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Abstract

We study the task of detecting the occurrence of objects
in large image collections or in videos, a problem that com-
bines aspects of content based image retrieval and object
localization. While most previous approaches are either
limited to special kinds of queries, or do not scale to large
image sets, we propose a new method, efficient subimage
retrieval (ESR), which is at the same time very flexible and
very efficient. Relying on a two-layered branch-and-bound
setup, ESR performs object-based image retrieval in sets of
100,000 or more images within seconds. An extensive eval-
uation on several datasets shows that ESR is not only very
fast, but it also achieves detection accuracies that are on
par with or superior to previously published methods for
object-based image retrieval.

1. Introduction

In this work, we study the problem of object-based im-
age retrieval, that is the detection of objects in very large
image collections or in videos. In particular, we are inter-
ested in methods that allow queries to be defined as image
regions themselves, making the problem a combination of
content based image retrieval and object localization.

From an image retrieval user’s point of view, the pos-
sibility of object-based instead of image based queries is
a clear benefit, because the relevance of images will not be
effected by changes in image viewpoint or background clut-
ter anymore, see Figure 1 for an illustration. However, most
image retrieval systems internally rely on purely global im-
age representations, and they are not able to handle queries
that match only small regions within the images. Object
localization methods, on the other hand, are in principle ca-
pable of answering the question of whether and where an
object occurs in an image, but they are typically overbur-
dened when having to deal with very many candidate im-
ages, because they do not scale well in terms of runtime and
memory usage. Consequently, most existing systems for
object-based image retrieval either achieve high detection
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Figure 1. Object-based image retrieval. Left: The users marks

an object in an image by a bounding region. Right: The system
returns images from a database that show the query object.

accuracy, but work only for small image collections, or they
can handle large set of candidate images, but are limited in
the types of local queries that they can answer.

In this work, we introduce a new method for object-
based image retrieval, efficient subimage retrieval (ESR),
that is proficient in both aspects. It finds the images and
local regions best matching a query, irrespective of back-
ground clutter and how small the query region is, and it
does so efficiently, requiring only seconds or less to answer
queries about data sets with 100,000 images or more.

The rest of the paper is organized as follows: Section 2
introduces ESR by deriving it from the efficient subwindow
search (ESS) procedure for object localization. Based on
an analysis of ESS’ shortcomings, we show how to modify
and improve the underlying branch-and-bound optimization
to allow large-scale retrieval tasks. In Section 3, we re-
call object-based image retrieval methods from the litera-
ture and discuss their relation to ESR. Section 4 shows ex-
perimental results and analyzes ESR’s performance in terms
of detection quality and speed. Finally, Section 5 summa-
rizes the paper and hints on directions for future work.

2. Efficient Subimage Retrieval

Efficient subimage retrieval (ESR) is a two-stage, glob-
ally optimal branch-and-bound procedure that can be seen
as an extension of the single-stage efficient subwindow
search (ESS) procedure [8]. We therefore start by summa-
rizing the main idea and notation of ESS.

2.1. Branch-and-Bound Object Localization

Let I be an image, for which we assume that a visual
word representation has been precomputed, such that we
can represent arbitrary image regions R by their bag of vi-



EFFICIENT SUBWINDOW SEARCH(I, f, f)

1 Poc < empty sets-of-regions priority queue
2 R+ Ru;I(I)

repeat

4 split R — R1 UR2

5 push Ry into P with score f(R1)
6 push Ro into P with score f (R2)
7

8

9

W

pop R «— top(Poc)
until R = {R} for a single image region R C [
return R

Figure 2. Efficient Subwindow Search [8] in pseudocode notation.
The input consists of an image [ and a quality function f with
bounding function f. Ru(I) denotes the set of all candidate
subimages of /. The algorithm outputs the region R C I maxi-
mizing the quality function f over all elements of Ra(I).

sual word histograms h*. By R,;(I) we denote the set of
all rectangular subregions in /. Then ESS can be described
as a geometric branch-and-bound optimization that finds the
region R € R,(I) maximizing a given quality function
f: Raui(I) — R. Table 2 gives pseudocode for ESS.

ESS uses an internal representation of sets of boxes R
by uncertainty intervals for their left, top, right and bottom
coordinates. This induces a canonical branching step (line
4) by splitting the interval of largest uncertainty into halves.
For the bounding step, one constructs a qguality bounding
function f : P(Rai(I)) — R, where P denotes the power
set operation, that fulfills the conditions

f(R) = max f(R), and f({R})=f(R), (1)

for any R € R,y and any R C R,y(I) that can occur dur-
ing the search. Quality bounding functions for linear SVMs
and for nearest neighbor classifiers based on the x2-distance
were derived in [8]. For these, ESS is able to find the global
maximum of f with a worst-case computational complex-
ity of O(n*) for n x n images. In typical situations, ESS is
much faster than the worst-case analysis indicates, showing
rather O(n?) runtime. Because of the data dependency of
the branch-and-bound search, there are, however, also sit-
uations where ESS requires a lot of iterations to converge,
especially if f does not have a distinct global maximum.

A naive approach to object-based retrieval would apply
ESS to every candidate image, sorting the results by their
quality and returning the best matches. However, this setup
is computationally infeasible for large setups: even if pro-
cessing a single image takes only milliseconds, it would be
several minutes before a dataset with 100,000 images would
be fully processed. Clearly, this is an unacceptable delay
for the typically interactive application scenarios of object-
based image retrieval.

In order to overcome the linear dependency on the num-
ber of images, a modification to ESS is proposed in [8]
that inserts the start states Ry ([;) for all image I1,..., I,
into the priority queue before starting the branch-and-bound

search. This results in 70x speedup compared to the linear
setup, with an average retrieval time of 2 seconds per de-
tection when searching through 10,243 images. However,
for truly large-scale object-based retrieval tasks, ESS even
in this variant is not well suited, because it still has several
limitations caused by the fact that it was originally derived
to work on single images at a time. In the following, we ana-
lyze these limitations and propose a new algorithm efficient
subimage retrieval (ESR) that overcomes them. Specifi-
cally, ESR improves over ESS in the following aspects:
Computation complexity: for ESS to initialize P),. with
Rai(I1), ..., Rai(I,), it has to process every image at least
once. We propose a two layered branch-and-bound search
that can achieve sublinear runtime with respect to the num-
ber of images.

Memory usage: ESS needs to keep all image representa-
tion in main memory simultaneously, thereby limiting the
number of images that it can search over. We show how to
overcome this by a load on demand strategy.

Growth of Fj,.: for difficult queries the priority queue in
ESS can grow uncontrollably into tens of millions of en-
tries, requiring hundreds of MB of RAM. We introduce a
new representation for box sets that allows constraints on
the size of the search box. We show that by searching with
boxes of fixed size, the problem of the growing P, be-
comes irrelevant.

Lack of sparsity: the quality bound for the x?2-distance
proposed in [8] does not respect sparsity. Even for query
histograms with few non-zero entries, it has to store and
process all bins. We derive bounds for five classical quality
function from image retrieval that respect the sparsity of the
query and at the same time achieve good detection accuracy.

2.2. Branch-and-Bound Subimage Retrieval

In this section, we explain how to “fix” ESS to make
it applicable to realistically sized image retrieval problems.
Figure 3 shows pseudocode for the resulting ESR algorithm.

2.2.1 Quality Functions for Image Retrieval

The most easily solvable problem of ESS is its choice of
quality function. In [8], the x? distance x?(h?,hft) =
Zkl,(zl % is used because of the known good per-
'k k
formance of the y2-kernel for object classification tasks.
However, the bound derived for it is suboptimal for image
retrieval tasks, because in such a time-critical application,
one would prefer a quality function that does not require
many floating point divisions and that can benefit from the
expected sparsity of the query histogram h?. Several clas-
sical similarity measures from the image retrieval literature
comply with these conditions while also achieving good de-
tection accuracy. In this work, we propose using the his-
togram intersection (HI), the normalized histogram inter-



REGION-B&B( P, f)

1 pop [I,R] « top(Pec)

2 if R = {R} forasingleregion R C I

3 then remove all states [I, *] from Poc

4 return (I, R)

5  else splitR — Ri1UR2

6 push Ri into P with score f (R1)
7 push Ry into P with score f(Rs)
8 return ()

IMAGE-B&B(Png, Poc, f)
9 pop I « top(Pme)
10 ifZ = {I} for asingle image I € Zy
11 then push [I,Ra;(I)] into Poc withscore f({I})
12 else splitZ — 73 Uy
13 push Z; into P with score f(I1)
14 push Zy into Pmg with score f(Zs)
15 return )

EFFICIENT SUBIMAGE RETRIEVAL(Zu, f, f, f,m)
16 Png < empty sets-of-images priority queue
17 push Zy into P, with score f (Zan)

18 Poc < empty sets-of-regions priority queue
19 forj «— 1tom

20 do repeat

21 if top(Pimg).score > top(Poc).score
22 then res = IMAGE-B&B (Ping, Pioc, f)
23 else res = REGION-B&B (P, f)

24 until res # ()

25 Jj, R; + res
26 return (J1, R1),...,(Jm, Rm)

Figure 3. The Efficient Subimage Retrieval algorithm in pseu-
docode notation. The input consists of a collection of images
Zai = {I1,...,In}, aquality function f with bounding functions
f and f (see text), and a target number of output regions. The al-
gorithm outputs a sorted list of m images J1, ..., J and regions
R; C J; that maximize the quality function f over all regions
within all images of Z .

section (NHI), the Euclidean dot product (dot) or the cosine
measure (cos), see Table 1 for their definitions. For com-
pleteness, we have also included the Bhattacharya coeffi-
cient, which does respect sparsity, but is much slower than
the other measures, because it requires the calculation of
many square roots. Note that HI and dot are only useful
for situations where we have constraints on the region size,
because they are not normalized, see Section 2.2.2.

To use the proposed quality functions as part of a branch-
and-bound search, we require quality bounds in the sense of
Equation (1). Because all quality functions are histogram-
based, these bounds are rather straight-forward to compute:

to bound f over a set of regions R, we define ER as the
histogram of the union of all regions in R, and A be the
histogram of their intersection, where the latter can also be
empty. As all quality functions in Table 1 decompose into
sums of elementary function of the individual histogram

bins, their bounds can be found by bounding each summand

separately in terms of the bins of ER and ™. For quality
functions based on LP normalized histograms, we make use
of the fact that ||t > ||™||, for all R € R. The result-
ing expression are given in the third column of Table 1.

2.2.2 Constraints on the Search Region

A fundamental problem of ESS is the rapid growth of the
priority queue Pj,.. Even when the number of images is not
infeasibly high, the search can easily run out of memory,
especially when searching for a rare object. The reason for
this strong growth of P, is an unfortunate combination of
the relatively loose quality bounds with the extremely large
search space consisting of billions of candidate regions for
each image in the dataset.

While one could think of applying pruning techniques,
this would introduce the risk of missing detections. In ESR,
we therefore follow a different route: instead of optimiz-
ing f approximately over the space of all regions, we keep
the guarantee of global optimality but restrict the space of
candidate regions. In particular, we drop the property of
searching for rectangular regions of arbitrary size and as-
pect ratio, because in a query-by-example image retrieval
system, the query region provides us with a strong enough
prior of the expected shape and size of the object. Incorpo-
rating this prior information not only strongly reduces the
search space that the branch-and-bound search has to cover,
but it also implicitly regularizes the quality function, be-
cause only “reasonably shaped” box regions are returned.

The ESS representation of box sets by their left, right,
top and bottom coordinate does not allow for an easy in-
tegration of size constraints. Therefore, we introduce a
new parametrization of box set R = [X,Y, W, H|, where
X = [z,z] and Y = [y, y] are interval coordinates for the
box center and W = [w,w] and H = [h, h] are intervals
limiting the width and height respectively. Note that we
still have closed form expressions for calculating the union
and intersection over the elements of R:

UR=[3@F+2) s@+y), v+7-z, h+7-y), )

NR=[4@+z), sH+y), w-T+z, h-F+yl. )

A particularly useful property of this representation is
that we can search over all windows of a fixed size by
setting w = w and h = h, thus turning the four-
dimensional branch-and-bound search effectively into a
two-dimensional search. This results in a vast reduction in
search iterations and at the same time renders the memory
requirements of P, negligible. The experiments also show
that due to the use of scale invariant feature descriptors we
do not completely lose the ability to detect objects of other
scales. Finally, fixed size search windows allow the use of
the simpler dot and HI quality measure that have degenerate
behavior if regions can be of arbitrary size.
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Table 1. Examples of quality functions suitable for Efficient Subimage Retrieval with their region- and image-based bounding functions:
histogram intersection (HI), normalized histogram intersection (NHI), dot-product (dot), cosine measure (cos) and Bhattacharya coefficient
(pvhair). ||-||p denotes the LP-norm for p = 1,2, and ||.||; := max(1, ||.||p). See Sections 2.2.1 and 2.2.3 for the remaining notation.

2.2.3 Branch-and-Bound over Image Sets

An image retrieval method will not be truly scalable if it has
to perform a linear scan through all images for each query.
In ESS, this is particularly apparent when searching only for
very few detections, because then it is the step of inserting
all images into P, that dominates the overall search time.
ESR gets around this linear scan by introducing an image
level branch-and-bound process, based on a second prior-
ity queue P,,,. In each iteration, ESR checks whether the
upper bounds of the image queue of P, or P, are higher
(Table 3, line 21), and executes one step in the more promis-
ing queue (line 22, 23).

The localization step (line 1-8) works as it does for ESS:
it extracts the most promising set of regions (line 1), splits it
(line 5) and reinserts the resulting states into P, (line 6,7).
Because we require only one detection per image, when-
ever the algorithm has identified a detection R in an image
1, it removes all states for candidate regions within  from
the priority queue (line 3) before returning R. The image
level branch-and-bound procedure (line 9—15) has the ana-
log steps of extracting the top state (line 9), splitting it (line
12) and reinserting the parts (line 13,14), except that if an
optimum [ is identified, it is transferred to the localization
queue for further processing (line 11).

The branch-and-bound search in the image domain re-
quires an image level quality bound, i.e. a function f :
P(Z.) — R that fulfills

F(T) = max (1), 4)

for any Z C Z,, where f (I) is a short-hand notation for
f (Rau(I)). In contrast to Equation (1), no condition of
equality between f and f for single element sets Z is nec-
essary, but ESR will correctly identify the object detections
even for a trivial choice like f(Z) := co. However, a too
loose bound f renders the image-based priority queue su-
perfluous, because very large values of f will cause all im-
ages to be moved from P, to Py, during the first itera-

tions of the algorithm. One should therefore try to have at
least f({I}) close to f(I), as this will ensure that only im-
ages with promising f values will show up in P,.. By this
construction one also gets away without a pruning step in
Ping, which would require a priori knowledge of the mini-
mal quality score.

For histogram based quality functions suitable bounds f
can be constructed in similar way to f : for any set of images
7T, we set, under a slight abuse of notation,

F(@) = f(h,77) 5)

for the histogram EI defined by Ei = maxjer h£ and hz. =
0, and writing k! for hR«() Table 1 lists the resulting
expressions in column 4.

The time evaluate Equation (5) is independent of the size
of 7 if we precompute the query independent histograms
7. n contrast, the naive bound f(Z) = maxez f(h%, h')
is potentially tighter, but already calculating the initial
f (Zau) spoils the chances of sublinear runtime complexity.

How good the bounds fas given by Equation (5) actually
are depends on the elements of Z. The more homogeneous
the histograms h! are for I € Z, the tighter f is. Con-
sequently, if the optimal region is actually contained in Z,
fewer evaluation within irrelevant images will be required.
In the following, we introduce two possible splitting meth-
ods, one for videos and one for arbitrary image sets.

Scene-Based Splits of Videos. In order to split the set
of frames of a video sequence, we can make use of the
prior knowledge that the frames have a temporal order, and
that neighboring frames typically have similar bag of vi-
sual words histograms. Consequently, we represent sets of
frames by intervals over the time axis and split them in ev-
ery iteration at their center point. Better bounds, however,
are obtained by taking into account that a typical video con-
tains hundreds or thousands of scene changes. Because the
bag of word histograms can change significantly at these
points, using scene changes as natural splitting points leads



to more homogeneous histogram sets. We implement this,
by first identifying all positions in the video at which a scene
change occurs. During the search, we split a set of frames
T = {Iiow, - - -, Inign } always at the scene change closest to
the center of the interval, or, if Z does not contain a scene
change, we split at the center frame [ UL (low-+high) | itself.
Because the resulting hierarchical partitioning of Z,; is
independent of the query, we can precompute the resulting
histograms hZ and consider them parts of the dataset.

Kernel Vector Quantization Clusters. For arbitrary im-
age collections, the concept of a scene does not exist, and
splitting along the image index will likely not be better than
splitting randomly. Instead, we construct the intended splits
by hierarchical clustering using Kernel Vector Quantization
(KVQ) [20]. In contrast to clustering methods used previ-
ously to speed up image retrieval [16, 18], in particular to
k-means and agglomerative clustering, the KVQ algorithms
find clusters such that the maximal distance between any
two elements within a cluster is guaranteed not to exceed
a user-definable threshold. Because KVQ can work with
any distance metric, it provides a powerful tool for finding
clusters that are homogeneous with respect to the quality
measure f. For this, we first observe that all quality func-
tions f in Table 1 are positive definite Mercer kernels [13],
and their induced distance functions

dy(h,h') =/ f(hh) + F(B', ') = 2f (R, D). (6)
are therefore proper metrics. To construct a hierarchical par-
titioning of Z,;, we start with the full dataset. In each fol-
lowing step, we calculate the largest distance between any
two elements in the current image set. Running KVQ with
the square root of this distance as threshold, we are ensured
to obtain clusters with significantly smaller radius than the
current one. Note that, because we fix the maximal dis-
tortion instead of the number of prototypes, the number of
clusters found can vary. This is no problem, however, as
the IMAGE-B &B routine of ESR is easily adapted to handle
splits into more than two parts. As in the situation of videos,
the clustering obtained is independent of the query. It can
therefore be precomputed and the resulting aggregated his-
tograms can be stored as part of the dataset.

2.2.4 Reducing Memory Usage by Lazy Loads

ESR as described so far has already the capability of per-
forming object-based image retrieval in sublinear runtime.
However, its memory footprint would still prevent it from
working with truly large data sets, as can be seen from the
following rough calculation. A typical visual word repre-
sentation of an image consists of 1000-5000 local descrip-
tors. For each one, we have to store its (z,y) location and
its codebook id. Even in a packed representation, e.g. using
short integers values, each image requires 6-30 KB of ran-
dom access memory. For a video or dataset with 100,000

images, already up to 3 GB of RAM are required, which is
near or beyond the limit of what typical workstation offer.

In ESR, we mitigate this problem by a lazy load strat-
egy, making use of the best first property of the branch-and-
bound search. We first observe that it is only the region-
based quality function f that requires information on where
in an image the feature points are located. The image based
f can be calculated based only on the accumulated his-
tograms h”. Consequently, we can delay the loading of the
feature point representation for an image until it is moved
from Py, to Pj, (line 11), which might well be never,
namely if f indicates that it is not relevant for the query.
While in principle it is also possible that P, runs empty,
i.e. all images lie simultaneously in P,., we have never ob-
served such behavior during our experiments.

2.3. Further Improvements and Extensions

One can imagine several further extensions and improve-
ments that do not affect the search step of ESR itself and can
therefore be included optionally. Note that some of them are
approximations, and by adopting them one loses the guar-
antee that ESR detects only the globally best regions.
Stopword removal: We can prefilter the set of visual
words, removing the most and/or least frequent ones [17].
Though in our own experience, this step did not improve
the detection accuracy, it also did not reduce it, thus making
stopword removal at least benefit in the sense that it reduces
in the number of feature points we have to store and process.
Inverted indices: To benefit from the sparsity of the query
histogram, we can build inverted local maps, similarly to
inverted indices [17]. For every image and visual word, we
store all locations at which corresponding feature points oc-
cur. By pre-sorting the location along one of their coor-
dinates, we can calculate hf faster than by a linear scan
through all feature points.

Image filtering: We can speed up the search and reduce
the maximal memory requirements by limiting the number
of images that are allowed to be moved from Py to P,.
Output reranking: Post-filtering operations, e.g. based on
context or geometry, are easily added, because ESR returns
not only the relevant images but also the region coordinates.
Search time limits: ESR is an anytime algorithm. If we
interrupt the search at any time, we still have the guarantee
that all detections up to this point were the optimal ones.
Result diversity: We can enforce diversity in the result by
modifying the REGION-B&B procedure. For every detec-
tion [, R], we remove not only all search states containing
I from the priority queues, but also all states corresponding
to all frames within the same scene or cluster.

Feature combination: As a histogram based technique,
ESR can naturally combine different feature types, e.g. in
form of additional histogram dimensions.

Feature weighting: All quality functions of Table 1 can be



made into weighted, e.g. tf-idf, variants. All quality func-
tions are additive, so the weights propagate into the bounds.
Multiple queries: To search for multiple queries simulta-
neously, e.g. multiple regions or different region sizes, it
suffices to insert all start states into the initial priority queue.
User feedback: Because ESR returns the “best” boxes
first, users can immediately see how promising their current
search is. User feedback can be integrated on-the-fly.

3. Related Work

Research in the area of content based image retrieval
goes back as far as the late 1970s, see e.g. [9, 15] for
overviews. Only a small part of the method developed,
however, can perform object-based local queries. We di-
vided those into three categories: methods that decompose
the images into collections of smaller units, methods that
augments global representations, and methods that rely on
object localization techniques.

Decomposition method, e.g. [1, 4, 12] partition the im-
age into discriminative image segments, sometimes called
blobs, and allow queries to the individual part or combi-
nations instead of just to the image as a whole. However,
because only elements of the preconstructed image decom-
position are accessible for comparison to the query and re-
trieval, these methods are typically limited in what kind
of queries they can answer successfully. Augmented rep-
resentation rely on a preprocessing of all images to mark
all object occurrences that might later by queried for. De-
spite their limitations, augmentation is a powerful tech-
nique when the set of possible queries is limited, e.g. only
faces [2, 10] or human poses [3]. Object localization based
techniques are more flexible that the previous ones, be-
cause they can in principle identify any part of the im-
age as relevant for a query. Early methods used color his-
togram [19, 22] and searched the entire image for the best
matching region, typically applying heuristics to speed up
the search. Similar setups were also applied to deformable
object templates [6] or SIFT descriptors [23]. The draw-
back of localization based systems are usually their lack of
scalability, because each object localization step is compu-
tationally costly and the images are typically processed se-
quentially.

Surprisingly, the currently most successful systems for
object-based image retrieval in large image collections do
not really perform local searches at all, but rather only com-
bine flexible local image representations with image level
retrieval techniques. In [5] every image is decomposed into
a set of local descriptors. To search for a query region,
the images are ranked based on nearest neighbors lookups
between all descriptors of the query and the images. A
more scalable system is proposed in [7] using locally sen-
sitive hashing to match descriptors. The Video Google sys-
tem [14] also represents images by local descriptors, but

it accumulates them into bag-of-visual-words feature. Re-
trieval is done by calculating the cosine measure between
the local query histograms and the histograms of every im-
age in the dataset. Such local-to-global comparison are ef-
ficient to computable, but they do not reflect the local na-
ture of the query. Therefore, post-processing operations are
applied that re-ranked the highest scoring images accord-
ing to a second quality measure, taking into account e.g.
the local geometry. An improved system that can also han-
dle much larger dataset is proposed in [11]. The authors
choose a very large codebook with over one million ele-
ments, thereby strongly reducing the number of false posi-
tive matches on the global level. The highest scoring frames
are reranked based on a RANSAC procedure.

ESR can be seen as a fusion of the localization based
methods with the global-to-local methods. Crucial differ-
ences, however, are that ESR does not search linearly over
all images, and it also does not use the comparison between
local query and full images as hard cut-off to discard image.
Instead, the quality bound f guides a search for promising
images to which the localization procedure is applied.

4. Experimental Evaluation

In the following, we show the performance of ESR for
several task of object-based image retrieval from videos and
image collections. For this, we have implemented ESR in
C++ with a small Python GUI for query selection'. Except
where indicated otherwise, all experiments were performed
on a Dell workstation with 3.4 GHz Intel CPU and 3 GB
of RAM. All reported runtimes are measured user time, in
order to exclude the overhead of disk access at startup.

In order to put the method into perspective with previous
work, we first analyze the quality of the proposed quality
functions by performing local-to-global queries on the Ox-
fordBuildings dataset®, thereby copying the procedure de-
scribed in [11]. Table 2 shows the results where retrieval
quality is defined as the average precision (AP) measure
over 55 predefined local queries. One can see that all qual-
ity functions of Table 1 have comparable and good perfor-
mance, clearly better than the y2-distances. Using the same
features representation, the authors of [11] report results
slightly better than ours, which we contribute to their use
of a stopword table and #f-idf weighting. RANSAC based
post-processing causes a further marginal improvement.

To show ESR’s performance on the retrieval of local re-
gions, we applied it to several videos and the Caltech256
image dataset’>. In each case we extracted up to 1000
rgSIFT [21] descriptors per image and quantized them us-
ing codebooks of 1000 (for (a),(b),(d)) or 512 (for (c),(e))
visual words. Table 4 shows the results in graphical and nu-

ISource code is available at http: //www.christoph-lampert .de
thtp://www.robots.ox.ac.uk/~vgg/data/oxbuildings/

3http://www.vision.caltech.edu/Image,Datasets/Caltech256/



(€) Caltech256 (30,607 images) T: (< 0.01/2.3/11/242), E: (0.018/101/264/5958),

No mistakes within
first 1000 detections.

2/1000

: (95.99/64.2/54.9/43.5)

Q: (1.00/0.43/0.37/0.30), S

Figure 4. Graphical and numerical results of object-based image retrieval with ESR. Each row shows from left to right: query image,
example detections (suppressing near-duplicates), highest scoring false detection. Numerically, we report the following quantities for 1,
10, 100 and 1000 detections: (T) total runtime [in seconds], (E) total number of evaluations of quality function f [in 1000], (Q) value of

quality function f, (S) image level sparsity (i.e. images not moved to P,.) [in percent] .

‘X?w,m H dot ‘ HI ‘ cos ‘ NHI ‘pbhatthf—idfcos[ll]
0.03 ‘ 0.34 H 0.56 ‘ 0.54 ‘ 0.61 ‘ 0.57 ‘ 0.60 H 0.62 (0.65)

Table 2. Average precision of different quality function on the Ox-
fordBuildings dataset. x? fails, and x2,,,, performs weakly, be-
cause they are ill-suited to the very sparse representation. All qual-
ity functions from Table 1 perform comparably with the best result
in [11], where a tf-idf weighted cosine measure after stopword re-
moval is used. The italicized score is achieved by RANSAC post-
processing.

merical form. Because of space limitation we only report
the results of the NHI measure. In summary, the other qual-
ity functions perform as one would expect them to: HI and
dot are faster than NHI but achieve slightly lower accuracy.
cos is comparable in quality and speed with NHI. ppjq is of
comparable quality as well, but much slower.

Experiment (a) is set up as a copy of the retrieval ex-
periment in [8], using only the keyframes of the full-length
movie Ferris Bueller’s Day Off. To achieve comparable
timing results, we also use a PC with 2.4 GHz CPU as de-
scribed there. Our results show that ESR achieves supe-
rior retrieval accuracy (no false detections within the first
100 detections compared to 4) at over 200x the detection
speed (0.9s for 100 detections instead of 200s). The other
experiments show further aspects of interest: (b) uses the

same query as (a), but the search is performed over all
frames of an episode of the TV series Scrubs containing
a variant of the same Red Wings logo. This is a more diffi-
cult setup than the previous, because the image material of
query and database come from different sources and there-
fore have different characteristics, e.g. in terms of image
noise. Nevertheless, ESR sucessfully identified the logo
and also copes well with object occurrences of different
size and occlusions, despite the use of a fixed size query
window. In (c), we applied ESR to The Simpsons Movie.
Because cartoon drawings contain few textured regions Re-
trieval in this setup is difficult task for SIFT-based meth-
ods, This results in low values of the quality function for
all matches and relatively high retrieval times, but the vi-
sual quality of the detections is still good. This example
also illustrates that query regions for ESR do not have to be
rectangular, because only the resulting bag of visual words
histogram is required to perform a search. Experiment (d)
illustrates an application of potential commercial interest:
we detect, how often and when a certain FUJIFILM adver-
tisement was visible during a soccer match. Note that this
would be a very difficult problem for methods that work
with global representations, because most frames look very
similar, and the 102 x 16 pixel query region corresponds



to only 0.3% of the 1000 x 568 pixel images. Retrieval on
Caltech256 dataset (e) shows the limitation of the query-
by-example setup chosen. While ESR does detect images
with similar regions, it is not designed to generalize be-
tween object instances and it cannot perform reliable object
category classification based on its single object example.
Overall, the experiments show that ESR is capable of do-
ing high quality, highly efficient, large-scale object-based
image retrieval. Particularly impressive results are achieved
when the dataset contained a perfect subimage match for the
query (experiments (a),(d),(e)). These are identified within
milliseconds, requiring less than a hundred evaluation of f .
From our experience, the main two factor for ESR’s high
performance are the reduction of the search space by rely-
ing on fixed size queries, and the replacement of the linear
search over all images by the prioritized image queue Piyg.
The image-level branch-and-bound step is beneficial only
for very large image collections and if a good pre-clustering
of the images is available. Otherwise, inserting all frames
directly into Py, is an easier and equally efficient setup.

5. Conclusions

In this work we have introduced efficient subimage re-
trieval, a generalization of efficient subwindow search that
allows globally optimal object-based image retrieval for
large image datasets. Our main contributions were the intro-
duction of a new box set parametrization that is suitable for
retrieval tasks with search windows of fixed or constrained
size, a two layer branch-and-bound setup that keeps non-
promising images in a separate queue, thereby saving time
and memory, and the derivation of quality bounds for sev-
eral classical quality functions for image retrieval. In an ex-
perimental evaluation we were able to show excellent detec-
tion performance in terms of speed and accuracy: typically,
it takes ESR only seconds to find the regions best matching
a query within a sets of over 100,000 images. Because ESR
is constructed in a modular way, it opens the doors for many
different directions of future work. We have hinted on some
of them in Section 2.3.
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