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Abstract

The learning with privileged information setting has recently attracted a lot of at-
tention within the machine learning community, as it allows the integration of ad-
ditional knowledge into the training process of a classifier, even when this comes
in the form of a data modality that is not available at test time. Here, we show
that privileged information can naturally be treated as noise in the latent function
of a Gaussian process classifier (GPC). That is, in contrast to the standard GPC
setting, the latent function is not just a nuisance but a feature: it becomes a natural
measure of confidence about the training data by modulating the slope of the GPC
probit likelihood function. Extensive experiments on public datasets show that the
proposed GPC method using privileged noise, called GPC+, improves over a stan-
dard GPC without privileged knowledge, and also over the current state-of-the-art
SVM-based method, SVM+. Moreover, we show that advanced neural networks
and deep learning methods can be compressed as privileged information.

1 Introduction

Prior knowledge is a crucial component of any learning system as without a form of prior knowl-
edge learning is provably impossible [1]. Many forms of integrating prior knowledge into machine
learning algorithms have been developed: as a preference of certain prediction functions over others,
as a Bayesian prior over parameters, or as additional information about the samples in the training
set used for learning a prediction function. In this work, we rely on the last of these setups, adopting
Vapnik and Vashist’s learning using privileged information (LUPI), see e.g. [2, 3]: we want to learn
a prediction function, e.g. a classifier, and in addition to the main data modality that is to be used for
prediction, the learning system has access to additional information about each training example.

This scenario has recently attracted considerable interest within the machine learning community
because it reflects well the increasingly relevant situation of learning as a service: an expert trains a
machine learning system for a specific task on request from a customer. Clearly, in order to achieve
the best result, the expert will use all the information available to him or her, not necessarily just the
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information that the system itself will have access to during its operation after deployment. Typical
scenarios for learning as a service include visual inspection tasks, in which a classifier makes real-
time decisions based on the input from its sensor, but at training time, additional sensors could be
made use of, and the processing time per training example plays less of a role. Similarly, a classifier
built into a robot or mobile device operates under strong energy constraints, while at training time,
energy is less of a problem, so additional data can be generated and made use of. A third scenario is
when the additional data is confidential, as e.g. in health care applications. Specifically, a diagnosis
system may be improved when more information is available at training time, e.g., specific blood
tests, genetic sequences, or drug trials, for the subjects that form the training set. However, the same
data may not be available at test time, as obtaining it could be impractical, unethical, or illegal.

We propose a novel method for using privileged information based on the framework of Gaussian
process classifiers (GPCs). The privileged data enters the model in form of a latent variable, which
modulates the noise term of the GPC. Because the noise is integrated out before obtaining the final
model, the privileged information is only required at training time, not at prediction time. The most
interesting aspect of the proposed model is that by this procedure, the influence of the privileged
information becomes very interpretable: its role is to model the confidence that the GPC has about
any training example, which can be directly read off from the slope of the probit likelihood. Instances
that are easy to classify by means of their privileged data cause a faster increasing probit, which
means the GP trusts the training example and tried to fit it well. Instances that are hard to classify
result in a slowly increasing slope, so that the GPC considers them less reliable and does not put a
lot of effort in fitting their label well. Our experiments on multiple datasets show that this procedure
leads not just to more interpretable models, but also to better prediction accuracy.

Related work: The LUPI framework was originally proposed by Vapnik and Vashist [2], inspired
by a thought-experiment: when training a soft-margin SVM, what if an oracle would provide us
with the optimal values of the slack variables? As it turns out, this would actually provably reduce
the amount of training data needed, and consequently, Vapnik and Vashist proposed the SVM+
classifier that uses privileged data to predict values for the slack variables, which led to improved
performance on several categorisation tasks and found applications, e.g., in finance [4]. This setup
was subsequently improved, by a faster training algorithm [5], better theoretical characterisation [3],
and it was generalised, e.g., to the learning to rank setting [6], clustering [7], metric learning [8] and
multi-class data classification [9]. Recently, however, it was shown that the main effect of the SVM+
procedure is to assign a data-dependent weight to each training example in the SVM objective [10].

The proposed method, GPC+, constitutes the first Bayesian treatment of classification using priv-
ileged information. The resulting privileged noise approach is related to input-modulated noise
commonly done in the regression task, where several Bayesian treatments of heteroscedastic regres-
sion using GPs have been proposed. Since the predictive density and marginal likelihood are no
longer analytically tractable, most works deal with approximate inference, i.e., techniques such as
Markov Chain Monte Carlo [11], maximum a posteriori [12], and variational Bayes [13]. To our
knowledge, however, there is no prior work on heteroscedastic classification using GPs — we will
elaborate the reasons in Section 2.1 — and this work is the first to develop approximate inference
based on expectation propagation for the heteroscedastic noise case in the context of classification.

2 GPC+: Gaussian process classification with privileged noise

For self-consistency we first review the GPC model [14] with an emphasis on the noise-corrupted
latent Gaussian process view. Then, we show how to treat privileged information as heteroscedastic
noise in this process. An elegant aspect of this view is how the privileged noise is able to distinguish
between easy and hard samples and to re-calibrate the uncertainty on the class label of each instance.

2.1 Gaussian process classifier with noisy latent process

Consider a set of N input-output data points or samples D = {(x1, y1), . . . , (xN , yN )} ⊂ Rd ×
{0, 1}. Assume that the class label yi of the sample xi has been generated as yi = I[ f̃(xi) ≥ 0 ],
where f̃(·) is a noisy latent function and I[·] is the Iverson’s bracket notation, i.e., I[ P ] = 1 when
the condition P is true, and 0 otherwise. Induced by the label generation process, we adopt the
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following form of likelihood function for f̃ = (f̃(x1), . . . , f̃(xN ))>:

Pr(y|̃f , X = (x1, . . . ,xN )>) =
∏N

n=1
Pr(yn = 1|xn, f̃) =

∏N

n=1
I[ f̃(xn) ≥ 0 ], (1)

where f̃(xn) = f(xn) + εn with f(xn) being the noise-free latent function. The noise term εn
is assumed to be independent and normally distributed with zero mean and variance σ2, that is
εn ∼ N (εn|0, σ2). To make inference about f̃(xn), we need to specify a prior over this function.
We proceed by imposing a zero mean Gaussian process prior [14] on the noise-free latent function,
that is f(xn) ∼ GP(0, k(xn, ·)) where k(·, ·) is a positive-definite kernel function [15] that specifies
prior properties of f(·). A typical kernel function that allows for non-linear smooth functions is the
squared exponential kernel kf (xn,xm) = θ exp(− 1

2l ‖xn − xm‖2`2), where θ controls the prior
amplitude of f(·) and l controls its prior smoothness. The prior and the likelihood are combined
using Bayes’ rule to get the posterior of f̃(·). Namely, Pr(f̃ |X,y) = Pr(y|̃f , X)Pr(f̃)/Pr(y|X).

We can simplify the above noisy latent process view by integrating out the noise term εn and writing
down the individual likelihood at sample xn in terms of the noise-free latent function f(·). Namely,

Pr(yn = 1|xn, f) =

∫
I[f̃(xn) ≥ 0]N (εn|0, σ2)dεn = Φ(0,σ2)(f(xn)), (2)

where we have used that f̃(xn) = f(xn) + εn and Φ(µ,σ2)(·) is a Gaussian cumulative distribution
function (CDF) with mean µ and variance σ2. Typically the standard Gaussian CDF is used, that is
Φ(0,1)(·), in the likelihood of (2). Coupled with a Gaussian process prior on the latent function f(·),
this results in the widely adopted noise-free latent Gaussian process view with probit likelihood.
The equivalence between a noise-free latent process with probit likelihood and a noisy latent process
with step-function likelihood is widely known [14]. It is also widely accepted that the function f̃(·)
(or the functionf(·)) is a nuisance function as we do not observe its value and its sole purpose is
for a convenient formulation of the model [14]. However, in this paper, we show that by using
privileged information as the noise term, the latent function f̃ now plays a crucial role. The latent
function with privileged noise adjusts the slope transition in the Gaussian CDF to be faster or slower
corresponding to more certainty or more uncertainty about the samples in the original input space.

2.2 Introducing privileged information into the nuisance function

In the learning under privileged information (LUPI) paradigm [2], besides input data points
{x1, . . . ,xN} and associated labels {y1, . . . , yN}, we are given additional information x∗n ∈ Rd∗

about each training instance xn. However, this privileged information will not be available for un-
seen test instances. Our goal is to exploit the additional data x∗ to influence our choice of the latent
function f̃(·). This needs to be done while making sure that the function does not directly use the
privileged data as input, as it is simply not available at test time. We achieve this naturally by treating
the privileged information as a heteroscedastic (input-dependent) noise in the latent process.

Our classification model with privileged noise is then as follows:

Likelihood model : Pr(yn = 1|xn, f̃) = I[ f̃(xn) ≥ 0 ] , where xn ∈ Rd (3)

Assume : f̃(xn) = f(xn) + εn (4)

Privileged noise model : εn
i.i.d.∼ N (εn|0, z(x∗n) = exp(g(x∗n))) , where x∗n ∈ Rd

∗
(5)

GP prior model : f(xn) ∼ GP(0, kf (xn, ·)) and g(x∗n) ∼ GP(0, kg(x
∗
n, ·)). (6)

In the above, the function exp(·) is needed to ensure positivity of the noise variance. The term kg(·, ·)
is a positive-definite kernel function that specifies the prior properties of another latent function g(·),
which is evaluated in the privileged space x∗. Crucially, the noise term εn is now heteroscedastic,
that is, it has a different variance z(x∗n) at each input point xn. This is in contrast to the standard GPC
approach discussed in Section 2.1 where the noise term is homoscedastic, εn ∼ N (εn|0, z(x∗n) =
σ2). An input-dependent noise term is very common in regression tasks with continuous output
values yn ∈ R, resulting in heteroscedastic regression models, which have been proven more flexible
in numerous applications as already touched upon in the section on related work. However, to our
knowledge, there is no prior work on heteroscedastic classification models. This is not surprising as
the nuisance view of the latent function renders a flexible input-dependent noise point-less.
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Figure 1: Effects of privileged noise on the nuisance function. (Left) On synthetic data. Suppose for an input
xn, the latent function value is f(xn) = 1. Now also assume that the associated privileged information x∗

n for
the n-th data point deems the sample as difficult, say exp(g(x∗

n)) = 5.0. Then the likelihood will reflect this
uncertainty Pr(yn = 1|f, g,xn,x

∗
n) = 0.58. In contrast, if the associated privileged information considers the

sample as easy, say e.g. exp(g(x∗
n)) = 0.5, the likelihood is very certain Pr(yn = 1|f, g,xn,x

∗
n) = 0.98.

(Right) On real data taken from our experiments in Sec. 4. The posterior means of the Φ(·) function (solid)
and its 1-standard deviation confidence interval (dash-dot) for easy (blue) and difficult (black) instances of the
Chimpanzee v. Giant Panda binary task on the Animals with Attributes (AwA) dataset. (Best viewed in color).

In the context of privileged information heteroscedastic classification is a very sensible idea, which is
best illustrated when investigating the effect of privileged information in the equivalent formulation
of a noise free latent process, i.e., when one integrates out the privileged input-dependent noise term:

Pr(yn = 1|xn,x∗n, f, g) =

∫
I[ f̃(xn) ≥ 0 ]N (εn|0, exp(g(x∗n))dεn

= Φ(0,exp(g(x∗n)))
(f(xn)) = Φ(0,1)(f(xn)/

√
exp(g(x∗n)). (7)

This equation shows that the privileged information adjusts the slope transition of the Gaussian
CDF through the latent function g(·). For difficult samples the latent function g(·) will be high,
the slope transition will be slower, and thus more uncertainty will be in the likelihood Pr(yn =
1|xn,x∗n, f, g). For easy samples, however, g(·) will be low, the slope transition will be faster,
and thus less uncertainty will be in the likelihood term. This behaviour is illustrated in Figure 1.
For non-informative samples in the privileged space, the value of g for those samples should be
equal to a global noise value, as in a standard GPC. Thus, privileged information should in principle
never hurt. Proving this theoretically is, however, an interesting and challenging research direction.
Experimentally, however, we observe in the section on experiments the scenario described.

2.3 Posterior and prediction on test data

Define g = (g(x∗1), . . . , g(x∗n))T and X∗ = (x∗1, . . . ,x
∗
n)T. Given the likelihood

Pr(y|X,X?, f ,g) =
∏N
n=1 Pr(yn = 1|f, g,xn,x∗n) with the individual term Pr(yn|f, g,xn,x∗n)

given in (7) and the Gaussian process priors on functions, the posterior for f and g is:

Pr(f ,g|y,X,X?) =
Pr(y|X,X?, f ,g)Pr(f)Pr(g)

Pr(y|X,X?)
, (8)

where Pr(y|X,X?) can be maximised with respect to a set of hyper-parameter values such as the
amplitude θ and the smoothness l of the kernel functions [14]. For a previously unseen test point
xnew ∈ Rd, the predictive distribution for its label ynew is given as:

Pr(ynew = 1|y,X,X?) =

∫
I[ f̃(xnew) ≥ 0 ]Pr(fnew|f)Pr(f ,g|y,X,X?)dfdgdfnew , (9)

where Pr(fnew|f) is a Gaussian conditional distribution. We note that in (9) we do not consider the
privileged information x?new associated to xnew. The interpretation is that we consider homoscedastic
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noise at test time. This is a reasonable approach as there is no additional information for increasing
or decreasing our confidence in the newly observed data xnew. Finally, we predict the label for a test
point via Bayesian decision theory: the label being predicted is the one with the largest probability.

3 Expectation propagation with numerical quadrature

Unfortunately, as for most interesting Bayesian models, inference in the GPC+ model is very chal-
lenging. Already in the homoscedastic case, the predictive density and marginal likelihood are
not tractable. Here, we therefore adapt Minka’s expectation propagation (EP) [16] with numerical
quadrature for approximate inference. Our choice is supported on the fact that EP is the preferred
method for approximate inference in GPCs, in terms of accuracy and computational cost [17, 18].

Consider the joint distribution of f , g and y, Pr(y|X,X∗, f ,g)Pr(f)Pr(g), where Pr(f) and Pr(g)

are Gaussian process priors and the likelihood Pr(y|X,X∗, f ,g) equals
∏N
n=1 Pr(yn|xn,x∗n, f, g),

with Pr(yn|xn,x∗n, f, g) given by (7). EP approximates each non-normal factor in this distribution
by an un-normalised bi-variate normal distribution of f and g (we assume independence between f
and g). The only non-normal factors are those of the likelihood, which are approximated as:

Pr(yn|xn,x∗n, f, g) ≈ γn(f, g) = znN (f(xn)|mf , vf )N (g(x∗n)|mg, vg) , (10)

where the parameters with the super-script are to be found by EP. The posterior approximation Q
computed by EP results from normalising with respect to f and g the EP approximate joint. That is,
Q is obtained by replacing each likelihood factor by the corresponding approximate factor γn:

Pr(f ,g|X,X∗,y) ≈ Q(f ,g) := Z−1[
∏N

n=1
γ(f, g)]Pr(f)Pr(g) , (11)

where Z is a normalisation constant that approximates the model evidence, Pr(y|X,X∗). The
normal distribution belongs to the exponential family of probability distributions and is closed under
the product and division. It is hence possible to show that Q is the product of two multi-variate
normals [19]. The first normal approximates the posterior for f and the second the posterior for g.

EP tries to fix the parameters of γn so that it is similar to the exact factor Pr(yn|xn,x∗n, f, g) in
regions of high posterior probability [16]. For this, EP iteratively updates each γn until convergence
to minimise KL

(
Pr(yn|xn,x?n, f, g)Qold/Zn||Q

)
, where Qold is a normal distribution proportional

to
[∏

n′ 6=n γn′
]

Pr(f)Pr(g) with all variables different from f(xn) and g(x∗n) marginalised out, Zn
is simply a normalisation constant and KL(·||·) denotes the Kullback-Leibler divergence between
probability distributions. AssumeQnew is the distribution minimising the previous divergence. Then,
γn ∝ Qnew/Qold and the parameter zn of γn is fixed to guarantee that γn integrates the same as
the exact factor with respect to Qold. The minimisation of the KL divergence involves matching
expected sufficient statistics (mean and variance) between Pr(yn|xn,x?n, f, g)Qold/Zn and Qnew.
These expectations can be obtained from the derivatives of logZn with respect to the (natural)
parameters of Qold [19]. Unfortunately, the computation of logZn in closed form is intractable. We
show here that it can be approximated by a one dimensional quadrature. Denote by mf , vf , mg and
vg the means and variances of Qold for f(xn) and g(x∗n), respectively. Then,

Zn =

∫
Φ(0,1)

(
ynmf/

√
vf + exp(g(x∗n))

)
N (g(x∗n)|mg, vg)dg(x∗n) . (12)

Thus, EP only requires five quadratures to update each γn. One to compute logZn and four extras
to compute its derivatives with respect to mf , vf , mg and vg . After convergence, Q can be used
to approximate predictive distributions and the normalisation constant Z can be maximised to find
good values for the model’s hyper-parameters. In particular, it is possible to compute the gradient
of Z with respect to the parameters of the Gaussian process priors for f and g [19]. An R language
implementation of GPC+ using EP for approximate inference is found in the supplementary material.

4 Experiments

We investigate the performance of GPC+. To this aim we considered three types of binary classifica-
tion tasks corresponding to different privileged information using two real-world datasets: Attribute
Discovery and Animals with Attributes. We detail these experiments in turn in the following sections.
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Methods: We compared our proposed GPC+ method with the well-established LUPI method based
on SVM, SVM+ [5]. As a reference, we also fit standard GP and SVM classifiers when learning on
the original space Rd (GPC and SVM baselines). For all four methods, we used a squared exponential
kernel with amplitude parameter θ and smoothness parameter l. For simplicity, we set θ = 1.0 in
all cases. There are two hyper-parameters in GPC (smoothness parameter l and noise variance σ2)
and also two in GPC+ (smoothness parameters l of kernel kf (·, ·) and of kernel kg(·, ·)). In GPC
and GPC+, we used type II-maximum likelihood for finding all hyper-parameters. SVM has two
knobs, i.e., smoothness and regularisation, and SVM+ has four knobs, two smoothness and two
regularisation parameters. In SVM we used a grid search guided by cross-validation to set all hyper-
parameters. However, this procedure was too expensive for finding the best parameters in SVM+.
Thus, we used the performance on a separate validation set to guide the search. This means that we
give a competitive advantage to SVM+ over the other methods, which do not use the validation set.

Evaluation metric: To evaluate the performance of each method we used the classification error
measured on an independent test set. We performed 100 repeats of all the experiments to get the
better statistics of the performance and we report the mean and the standard deviation of the error.

4.1 Attribute discovery dataset

The data set was collected from a website that aggregates product data from a variety of e-commerce
sources and includes both images and associated textual descriptions [20]. The images and texts are
grouped into 4 broad shopping categories: bags, earrings, ties, and shoes. We used 1800 samples
from this dataset. We generated 6 binary classification tasks for each pair of the 4 classes with 200
samples for training, 200 samples for validation, and the rest of the samples for testing performance.

Neural networks on texts as privileged information: We used images as the original domain and
texts as the privileged domain. This setting was also explored in [6]. However, we used a different
dataset because textual descriptions of the images used in [6] are sparse and contain duplicates. More
precisely, we extracted more advanced text features instead of simple term frequency (TF) features.
For the images representation, we extracted SURF descriptors [21] and constructed a codebook of
100 visual words using the k-means clustering. For the text representation, we extracted 200 dimen-
sional continuous word-vectors using a neural network skip-gram architecture [22]1. To convert this
word representation into a fixed-length sentence representation, we constructed a codebook of 100
word-vectors using again k-means clustering. We note that a more elaborate approach to transform
word to sentence or document features has recently been developed [23], and we are planning to
explore this in the future. We performed PCA for dimensionality reduction in the original and priv-
ileged domains and only kept the top 50 principal components. Finally, we standardised the data so
that each feature had zero mean and unit standard deviation.

The experimental results are summarised in Table 1. On average over 6 tasks, SVM with hinge loss
outperforms GPC with probit likelihood. However, GPC+ significantly improves over GPC provid-
ing the best results on average. This clearly shows that GPC+ is able to employ the neural network
textual representation as privileged information. In contrast, SVM+ produced the same result as
SVM. We suspect this is due to the fact that that SVM has already shown strong performance on
the original image space coupled with the difficulties of finding the best values of the four hyper-
parameters of SVM+. Keep in mind that in SVM+ we discretised the hyper-parameter search space
over 625 (5× 5× 5× 5) possible combination values and used a separate validation set to estimate
the resulting prediction performance.

4.2 Animals with attributes (AwA) dataset

The dataset was collected by querying image search engines for each of the 50 animals categories
which have complimentary high level descriptions of their semantic properties such as shape, colour,
or habitat information among others [24]. The semantic attributes per animal class were retrieved
from a prior psychological study. We focused on the 10 categories corresponding to the test set of this
dataset for which the predicted attributes are provided based on the probabilistic DAP model [24].
The 10 classes are: chimpanzee, giant panda, leopard, persian cat, pig, hippopotamus, humpback
whale, raccoon, rat, seal, which have 6180 images associated in total. As in Section 4.1 and also in

1https://code.google.com/p/word2vec/
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Table 1: Average error rate in % (the lower the better) on the Attribute Discovery dataset over 100 repetitions.
We used images as the original domain and neural networks word-vector representation on texts as the privi-
leged domain. The best method for each binary task is highlighted in boldface. An average rank equal to one
means that the corresponding method has the smallest error on the 6 tasks.

GPC GPC+ (Ours) SVM SVM+
bags v. earrings 9.79±0.12 9.50±0.11 9.89±0.14 9.89±0.13
bags v. ties 10.36±0.16 10.03±0.15 9.44±0.16 9.47±0.13
bags v. shoes 9.66±0.13 9.22±0.11 9.31±0.12 9.29±0.14
earrings v. ties 10.84±0.14 10.56±0.13 11.15±0.16 11.11±0.16
earrings v. shoes 7.74±0.11 7.33±0.10 7.75±0.13 7.63±0.13
ties v. shoes 15.51±0.16 15.54±0.16 14.90±0.21 15.10±0.18

average error on each task 10.65±0.11 10.36±0.12 10.41±0.11 10.42±0.11
average ranking 3.0 1.8 2.7 2.5

[6], we generated 45 binary classification tasks for each pair of the 10 classes with 200 samples for
training, 200 samples for validation, and the rest of samples for testing the predictive performance.

Neural networks on images as privileged information: Deep learning methods have gained an in-
creased attention within the machine learning and computer vision community over the recent years.
This is due to their capability in extracting informative features and delivering strong predictive per-
formance in many classification tasks. As such, we are interested to explore the use of deep learning
based features as privileged information so that their predictive power can be used even if we do not
have access to them at prediction time. We used the standard SURF features [21] with 2000 visual
words as the original domain and the recently proposed DeCAF features [25] extracted from the
activation of a deep convolutional network trained in a fully supervised fashion as the privileged do-
main. The DeCAF features have 4096 dimensions. All features are provided with the AwA dataset2.
We again performed PCA for dimensionality reduction in the original and privileged domains and
only kept the top 50 principal components, as well as standardised the data.

Attributes as privileged information: Following the experimental setting of [6], we also used
images as the original domain and attributes as the privileged domain. Images were represented by
2000 visual words based on SURF descriptors and attributes were in the form of 85 dimensional
predicted attributes based on probabilistic binary classifiers [24]. As previously, we also performed
PCA and kept the top 50 principal components in the original domain and standardised the data.

The results of these experiments are shown in Figure 2 in terms of pairwise comparisons over 45
binary tasks between GPC+ and the main baselines, GPC and SVM+. The complete results with
the error of each method GPC, GPC+, SVM, and SVM+ on each problem are relegated to the
supplementary material. In contrast to the results on the attribute discovery dataset, on the AwA
dataset it is clear that GPC outperforms SVM in almost all of the 45 binary classification tasks
(see the supplementary material). The average error of GPC over 4500 (45 tasks and 100 repeats
per task) experiments is much lower than SVM. On the AwA dataset, SVM+ can take advantage
of privileged information – be it deep belief DeCAF features or semantic attributes – and shows
significant performance improvement over SVM. However, GPC+ still shows the best overall results
and further improves the already strong performance of GPC. As illustrated in Figure 1 (right), the
privileged information modulates the slope of the probit likelihood function differently for easy
and difficult examples: easy examples gain slope and hence importance whereas difficult ones lose
importance in the classification. In this dataset we analysed our experimental results using the
multiple dataset statistical comparison method described in [26]3. The results of the statistical tests
are summarised in Figure 3. When DeCAF attributes are used as privileged information, there is
statistical evidence supporting that GPC+ performs best among the four methods, while when the
semantic attributes are used as privileged information, GPC+ still performs best but there is not
enough evidence to reject that GPC+ performs comparable to GPC.

2http://attributes.kyb.tuebingen.mpg.de
3Note that we are not able to use this method on the results of the attribute discovery dataset in Table 1

because the number of methods compared (i.e., 4) is almost equal to the number of tasks or datasets (i.e., 6).

7

http://attributes.kyb.tuebingen.mpg.de


(DeCAF as privileged) (Attributes as privileged)

Figure 2: Pairwise comparison of the proposed GPC+ method and main baselines is shown via the relative
difference of the error rate (top: GPC+ versus GPC, bottom: GPC+ versus SVM+). The length of the 45 bars
corresponds to relative difference of the error rate over 45 cases. Average error rates of each method on the
AwA dataset across each of the 45 tasks are found in the supplementary material. (Best viewed in color).
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Figure 3: Average rank (the lower the better) of the four methods and critical distance for statistically signif-
icant differences (see [26]) on the AwA dataset. An average rank equal to one means that particular method
has the smallest error on the 45 tasks. Whenever the average ranks differ by more than the critical distance,
there is statistical evidence (p-value < 10%) supporting a difference in the average ranks and hence in the
performance. We also link two methods with a solid line if they are not statistically different from each other
(p-value > 10%). When the DeCAF features are used as privileged information, there is statistical evidence
supporting that GPC+ performs best among the four methods considered. When the attributes are used, GPC+
still performs best, but there is not enough evidence to reject that GPC+ performs comparable to GPC.

5 Conclusions and future work

We presented the first treatment of the learning with privileged information paradigm under the
Gaussian process classification (GPC) framework, and called it GPC+. In GPC+ privileged infor-
mation is used in the latent noise layer, resulting in a data-dependent modulation of the slope of the
likelihood. The training time of GPC+ is about twice times the training time of a standard Gaussian
process classifier. The reason is that GPC+ must train two latent functions, f and g, instead of only
one. Nevertheless, our results show that GPC+ is an effective way to use privileged information,
which manifest itself in significantly better prediction accuracy. Furthermore, to our knowledge,
this is the first time that a heteroscedastic noise term is used to improve GPC. We have also shown
that recent advances in continuous word-vector neural networks representations [23] and deep con-
volutional networks for image representations [25] can be used as privileged information. For future
work, we plan to extend the GPC+ framework to the multi-class case and to speed up computation
by devising a quadrature-free expectation propagation method, similar to the ones in [27, 28].
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