y \beta \qquad \text{sb.t.} \quad \alpha^T K_x^2 \alpha = 1 \quad \text{ and } \quad \beta^T K_y^2 \beta = 1.$$

Need for Regularization

• Problem: Maximization is **degenerate** for invertible K_x or K_y .

$$\max_{\alpha,\beta} \quad \alpha^T K_x K_y \beta \quad \text{sb.t.} \quad \alpha^T K_x^2 \alpha = 1 \quad \text{ and } \quad \beta^T K_y^2 \beta = 1$$

allows α, β with perfect correlation but without learning anything!

• We need to regularize!

Need for Regularization

• Problem: Maximization is **degenerate** for invertible K_x or K_y .

$$\max_{\alpha,\beta} \quad \alpha^T K_x K_y \beta \quad \text{sb.t.} \quad \alpha^T K_x^2 \alpha = 1 \quad \text{ and } \quad \beta^T K_y^2 \beta = 1$$

allows α, β with perfect correlation but without learning anything!

Tikhonov regularization:

$$\max_{w_{x}, w_{y}} \frac{w_{x}^{T} C_{xy} w_{y}}{\sqrt{\left(w_{x}^{T} C_{xx} w_{x} + \varepsilon_{x} \|w_{x}\|^{2}\right) \left(w_{y}^{T} C_{yy} w_{y} + \varepsilon_{y} \|w_{y}\|^{2}\right)}}$$

$$= \max_{\alpha, \beta} \frac{\alpha^{T} K_{x} K_{y} \beta}{\sqrt{\alpha^{T} \left(K_{x}^{2} + \varepsilon_{x} K_{x}\right) \alpha \beta^{T} \left(K_{y}^{2} + \varepsilon_{y} K_{y}\right) \beta}}$$

• Regularization parameters ε_x , ε_y need to be model selected.

Overview

- Paired Data
- Kernel Canonical Correlation Analysis
- Semi-Supervised Laplacian Regularization
- Model Selection
- Results
- Summary and Outlook

Proposed Laplacian Regularization

Manifold assumption:

ullet The data lie on a lower-dimensional manifold $\mathcal{M}\subset\mathcal{H}.$



ullet Use the Laplace operator $\Delta_{\mathcal{M}}$ to measure smoothness along $\mathcal{M}.$

Laplacian regularization:

• Approximate $\Delta_{\mathcal{M}}$ by Graph Laplacian $\mathcal{L} = D^{-1/2}(D-W)D^{-1/2}$ (W similarity matrix, D diagonal matrix with $D_{ii} = \sum_{i} W_{ij}$).

$$\begin{split} \max_{\alpha,\beta} \quad & \alpha^T K_{\mathbf{x}} K_{\mathbf{y}} \beta \\ \text{sb.t.} \quad & \alpha^T \Big(K_{\mathbf{x}} K_{\mathbf{x}} \, + \, \varepsilon_{\mathbf{x}} K_{\mathbf{x}} + \, \gamma_{\mathbf{x}} K_{\mathbf{x}} \mathcal{L}_{\mathbf{x}} K_{\mathbf{x}} \Big) \alpha = 1, \\ & \beta^T \Big(K_{\mathbf{y}} K_{\mathbf{y}} + \underbrace{\varepsilon_{\mathbf{y}} K_{\mathbf{y}}}_{\text{Tikhonov}} + \underbrace{\gamma_{\mathbf{y}} K_{\mathbf{y}} \mathcal{L}_{\mathbf{y}} K_{\mathbf{y}}}_{\text{Laplacian}} \Big) \beta = 1 \end{split}$$

• Favour projections that vary **smoothly** wrt. the manifold structure.

Partially paired data revisited

Making use of unpaired data:

- We don't need correspondences to compute Laplacian.
- More data allows a better estimate of the manifold structure.

Partially paired data revisited

Making use of unpaired data:

- We don't need correspondences to compute Laplacian.
- More data allows a better estimate of the manifold structure.

Notation:

- Paired training data $\{x_1, \ldots, x_n\}$ and $\{y_1, \ldots, y_n\}$,
- Additional unpaired data $\{x_{n+1}, \dots, x_{n+p_x}\}$ and $\{y_{n+1}, \dots, y_{n+p_y}\}$.
- Data matrix $X = (x_1, \dots, x_n)^T \in \mathcal{H}_X^n$,
- Extended data matrix $\hat{X} = (x_1, \dots, x_{n+p_x})^T \in \mathcal{H}_X^{n+p_x}$,
- Kernel matrix $K_{xx} = XX^T \in \mathbb{R}^{n \times n}$,
- Extended kernel matrices $K_{\hat{x}x} = \hat{X}X^T \in \mathbb{R}^{(n+p_x)\times n}$,
- $K_{\hat{x}\hat{x}} = \hat{X}\hat{X}^T \in \mathbb{R}^{(n+p_x)\times(n+p_x)}$,
- etc.

Semi-Supervised Laplacian Regularization

Semi-Supervised KCCA with Laplacian Regularization:

$$\begin{split} \max_{\alpha,\beta} \quad & \alpha^T K_{\hat{\mathbf{x}}\mathbf{x}} K_{y\hat{\mathbf{y}}} \beta \\ \text{sb.t.} \quad & \alpha^T \Big(K_{\hat{\mathbf{x}}\mathbf{x}} K_{x\hat{\mathbf{x}}} + \varepsilon_{\mathbf{x}} K_{\hat{\mathbf{x}}\hat{\mathbf{x}}} + \frac{\gamma_{\mathbf{x}}}{(n+p_{\mathbf{x}})^2} K_{\hat{\mathbf{x}}\hat{\mathbf{x}}} \mathcal{L}_{\hat{\mathbf{x}}} K_{\hat{\mathbf{x}}\hat{\mathbf{x}}} \Big) \alpha = 1 \\ & \beta^T \Big(K_{\hat{\mathbf{y}}\mathbf{y}} K_{y\hat{\mathbf{y}}} + \underbrace{\varepsilon_{\mathbf{y}} K_{\hat{\mathbf{y}}\hat{\mathbf{y}}}}_{\mathsf{Tikhonov}} + \underbrace{\frac{\gamma_{\mathbf{y}}}{(n+p_{\mathbf{y}})^2} K_{\hat{\mathbf{y}}\hat{\mathbf{y}}} \mathcal{L}_{\hat{\mathbf{y}}} K_{\hat{\mathbf{y}}\hat{\mathbf{y}}}}_{\text{"semi-supervised" Laplacian}} \Big) \beta = 1 \end{split}$$

- Finds data projections that
 - ▶ achieve high correlation when applied to $X \leftrightarrow Y$
 - vary smoothly on manifolds defined by \hat{X}, \hat{Y} .
- Four regularization parameters: $\varepsilon_x, \varepsilon_y, \gamma_x, \gamma_y \rightarrow \text{model selection}$

Overview

- Paired Data
- Kernel Canonical Correlation Analysis

Semi-Supervised Laplacian Regularization

- _
- Model Selection

Results

Summary and Outlook

Model Selection

- Supervised szenario: cross-validation or similar.
- Unsupervised szenario: dependence maximization HSNIC
- HSNIC: kernel measure of dependence between random variables (Fukumizu, Bach, & Gretton 2007)
 - Hilbert-Schmidt norm of normalized cross-covariance operator \(\mathcal{V}_{xy} \)

$$\mathsf{HSNIC}(x,y) \equiv \|\mathcal{V}_{xy}\|_{\mathit{HS}}^2$$

- Closely related to KCCA
- Regularization with Laplace-Beltrami operators on data manifolds

$$\mathcal{V}_{xy} = (\Sigma_{xx} + \underbrace{\varepsilon_{x}I}_{\text{Tikhonov}} + \underbrace{\gamma_{x}\Delta_{\mathcal{M}_{x}}}_{\text{Laplacian}})^{-\frac{1}{2}} \underbrace{\Sigma_{xy}}_{\text{covariance operator}} (\Sigma_{yy} + \varepsilon_{y}I + \gamma_{y}\Delta_{\mathcal{M}_{y}})^{-\frac{1}{2}}$$

ullet Finite sample set: **closed form expression** \hat{V}_{xy} (see paper or poster)

Model Selection: Concluded

- $\|\hat{V}_{xy}\|_{HS}^2$ estimates correlation achievable by KCCA.
- But beware: overfitting! trivial maximum at $\varepsilon_x = \varepsilon_y = \gamma_x = \gamma_y = 0$.
- Better model selection criterion:
 Maximize increase in correlation only due to the data pairing

$$\rho(\varepsilon_{x}, \varepsilon_{y}, \gamma_{x}, \gamma_{y}) = \frac{\|\hat{V}_{xy}\|_{HS}^{2}}{\|\hat{V}_{x\Pi(y)}\|_{HS}^{2}}$$

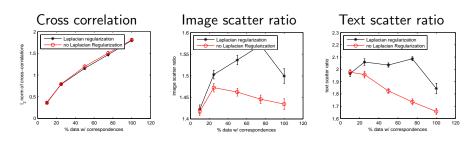
with $\Pi(y)$ randomly reshuffled version(s) of y.

Overview

- Paired Data
- Kernel Canonical Correlation Analysis
- Semi-Supervised Laplacian Regularization
- Model Selection
- Results
 - Summary and Outlook

Example Results

- Four datasets of images + associated text
 - ▶ Multiple *train* / *test* splits
 - Vary percentage of correspondences
- Example results: UIUC-ISD Bass, 6 semantic classes
 - Perform (semi-supervised) KCCA on training set
 - Measure correlations on test set
 - Measure scatter ratio on test set (larger is better)



More results in paper.

Summary & Future Work

Summary:

- Laplacian regularization for KCCA
- Allows straight-forward semi-supervised extension
- Model selection: closed form expression for Laplacian regularized kernel independence measure (HSNIC)
- Experimental results: projections better respect latent aspect

Future work:

- Improved model selection criterion
 - ratio used somewhat heuristic
- Other application of Laplacian regularized HSNIC
 - Causality inference
 - ► ICA

Summary & Future Work

Summary:

- Laplacian regularization for KCCA
- Allows straight-forward semi-supervised extension
- Model selection: closed form expression for Laplacian regularized kernel independence measure (HSNIC)
- Experimental results: projections better respect latent aspect

Future work:

- Improved model selection criterion
 - ratio used somewhat heuristic
- Other application of Laplacian regularized HSNIC
 - Causality inference
 - ► ICA

Thank you.

More about \mathcal{V}_{xy}

ullet Covariance operator: $\Sigma_{xy}: \mathcal{H}_Y o \mathcal{H}_X$ defined by

$$\langle f, \mathbf{\Sigma}_{xy} g \rangle_{H_X} = \mathbf{E}_{x,y} [f(x)g(y)] - \mathbf{E}_x [f(x)] \mathbf{E}_y [g(y)]$$

for all $f \in \mathcal{H}_X$, $g \in \mathcal{H}_g$.

More about \mathcal{V}_{xy}

ullet Covariance operator: $\Sigma_{xy}: \mathcal{H}_Y o \mathcal{H}_X$ defined by

$$\langle f, \textcolor{red}{\Sigma_{xy}} g \rangle_{H_X} = \textbf{E}_{x,y}[f(x)g(y)] - \textbf{E}_x[f(x)]\textbf{E}_y[g(y)]$$

for all $f \in \mathcal{H}_X$, $g \in \mathcal{H}_g$.

• Normalized Cross-covariance operator, V_{xy} , such that

$$\Sigma_{xy} = \Sigma_{xx}^{\frac{1}{2}} \frac{V_{xy}}{V_{xy}} \Sigma_{yy}^{\frac{1}{2}}$$

Model Selection: Laplacian Regularized HSNIC

• Empirical estimate of \mathcal{V}_{xy} :

$$\hat{V}_{xy} = \left(\frac{1}{n}X^TX + \varepsilon_x I + \frac{\gamma_x}{m_x^2}\hat{X}^T\mathcal{L}_{\hat{X}}\hat{X}\right)^{-\frac{1}{2}}\frac{1}{n}X^TY.$$

$$\left(\frac{1}{n}Y^TY + \varepsilon_y I + \frac{\gamma_y}{m_y^2}\hat{Y}^T\mathcal{L}_{\hat{Y}}\hat{Y}\right)^{-\frac{1}{2}}$$

Closed form solution

$$\|\hat{V}_{xy}\|_{HS}^2 = \operatorname{Tr}\left[\hat{V}_{xy}\hat{V}_{xy}^T\right] = \operatorname{Tr}\left[M_x M_y\right]$$

with

$$M_{x} = I - n \left(nI + \frac{1}{\varepsilon_{x}} K_{xx} - \frac{1}{\varepsilon_{x}} K_{x\hat{x}} \left(\frac{m_{x}^{2} \varepsilon_{x}}{\gamma_{x}} I + \mathcal{L}_{\hat{x}} K_{\hat{x}\hat{x}} \right)^{-1} \mathcal{L}_{\hat{x}} K_{\hat{x}x} \right)^{-1}$$