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Efficient Subwindow Search: A Branch and Bound
Framework for Object Localization

Christoph H. Lampert, Matthew B. Blaschko, and Thomas Hofmann

Abstract—Most successful object recognition systems rely on
binary classification, deciding only if an object is present or not,
but not providing information on the actual object location. To
estimate the object’s location one can take a sliding window
approach, but this strongly increases the computational cost,
because the classifier or similarity function has to be evaluated
over a large set of candidate subwindows.

In this paper, we propose a simple yet powerful branch and
bound scheme that allows efficient maximization of a large class
of quality functions over all possible subimages. It converges to
a globally optimal solution typically in linear or even sublinear
time, in constrast to the quadratic scaling of exhaustive or
sliding window search. We show how our method is applicable
to different object detection and image retrieval scenarios. The
achieved speedup allows the use of classifiers for localization
that formerly were considered too slow for this task, such
as SVMs with a spatial pyramid kernel or nearest neighbor
classifiers based on the χ2-distance. We demonstrate state-of-
the-art localization performance of the resulting systems on the
UIUC Cars dataset, the PASCAL VOC 2006 dataset and in the
PASCAL VOC 2007 competition.

Index Terms—Object Localization, Sliding Window, Global
Optimization, Branch and Bound.

I. INTRODUCTION

RECENT years have seen great progress in the area of
object category recognition for natural images. Recogni-

tion rates beyond 95% are the rule rather than the exception
on many datasets. However, in their basic form, many state-
of-the-art methods only solve a binary classification problem.
They can decide whether an object is present in an image or
not, but not where exactly in the image the object is located.

Object localization is an important task for the automatic
understanding of images as well, e.g. to separate an object
from the background, or to analyze the spatial relations of
different objects in an image to each other. To add this
functionality to generic object categorization systems, sliding
window approaches have established themselves as state-of-
the-art. Most successful localization techniques at the recent
PASCAL VOC challenges on object category localization
relied on this technique. The sliding window principle treats
localization as localized classification, applying a classifier
function subsequently to subimages within an image and
taking the maximum of the classification scores as indicators
for the presence of an object in this region. However, already

Manuscript received XXX; revised YYY.
Christoph H. Lampert is with the Max Planck Institute for Biological
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an image of as low resolution as 320×240 contains more than
one billion rectangular subimages. In general, the number of
subimages grows quadratically with the number of image pix-
els, which makes it computationally too expensive to evaluate
the quality function exhaustively for all of these. Instead, one
typically uses heuristics to speed up the search that introduce
the risk of mispredicting the location of an object or even
missing it.

A similar problem exists in the field of image retrieval: ex-
isting methods for content-based image retrieval (CBIR) rely
on global properties of images, e.g. color distribtions, or global
statistics of local features, e.g. bag-of-words representations.
Such methods typically fail when it is only a subregion of the
image is of interest, e.g. a certain object or symbol as part of
a larger scene.

In this paper, we propose Efficient Subwindow Search (ESS),
a method for object localization that does not suffer from these
drawbacks. It relies on a branch and bound scheme to find
the global optimum of a quality function over all possible
subimages in the possible candidate image, thus returning
the same object locations that an exhaustive sliding window
approach would. At the same time it requires much fewer
classifier evaluations than there are candidate regions in the
images—often even less than there are pixels— and typically
runs in linear time or faster. Branch and bound optimization
has been used in computer vision for geometric matching
objectives [1]–[6], but we rather use branch and bound to
optimize more general object localization objectives, including
those based on quantized local features.

This paper extends [7] with additional empirical results
and an in-depth analysis of ESS’s performance compared
to sliding window approaches. Sections II–IV explain how
ESS allows the efficient maximization of an image quality
functions over all subregions of an image. This enables object
localization by localized classification and region-based image
retrieval for quality functions that previously were considered
unusable in these applications because they were too slow
or had too many local maxima in their classification scores.
Consequently, one obtains improved localization performance,
as we will demonstrate in Sections V–VII. In the next section,
we give an overview of other approaches for object localization
and their relation to ESS.

A. Sliding Window Object Localization

Many different definitions of object localization exist in the
scientific literature. Typically, they differ in the form that the
location of an object in the image is represented, e.g. by its
center point, its contour, a bounding box, or by a pixel-wise
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segmentation. In the following we will only study localization
where the target is to determine a bounding box around the
object. This is a reasonable compromise between the simplicity
of the parametrization and its expressive power for subsequent
tasks like scene understanding. An additional advantage is
that it is much easier to provide ground truth annotation for
bounding boxes than e.g. for pixel-wise segmentations.

In the field of object localization with bounding boxes,
sliding window approaches have been the method of choice
for many years [8]–[12]. They rely on evaluating a quality
function, e.g. a classifier’s decision function, over many rect-
angular subregions of the image and taking its maximum as
the object’s location. Because the number of rectangles in an
n×m image is of the order n2m2, one cannot check all possible
subregions exhaustively. Instead, several heuristics have been
proposed to speed up the search. Typically, these consist of
reducing the number of necessary function evaluations by
searching only with rectangles of certain fixed sizes as can-
didates and only over a coarse grid of possible locations [8]–
[11]. Additionally, local optimization methods can be applied
instead of global ones, by first identifying promising regions
in the image and then using discrete gradient ascent procedure
to refine the detection [12].

The reduced search techniques sacrifice localization robust-
ness to achieve acceptable speed. Their implicit assumption
is that the quality function is smooth and slowly varying.
This can lead to false estimations or even complete misses
of the objects locations, in particular if the quality function’s
maximum takes the form of a sharp peak in the parameter
space. Note, however, that such a sharply peaked maximum
is exactly what one would hope for to achieve accurate and
reliable object localization.

II. EFFICIENT SUBWINDOW SEARCH (ESS)

This section introduces efficient subwindow search (ESS), a
technique to efficiently predict the best location of an object in
an image for a fixed (usually trained) quality function. We start
by formalizing the setup of window-based object detection.
For this, we assume a quality function

f : X × Y → R (1)

where X is the space of all images and Y is the space of
rectangular subregions. We interpret f(x, y) as the quality of
the prediction that an object of the target class is located at
position y in x. Note that we do not impose any a priori
smoothness assumption on f .

We first study the situation where x is a single fixed image.
Since no confusion can arise in this case, we use the notation
f(y) for f(x, y). To predict the best location of the object,
we have to solve

yopt = argmax
y∈Y

f(y). (2)

Because Y has of the order O(n2m2) elements for an n×m
image, we cannot perform this maximization exhaustively,
except for very small images. Search based object detection
methods like sliding window approximate the solution to
Equation (2) by searching only over a small subset of Y ,

Fig. 1. Representation of rectangle sets by 4 integer intervals.

which can result in suboptimal performance. In the following,
we show that efficient subwindow search (ESS), which relies
on a branch and bound scheme, can find the exact maximum
of Equation (2) in a very computationally efficient way.

A. Branch and Bound Search

The insight behind ESS is an interpretation of Equation (2)
not procedurally, i.e. not as a loop over all candidate regions,
but mathematically as an optimization problem over a struc-
tured search space. This naturally leads to a targeted search
towards the maximum instead of an exhaustive one. Since f
might not be differentiable and can have many local maxima,
we do not rely on local, e.g. gradient based techniques, but
use a global branch and bound search [13].

The optimization works by hierarchically splitting the pa-
rameter space into disjoint subsets, while keeping bounds for
the maximal quality for each of the subsets. Promising parts
of the parameter space are explored first, and large parts of the
parameter space do not have to be examined further if their
upper bound indicates that they cannot contain the maximum.

In the case of ESS, the parameter space is the set of all
possible rectangles, Y , in an image, and subsets are formed
by imposing restrictions on the values that the rectangle
coordinates can take. We parameterize rectangles by their top,
bottom, left and right coordinates (t, b, l, r), and we extend this
parametrization to sets of rectangles by using intervals instead
of single integers for each coordinate. This allows the efficient
representation of sets of rectangles as tuples [T,B,L,R],
where T = [tlow , thigh ] etc., see Figure 1 for an illustration.
The full n×m image corresponds to the region y =̂ [1, n, 1,m]
in this representation, and Y =̂ [ [1, n], [1, n], [1,m], [1,m] ].

For each rectangle set, we calculate a bound for the highest
score that the quality function f could take on any of the
rectangles in the set. ESS terminates when it has identified a
rectangle with a quality score that is at least as good as the
upper bound of all remaining candidate regions. This criterion
guarantees that a global maximum has been found.

ESS organizes the search over candidate sets in a best-first
manner, always examining next the rectangle set that looks
most promising in terms of its quality bound. The candidate
set is split along its largest coordinate interval into halves, thus
forming two smaller disjoint candidate sets (Figure 2). The
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Fig. 2. Splitting rectangle sets is done by dividing one of the intervals in two. In this case, [T,B,L,R]→ [T,B,L,R1] ∪̇ [T,B,L,R2], where R1 :=
[rlo, b rlo+rhi

2
c] and R2 := [b rlo+rhi

2
c+1, rhi].

search is stopped when the most promising set contains only
a single rectangle with the guarantee that this is the rectangle
of globally maximal score. This form of branch and bound
search has been shown to require the minimal possible number
of function evaluations [14] in the setup chosen. Algorithm 1
gives pseudo-code for ESS using a priority queue to hold the
search states.

III. CONSTRUCTION OF QUALITY BOUNDING FUNCTIONS

ESS is a completely generic optimization technique. It
can be applied to any quality function f , for which we can
construct a function that upper bounds the values of f over
sets of rectangles Y ⊂ Y . This bounding function f̂ has to
fulfill the following two properties:

i) f̂(Y ) ≥ max
y∈Y

f(y),

ii) f̂(Y ) = f(y), if y is the only element in Y .

Condition i) ensures that f̂ acts as an upper bound on f ,
whereas condition ii) guarantees the optimality of the solution
to which the algorithm converges. In practice, f̂ only has
to be defined for rectangles sets Y that have a [T,B,L,R]
representation, as only these can occur during the algorithm.

Note that for any f there is a spectrum of possible bounding
functions f̂ . On the one end, one could perform an exhaustive
search to achieve exact equality in i). On the other end, one

could set f̂ to a large constant on everything but single rectan-
gles. A good bound f̂ is located between these extremes: fast
to evaluate but also tight enough to ensure fast convergence. In
the following sections we show how such bounding functions
f̂ can be constructed for different choices of f .

Algorithm 1 Efficient Subwindow Search
Require: image x
Require: quality bounding function f̂ (see Sect.III)
Ensure: (topt, bopt, lopt, ropt) = argmaxy∈Y f(y)

initialize P as empty priority queue
set [T,B,L,R] = [1, n]× [1, n]× [1,m]× [1,m]
repeat

split [T,B,L,R]→ [T1, B1, L1, R1] ∪̇ [T2, B2, L2, R2]
push ( [T1, B1, L1, R1]; f̂([T1, B1, L1, R1] ) onto P
push ( [T2, B2, L2, R2]; f̂([T2, B2, L2, R2] ) onto P
retrieve top state [T,B,L,R] from P

until [T,B,L,R] consists of only one rectangle
set (topt, bopt, lopt, ropt) = [T,B,L,R]

A. Linear Classifiers

As demonstration of how to construct the necessary quality
bounding function, we first study the case where the quality
function f is the decision function of a support vector machine
(SVM) with a linear kernel over a bag-of-visual-words (bovw)
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histogram representation. Each image x is represented by a
set of feature points dj , j = 1, . . . , n, where for each feature
point we store its image coordinates and a bag-of-visual-
words cluster id cj . Given any rectangular region y in x,
we can form x|y , i.e. the image x cropped to the region y,
which is again an image and some of the feature points lie
inside it. For any such x|y , we can form the K-bin histogram
h = h(x|y), where each entry hk counts how many feature
points of the cluster id k occur in x|y . Such bovw-histograms
will be the underlying representations for all quality functions
that we study in this section. Note that for simplicity, we use
unnormalized histograms in this construction, except where
indicated otherwise.

In its canonical form, the corresponding SVM decision
function is f(h) = β +

∑
i αi〈h, hi〉, where 〈. , .〉 denotes

the scalar product in RK . hi are the bovw-histograms of the
training examples and αi and β are the constant weights
and bias term that are learned during SVM training. Because
of the linearity of the scalar product, we can rewrite this
expression as a sum over per-point contribution with weights
wm =

∑
i αih

i
m:

f(y) = β +
∑

dm∈ x|y

wcm
. (3)

where the sum runs over all feature points dm that lie in the
region y. Because we are only interested in the argmax of f
over all y ∈ Y (Equation (2)), we can drop the constant bias
term β.

It is now straight-forward to construct a function f̂ that
bounds f over sets of rectangles Y ⊆ Y . First, we decompose
f=f+ + f−, where f+ contains only the positive summands
of Equation (3) and f− only the negative ones. For a set of
regions Y , we denote by y∪ the union of all rectangles in Y
and by y∩ their intersection. Then

f̂(Y ) ≡ f+(y∪) + f−(y∩) (4)

will be a bound for f that fulfills the criteria i) and ii). Check-
ing property ii) is trivial, in this case, since y∪ = y∩ = y if
Y = {y}, and f+(y) + f−(y) = f(y) by construction. To
show i), we observe that for any y ∈ Y the feature points
that lie in y are a subset the points in y∪ and a superset of
the points in y∩. Since f+ contains only positive summands,
we have f+(y∪) ≥ f+(y), and analogously f−(y∩) ≥ f−(y)
because f− contains only negative summands. In combination,
we obtain that

f̂(Y ) = f+(y∪) + f−(y∩) ≥ f(y) (5)

holds for any y ∈ Y and therefore also for the element
maximizing the right handside.

To make f̂ a useful quality bounding function, we have to
show that we can evaluate it efficiently for arbitrarily large
Y ∈ Y . If Y was an arbitrary set of rectangles, finding y∪
and y∩ could require iterating over all elements. However,
rectangle sets in the ESS algorithm are always given in
their parametrization [T,B,L,R]. This ensures that y∪ and
y∩ will be rectangles again, which is important in order
to efficiently represent them. It also allows us to determine

y∪ and y∩ in constant time: writing T = [tlow , thigh ],
etc., one sees that y∪ = [tlow , bhigh , llow , rhigh ] and y∩ =
[thigh , blow , lhigh , rlow ]. If the latter is not a legal representa-
tion of a rectangle, i.e. if rlow < lhigh or blow < thigh , then
y∩ is empty.

Using integral images [15] we can make the evaluations
of f+ and f− constant time operations, thus making each
evaluation of f̂ an O(1) operation. The fact that the evaluation
time of f̂ is independent of the number of rectangles contained
in Y is a crucial factor in why ESS is fast.

B. Spatial Pyramid Features

Raw bag-of-visual-words models, as used in the previous
section, have no notion of geometry. They are therefore not
the best choice for the detection of object classes which have
characteristic geometric arrangements, e.g. cars or buildings.
Spatial pyramid features have been developed to overcome this
limitation. They divide every image into a grid of regions and
represent each grid cell by a separate histogram. Typically, a
pyramid of increasingly fine subdivisions is used, see [16] for
the exact construction.

We consider an SVM classifier with linear kernel on top of
such a hierarchical spatial pyramid histogram representation.
The decision function f for a region y in an image x is
calculated as

f(y) = β +
L∑
l=1

∑
i=1,... l
j=1,..., l

N∑
k=1

α
l,(i,j)
k 〈hyl,(i,j), h

k
l,(i,j)〉, (6)

where hyl,(i,j) is the histogram of all features of the image
x that fall into the spatial grid cell with index (i, j) of an
l× l spatial pyramid in the region y. αl,(i,j)k and β are the
coefficients learned by the SVM when trained with training
histograms hkl,(i,j).

Using the linearity of the scalar products, we can again
transform this into a sum of per-point contributions:

f(y) = β +
∑n

m=1

L∑
l=1

∑
i=1,... l
j=1,..., l

wl,(i,j)cm
, (7)

where wl,(i,j)cm =
∑
k α

l,(i,j)
k hkl,(i,j);cm

, if the feature point dm
has cluster label cm and falls into the (i, j)-th cell of the l-
th pyramid level of y. Otherwise, we set wl,(i,j)cm = 0. As
before, we can ignore the bias term β for the maximization
over y ∈ Y .

A comparison with Equation (3) shows that Equation (7)
is a sum of bovw contributions, one for each level and cell
index (l, i, j). We bound each of these as explained in the
previous section: for a given rectangle set Y , we calculate box
regions containing the intersection and union of all grid cells
yl,(i,j) that can occur for any y ∈ Y . Calling these yl,(i,j)∪ and
y
l,(i,j)
∩ , we obtain an upper bound for a cell’s contribution by

adding all weights of the feature points with positive weights
w
l,(i,j)
c that fall into yl,(i,j)∪ and the weight of all feature points

with negative weights that fall into y
l,(i,j)
∩ . An upper bound

f̂ for f is obtained by summing the bounds for all levels
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and cells. If we make use of two integral images per triplet
(l, i, j), evaluating f̂(Y ) becomes an O(1) operation. This
shows that also for the spatial pyramid representation, efficient
localization using ESS is possible.

C. Non-linear additive classifiers

Many window-based object detection systems can benefit
from non-linear classifiers to achieve better performance. ESS
is applicable to these as well, if a suitable bound is available. In
this section, we show how to construct exemplary bounds for
the histogram intersection kernel and χ2-distance. The former
is popular in the context of the pyramid match kernel [17]. The
latter has been used e.g. for nearest-neighbor based classifiers
[18], but by setting k(h, h′) = −χ2(h, h′), it can also be used
as the kernel of an SVM classifier.

1) (Generalized) histogram intersection kernel: The gener-
alized histogram intersection kernel [19] is defined as

kGHI(h, h′) =
K∑
k=1

[min(hk, h′k)]γ . (8)

where γ > 0 is a normalization parameter. For γ = 1 we
obtain the ordinary histogram intersection measure [20], [21].
To use this kernel for ESS localization, we need to construct
bounds for

f(y) =
n∑
j=1

αj

K∑
k=1

[min(hjk, h
y
k)]γ , (9)

where hj are fixed training histograms and hy is the histogram
of the cropped image x|y , and y varies within a candidate set
Y . As before, we have ignored the SVM’s bias term.

Notice at first that the value of each histogram bin hyk for
y ∈ Y can be bounded from above and from below by the
number of keypoints with corresponding cluster index that fall
into y∪ and y∩ respectively. We denote these bounds by h

Y

k

and hYk . Thus, we obtain

min(hk, hYk ) ≤ min(hk, h
y
k) ≤ min(hk, h

Y

k ) (10)

with equality in the situation that Y = {y}. This implies that
for any γ > 0, we can now bound the summands in Equation
(8) from above and from below by

[min(hk, hYk )]γ ≤ [min(hk, h
y
k)]γ ≤ [min(hk, h

Y

k )]γ . (11)

Consequently,

f̂(Y ) =
∑
αj>0

αj [min(hk, h
Y

k )]γ +
∑
αj<0

αj [min(hk, hYk )]γ

(12)

is a quality bound for Equation (9) that fulfills i) and ii).

2) χ2-distance and kernel: The χ2-distance between two
histograms is calculated from the squared distance between
the bins, reweighted in a data dependent way. In contrast to
the kernels used previously, it is common to normalize the
histograms before calculating their distance, giving them the
properties of empirical probability distributions:

χ2(h, h′) =
K∑
k=1

(pk − p′k)2

pk + p′k
(13)

with pk ≡ 1P
k hk

hk and p′k ≡ 1P
k h

′
k
h′k. To construct a bound

over a set of boxes Y , we first use the same construction
as for the intersection kernel to obtain unnormalized per-bin
bounds h

Y

k and hYk . We can bound each normalized entry by
p
k
≤ pk ≤ pk by

pY
k
≡ 1

max{1, hYk +
∑
k′ 6=k h

Y

k′}
hYk , (14)

pYk ≡
1

max{1, hYk +
∑
k′ 6=k h

Y
k′}

h
Y

k . (15)

Each component of the χ2-distance is bounded from below by

(pk − pYk )2

pk + pYk
≥


(pk − pYk )2/(pk + pY

k
) for pk < pY

k
,

0 for pY
k
≤ pk ≤ pYk ,

(pk − pYk )2/(pk + pYk ) for pk > pYk ,
(16)

The negative sum of these expressions fulfills properties i)
and ii) for a quality function f(y) = −χ2(h, hy). For use in a
support vector machine, one forms an upper bound in analogue
to (16) and combines both as has been done in Equation (12)
for the histogram intersection kernel, splitting the linear com-
bination into positive and negative contributions. Note that
bounds based on such chained constructions as for χ2-distance
are generally looser than direct ones, and the branch and bound
search typically requires more iterations to converge than for
the linear kernels used previously. Althought both bounds in
this section require more computation than in the linear cases,
they can nevertheless be evaluated efficiently by using integral
histograms [22]. However, this comes at the expense of highly
increased memory usage, which can become prohibitive for
very large bovw codebooks. A promising alternative way has
been opened by Maji et al. [23], who derived an efficient
evaluation of the quality function based on interchanging the
order of summations in Equations (9). It can be presumed
that a similar construction would be possible for the bound
calculation as well.

D. Quality bounds by interval arithmetic

Another powerful approach to obtain quality bounding
functions for nearly arbitrary quality functions is interval
arithmetic, see e.g. [24], [25]. It allows computation with
uncertain quantities, in our case the intervals used to represent
rectangle sets. Breuel [26] applied this idea to a specific
quality function for the detection of geometric objects in line
drawings.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

An advantage of interval arithmetic is the reduced human
effort in constructing a bound and a reduced risk of error
in implementing it. With existing class or template libraries,
interval computations can be performed transparently, with
the same routines that perform single evaluations of the
quality function. On the downside, bounds that are derived
automatically are usually less tight than those constructed
manually, causing a slowdown of the branch and bound search.

IV. EXTENSIONS OF ESS

Several extensions of the basic ESS search scheme are
possible in order to provide additional functionality. To favor
boxes with specific shape properties one can add a geometric
penalization term to f . Typically, this could be a Gaussian
that takes its maximum at a certain rectangle size or aspect
ratio. Of course this term has to be taken in account when
deriving the bound for f . An alternate approach is to modify
the topology of a bounding region, e.g. as has been proposed
for piecewise linear bounding regions [27].

Object localization tasks often require the detection of more
than one object location in an image. For this, we can apply
Algorithm 1 repeatedly: whenever an object is found, all
feature points of the corresponding region are removed from
the image and the search is restarted until the desired number
of locations have been returned. Alternatively, one can simply
continue the search after the best location has been identified,
detecting the second best, third best region, etc.. However,
this requires a non-maximum suppression step, similar to what
sliding window approaches do to achieve multiple detections.

Finally, ESS can also be parallelized to make better use of
multi-core CPUs, HPC clusters or even computation on the
GPU. See e.g. [28] for a survey of techniques to parallelize
branch and bound algorithms.

A. Simultaneous ESS for multiple images and classes

A common situation in realistic applications is that one
does not have to evaluate only one quality function for one
test image, but rather several quality functions, e.g. for multi-
class classification, or one has to process many images, e.g.
an image database. Formally, this situation can be written as

(yopt, xopt, ωopt) = argmax
y∈Y, ω∈Ω

x∈{x1,...,xn}

fω(x, y), (17)

where each fω is a quality function for a class ω from a set
of classes Ω that are to be detected1, and x ranges over all
images in an image collection {x1, . . . , xN}. Other index sets
would, of course, also be possible.

A straight-forward application of ESS to this situation
would be to search for the best region for each class in
each image and choose the one with largest quality score.
However, we can achieve a much more efficient search by
interleaving the maximization over the best region within each
image with the maximizations over all images and all classes
into a single best-first search. For this, we add the start states

1Note that query by multiple examples is a special case of this setting in
which the different classes represent different query examples.

of all images and all classes into the priority queue before
starting the search.2 While ESS runs, the candidate regions
of all images and classes are simultaneously brought into an
order according to how relevant they are to the query. Search
states that do not contain promising candidate regions always
stay at the bottom of the queue and might never be expanded.

In retrieval scenarios, one is interested not only in the single
best result, but e.g. the top N images containing an object.
This is possible by a continued search approach: whenever
an optimal match has been found, we remove the states
corresponding to the image found from the search queue and
continue the search until N regions have been detected.

Note that the appealing idea of extending the full branch and
bound search to also cover Ω and {x1, . . . , xN} is not possible
in general. Since these domains do not have a geometric
structure as Y does, it is unclear how to come up with non-
trivial bounds for the quality function across different images
and classes. Domain dependent solutions could, however, be
possible, e.g. for video sequences where subsequent frames
are strongly correlated.

V. APPLICATION I: LOCALIZATION OF ARBITRARY OBJECT
CATEGORIES

To demonstrate the performance of ESS in terms of speed
and accuracy, we apply it to several realistic problem settings
from the areas of object localization and image retrieval. We
start by building a system that performs localization of arbi-
trary object categories. It uses an SVM classifier based on the
bag of visual words image representation as quality function,
as has been introduced in Section III. By choosing the bovw
representation, all relative spatial information between feature
points in an image is disregarded and the detection system
becomes invariant to any changes in the object geometry, pose
and viewpoint. Consequently, we obtain a localization system
that in principle is robust enough to detect arbitrary objects. In
particular, it is eligible for the detection of object classes that
show a large amount of variance in their visual appearance as
is the case, e.g., for many natural objects and animals.

A. PASCAL VOC 2006 dataset

In a first set of experiments, we tested the bovw based
localization on the cat and dog categories of the publicly
available PASCAL VOC 2006 dataset3, see Figure 3 for
examples. The dataset contains 5,304 natural images, which
are split into training and validation parts, on which all
algorithm development is performed, and a test part that is
reserved for the final evaluation. 1,503 images in the set show
at least one cat or dog. Some of the images contain more than
one object, and in total, there are 1,739 object intances.

To represent the images we extract SURF features [29]
from keypoint locations and from a regular grid and quantize
them using a 1000 entry codebook that was created by K-
means clustering a random subset of 50,000 descriptors. As

2If the number of images is so large that we exceed the cache, we may get
counterintuitive run-time performance. In these cases it may be more efficient
to use a parallel branch and bound strategy on multiple nodes [28].

3http://www.pascal-network.org/challenges/VOC/voc2006/
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Fig. 3. Example images of cat (top) and dog (bottom) categories of
PASCAL VOC 2006 dataset. Objects occur in different sizes and poses, and
multiple object instances are possible within one image. Objects are also
frequently occluded or truncated.

positive training examples for the SVM we use the ground
truth bounding boxes that are provided with the dataset. As
negative examples we sample 4,500 box regions from images
with negative class label and from locations outside of the
object region in positively labeled images. From this we
trained a support vector machine with linear kernel, using the
validation part of the dataset to select regularization parameter
C ∈ {10−3, . . . , 103}.

1) ESS vs. Sliding Window Localization: As we have seen
in the previous sections, ESS has the advantage over sliding
window methods that it finds a global optimum of the quality
function. Of course, this is only relevant if ESS is also fast
enough to be used in practical application, and if finding
the better maximum translates into better localization per-
formance. Therefore, we first benchmark ESS against sliding
window detectors in terms of these two properties.

In contrast to ESS, sliding window methods require the
specification of several parameters, in particular the set of
window sizes and aspect ratios to search over, and the step
widths of the search grid. By choice of these parameters,
sliding window methods can be made arbitrarily fast or slow.
This is achieved by trading off that less or more candidate
regions in the image are checked. For our experiments we
implemented five representative combinations of parameters
(SW1, . . . , SW5, see Table I). They are similar to what is
used in practical object localization systems [10], [15], [30],
and, in particular, the values are chosen such that the resulting
systems remain computationally tractable.

At first, we compare only the speed of ESS against the
sliding window approaches. To be independent of the hard-
ware and actual implementation of the quality function, we
measure speed by the number of quality function evaluations
performed. Evaluations of the quality bound (4) are counted as
two evaluations of the quality function itself. The total number
of evaluations varies with the image sizes and, in case of ESS,
the image content. To obtain comparable scores, we use the
scale-free ratio of function evaluations nESS/nSWi for each
set of sliding window parameters, i = 1, . . . , 5. Figure 4(a)
shows the results of applying the cat and dog detection to all
test images of the PASCAL VOC 2006 dataset. Blue bars in
the histogram indicate that ESS required fewer evaluation than
SWi, and red bars indicate the opposite.

Next, we compare the value of the quality function found
by both detection methods. It is clear by construction that
ESS will return better quality scores, as it finds the global
maximum of the quality function whereas sliding window

methods most often will not. We therefore use the score
f(yESS) found by ESS as reference value and compare how
close the values f(ySWi) returned by the sliding windows
approaches come to it. Again, we make the values scale
independent by taking ratios f(ySWi)/f(yESS). The results
are plotted in Figure 4(b).

The main quantity that we are interested in when performing
object localization is not the value of the quality function,
but the quality of the box detections. Again we know that
ESS finds the globally best region yESS in the sense of f ,
whereas the regions found by sliding windows ySWi might be
suboptimal. To measure how far both detections differs, we
calculate the area overlap between ESS’s detection and the
regions returned by the sliding window methods:

overlap(y, y′) =
Area(y ∩ y′)
Area(y ∪ y′)

(18)

Figure 4(c) shows the distribution of overlap scores.
Any region-based method for object localization can achieve

only as good results as the quality function used allows. To
ensure that the differences in performance between evaluation
procedures is also present for practical purposes, we compare
the detected regions yESS and ySWi with the ground truth
regions ygt of the dataset. Figure 5(a) shows a scatter plot
of the overlaps and Figure 5(b) shows the distribution of the
differences in the overlap scores. In both plots, the cases where
ESS achieves a higher overlap with the ground truth than the
sliding window approach are drawn in blue, and the opposite
cases in red.

Overall, the Figures 4 and 5 allow us to draw several
conclusions. First, since ESS is globally optimal whereas
sliding window method are not, it is not surprising that ESS
achieves better quality scores. Also, if one makes the sliding
window search to search more and more boxes, the method
naturally becomes slower and slower. However, one would
expect that with more window evaluation, the sliding window
quality scores and the overlap with the optimal rectangles
would approach the ESS results. This does not seem to be
the case. If Figure 4 shows such a trend at all, it would have
to be very weak. This might be due to the fact that any feasible
sliding window technique, even if it performs several times the
number of evaluation that ESS requires, can still only sample
a very small fraction of the full search space of all image
regions, and is therefore far from convergence to ESS’s results.

Figure 5 shows a similar picture. Sliding window methods
with fewer evaluations do not automatically achieve worse
detection results than those with more window evaluations. All
of the sliding window methods return boxes that on average
have significantly lower overlap with the ground truth than
the regions found by ESS. However, the figure also shows
that learning a good quality function is crucial for region-
based object localization. Currently, there is still room for
improvement, as one can see by the fact that the true maximum
of the quality function, as found by ESS, often does not
coincide with the expected ground truth. This aspect has
recently been adressed in [31].

2) ESS vs. other Localization Systems: To compare ESS
with other localization methods from the literature, we evalu-
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(a) Histogram of relative number of evaluations nESS

nSWi
(log scale). In the blue region, sliding window required more evaluations than ESS. In the red

region, ESS required more evaluations. The green bar indicates the mean ratio.

(b) Histogram of relative scores f(ySWi )

f(yESS)
, where yESS = argmaxy∈Y f(y). The green bar indicates the mean ratio.

(c) Histogram of box overlap between regions yESS maximizing the quality function and the regions ySWi found by sliding window search:
Area(yESS∩ySWi )

Area(yESS∪ySWi )
. The green bar indicates the mean ratio.

Fig. 4. Comparison of ESS against sliding window search, detecting classes cat and dog in all test images of PASCAL VOC 2006 (5372 images). From
left to right, sliding window with five different parameter sets (SW1, . . . , SW5, see Table I) are shown.

maximal/minimum window size size-ratio aspect ratios (AR) stepsize x/y
SW1 full image to 32 · (

√
AR× 1√

AR
)

√
2 2l for l ∈ {−2,−1.5, . . . , 2} 1/16 of window width/height

SW2 full image to 32 · (
√
AR× 1√

AR
) 1.10 2l for l ∈ {−2,−1.5, . . . , 2} 1/4 of window width/height

SW3 full image to 16 · (
√
AR× 1√

AR
) 1.05 2l for l ∈ {−2,−1.5, . . . , 2} 1/2 of window width/height

SW4 full image to 20 · (
√
AR× 1√

AR
)

p√
2 2l for l ∈ {−2,−1.75, . . . , 2} 1/8 of window width/height

SW5 full image to 24 · (
√
AR× 1√

AR
) 1.10 2l for l ∈ {−3,−2.75, . . . , 3} 1/8 of window width/height

TABLE I
PARAMETERS OF SLIDING WINDOW SEARCHES FOR FIGURES 4 AND 5. SIZE-RATIO IS THE FACTOR USED FOR MULTI-SCALE DETECTIONS. THE

PARAMETERS ARE CHOSEN SIMILAR TO TYPICAL METHODS FROM THE LITERATURE [10], [15], [30] AND ADAPTED TO ACHIEVE RUNTIMES
COMPARABLE WITH ESS.

tate its absolute localization performance in the standardized
setup of the PASCAL VOC dataset. First, we measure the
system’s performance in a pure localization task by applying
ESS to only the test images that actually contain objects to be
localized (i.e. cats or dogs). For each image we evaluate the
best object location by the usual VOC method of scoring [32]:
a detected bounding box is counted as a correct match if the
area of overlap with the corresponding ground truth box is
at least 50% of the area of their union. To each detection
a confidence score is assigned that we set to the value of
the quality function on the whole image. Figure 6 contains
precision–recall plots of the results. The curves’ rightmost
points correspond to returning exactly one object per image.
At this point of operation, approximately 55% of all cat
bounding boxes returned are correct and 47% of all dog

boxes. At the same time, we correctly localize 50% of all
cats in the dataset and 42% of all dogs. Note that precision
and recall differ, because images can contain more than one
object instance. Moving along the curve to the left, only
objects are included into the evaluation which have higher
confidence scores assigned to them. This generally improves
the localization precision.

As no other results on pure localization on the PASCAL
VOC datasets have been published so far, we also performed
the more common evaluation scenario of combined classifi-
cation and localization. For this, the method is applied to all
images of the test set, no matter if they contain the object
to be searched for or not. It is the task of the algorithm to
avoid false positives e.g. by assigning them a low confidence
score. The performance is measured using the evaluation
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(a) Scatter plot of overlaps between detected boxes for ESS yESS and sliding window ySWi with ground truth ygt: Area(ySWi∩ ygt)

Area(ySWi∪ ygt)
vs. Area(yESS∩ ygt)

Area(yESS∪ ygt)
.

Boxes that ESS estimates better than SWi are drawn in blue, others in red. ρ is the resulting correlation coefficient.

(b) Histogram of differences in overlap with ground truth: Area(ySWi∩ ygt)

Area(ySWi∪ ygt)
− Area(yESS∩ ygt)

Area(yESS∪ ygt)
. The bins for which ESS provides a better estimate

than SWi are drawn in blue, the others in red. The green bar indicates the mean difference.

Fig. 5. Comparison of ESS and sliding window search to ground truth, combined for cat and dog test images of PASCAL VOC 2006 (758 detections).
From left to right, sliding window with five different parameter sets (SW1, . . . , SW5, see Table I) are shown. ESS overall achieves higher overlap with
ground truth than any of the sliding window methods.

Fig. 6. Recall–Precision curves of ESS bovw localization for classes cat (left)
and dog (right) of the VOC 2006 dataset. Training was performed either on
VOC 2006 (solid line) or VOC 2007 (dashed).

method \ data set cat dog
ESS w/ bag-of-visual-words kernel 0.223 0.148
Viitaniemi/Laaksonen [33] 0.179 0.131
Shotton/Winn [32] 0.151 0.118

TABLE II
AVERAGE PRECISION (AP) SCORES ON THE PASCAL VOC 2006
DATASET. ESS OUTPERFORMS THE BEST PREVIOUSLY PUBLISHED

RESULTS.

software provided in the PASCAL VOC challenges: from the
precision–recall curves, the average precision (AP) measure
is calculated, which is the average of the maximal precision
within different intervals of recall, see [32] for details. Table II
contains the results, showing that ESS improves over the best
results that have been achieved in the VOC 2006 competition
or in later publications. Note that the AP values in Table II are
not comparable to the ones in Figure 6, since the experiments
use different test sets.

B. PASCAL VOC 2007 challenge

An even larger and more challenging dataset than PASCAL
VOC 2006 is the recent VOC 20074 dataset. It consists of
9,963 images with 24,640 object instances. We trained a
system analogous to the one described above, now using the
2007 training and validation set, and let the system participate
in the PASCAL VOC challenge 2007 on multi-view object
localization. In this challenge, the participants did not have
access to the ground truth of the test data, but had to submit
their localization results, which were then evaluated by the
organizers. This form of evaluation allows the comparison of
different methods on a fair basis, making it less likely that the
algorithms are tuned to the specific dataset.

With AP scores of 0.240 for cats and 0.162 for dogs, ESS
clearly outperformed the other participants on these classes,
with the runner-up scores being 0.132 for cats and 0.126 for
dogs. By adopting a better image-based ranking algorithm, we
were able improve the results to 0.331 and 0.177 respectively.

As an additional experiment, we took the system that had
been trained on the 2007 training and validation data, and
evaluated its performance on the 2006 test set. The results are
included in Figure 6. The combination achieves higher recall
and precision than the one trained on the 2006 data, showing
that ESS with a bag-of-visual-words kernel generalizes well
even across datasets and is able to make positive use of the
larger number of training images available in the 2007 dataset.

VI. APPLICATION II: LOCALIZATION OF RIGID OBJECTS
USING A SPATIAL PYRAMID KERNEL

For rigid and typically man-made object classes like cars or
buildings, more informative representations have been devel-
oped than the bag-of-visual-words used in the previous section.

4http://www.pascal-network.org/challenges/VOC/voc2007/
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Fig. 7. Spatial Pyramid Weights. Top row: Example of a training image
with its pyramid sectors for levels 2, 4 and 6. Bottom row: the energy of
corresponding pyramid sector weights as learned by the SVM (normalized per
level). Feature points in brighter regions in general have higher discriminative
power.

In particular hierarchical spatial pyramids of features have
recently proven very successful, e.g. in [16]. However, these
previous approaches were usually limitated to few pyramid
levels (typically 2 or 3) and required heuristic pruning. In this
section, we will show that ESS allows efficient localization
with pyramids as fine-grained as 10 × 10 grid cells without
the risk of missing promising object locations.

A. UIUC Car dataset

As dataset we use the UIUC Car database5, which is an
example of a dataset with rigid object images (cars) from a
single viewpoint. In total there are 1050 training images of
fixed size 100×40 pixels. 550 of these show a car in side-
view, the rest shows other scenes or parts of objects. There
are two test sets of images with varying resolution. The first
consists of 170 images containing 200 cars from a side view
of size 100×40. The other test set consists of 107 images
containing 139 cars in sizes between 89×36 and 212×85. We
use the dataset in its original setup [34] where the task is pure
localization. Ground truth annotation and evaluation software
is provided as part of the dataset.

B. Experiments

From the UIUC Car training images, we extract SURF
descriptors at different scales on a dense pixel grid and
quantize them using a 1000 entry codebook that was generated
from 50,000 randomly sampled descriptors. Since the training
images already either exactly show a car or not at all, we
do not require additional bounding box information and train
the SVM with a hierarchical spatial pyramid kernel on the
full training images. We vary the number of pyramid levels
between L = 1 (i.e. a bovw without pyramid structure) and
L = 10. The most fine-grain pyramid therefore uses all grids
from 1×1 to 10×10, resulting in a total of 385 local histograms.
Figure 7 shows an example image from the training set and
the learned classifier weights from different pyramid levels,
visualized by their total energy over the histogram bins. On
the coarser levels, more weight is assigned to the lower half
of the car region than to the upper half. On the finer pyramid
levels, informative spatial regions are emphasized, e.g. the
wheels become very discriminative whereas the top row and
the bottom corners are almost ignored.

5http://l2r.cs.uiuc.edu/∼cogcomp/Data/Car/

Fig. 8. Results on UIUC Cars Dataset (best viewed in color): 1−precision
vs recall curves for bag-of-features and different size spatial pyramids. The
curves for single-scale detection (left) become nearly identical when the
number of levels increases to 4 × 4 or higher. For the multi scale detection
the curves do not saturate even up to a 10× 10 grid.

method \data set single scale multi scale
ESS w/ 10× 10 pyramid 1.5 % 1.4%
ESS w/ 4× 4 pyramid 1.5 % 7.9%
ESS w/ bag-of-visual-words 10.0 % 71.2%
Agarwal et al. [34] 23.5% 60.4%
Fergus et al. [35] 11.5% —
Leibe et al. [36] 2.5% 5.0%
Fritz et al. [37] 11.4% 12.2%
Mutch/Lowe [38] 0.04% 9.4%

TABLE III
ERROR RATES ON UIUC CARS DATASET AT THE POINT OF EQUAL

PRECISION AND RECALL.

At test time, we search for the best three car subimages
in every test image as described in Section IV, and for each
detection we use its quality score as confidence value. As it is
common for the UIUC Car dataset, we evaluate the system’s
performance by a 1− precision vs. recall curve. Figure 8
shows the curves for several different pyramid levels. Table III
contains error rates at the point where precision equals recall,
comparing the results of ESS with the currently best published
results. Note that the same dataset has also been used in many
other setups, e.g. using different training sets or evaluation
methods. Since the results of these are not comparable, we do
not include them.

The table shows that localization with a flat bovw-kernel
works acceptably for the single scale test set but poorly for
multi scale. Using ESS with a finer spatial grid improves the
error rates strongly, up to the level where the method clearly
outperforms all previously published approaches on the multi
scale dataset and all but one on the single scale dataset.

Note that for the single scale test set, a direct sliding
window approach with fixed window size 100× 40, would
be computationally feasible as well. However, there is no
advantage of this over ESS, as the latter requires even fewer
classifier evaluations on average, and at the same time allows
the application of the same learned model to the multi-scale
situation without retraining.
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VII. APPLICATION III: IMAGE PART RETRIEVAL USING A
χ2-DISTANCE MEASURE

ESS is applicable to more areas than only object localiza-
tion. In the following, we apply ESS to the problem of image
part retrieval i.e. to find images in a database based on queries
that only have to match a part of the target image. This kind
of search allows one not only to search for objects or persons,
but also e.g. to find trademarked symbols on Internet image
collections or in video archives.

A. χ2-distance for content based image retrieval

We adopt a query-by-example framework similar to [39],
[40], where the query is a region in an image, and we
are interested in all frames or scenes in a video containing
similar regions. For this, we use ESS to do a complete
nearest-neighbor comparison between the query and all boxes
in all database images. In contrast to previously proposed
approaches, ESS allows the system to rely on arbitrary simi-
larity measures between regions, not just on the number of
co-occurring features. In our example, we choose the χ2-
distance that has shown good performance for histogram-based
retrieval and classification tasks [41]. Specifically, we use
the unnormalized variant χ2

u, as this takes into account the
total number of features and thereby the region size, which is
desirable for the task at hand.

At first, we formulate the retrieval problem in an optimiza-
tion framework, by defining the localized similarity between
a query region q with bovw-histogram hq and an image x as

locsim(x, q) = max
y∈Y(x)

−χ2
u(hq, hy) (19)

where hy is the histogram for the subimage y of x and
χ2

u(hq, hy) is calculated as

χ2
u(hq, hy) =

K∑
k=1

(hqk − h
y
k)2

hqk + hyk
. (20)

The retrieval task is now to identify the N images with highest
localized similarity to q as well as the region within each of
them that best matches the query.

Since locsim consists of a maximization over all subregions
in an image, we can use ESS to calculate it. To construct the
required bound, we use the construction for the χ2-distance
in Section III-C2, except that we do not have to normalize
the histograms. In analogy to Equation (16), each summand
in (20) is bounded from below by

(hqk − h
y
k)2

hqk + hyk
≥


(hqk − h

y
k)2/(hqk + hyk) for hqk < hyk,

0 for hyk ≤ h
q
k ≤ h

y

k,
(hqk − h

y

k)2/(hqk + h
y

k) for hqk > h
y

k,

and their negative sum bounds −χ2
u(hq, hy) from above.

B. Experiments

We show the performance of ESS in localized retrieval
by applying it to 10242 keyframes of the full-feature movie
”Ferris Bueller’s Day Off”. Each frame is 880×416 pixels

large. We extract SURF descriptors from keypoint locations,
from a regular grid and from random localization and quantize
them using a 1000 entry codebook. Each keyframe is therefore
represented by 40,000–50,000 codebook entries.

For a given query region, multi-image ESS is used to return
the 100 images containing the most similar regions. Figure 12
shows a query region and the search results. Since keyframes
within the same scene or for repeated shots tend to look
very similar, we show only one image per unique scene.
ESS reliably identifies the Red Wings logo in different scenes
regardless of strong background variations. Within the top 100
retrieval results there are no false positives.

In total, the search required 1.7 · 108 evaluations of the
quality bound, that is approximately 170,000 per detection
and 16,521 per image in the database. On images that were
selected amongst the top 100, on average 57,000 evaluations
were performed whereas on images that were not selected,
only 16,100 evaluations were necessary. This shows that ESS
sucessfully concentrated its effort on the promising images. In
contrast, when running ESS on every keyframe separately, a
total 1.04 · 1011 evaluations were required. While for the top
100 images, the number of evaluations is identical to those for
ESS, the images that were not selected on average required
1.03 · 106 per image, that is more than 600 times as many as
in the case of joint ESS search. In fact, this number would
even be higher, had we not restricted the maximal number of
evaluations to 2 million per image.

Figure 9 shows the number of evaluations required to
find the global maximum in each individual frame against
the maximal score of the quality function (locsim). The 100
images with largest scores are marked in red, others in blue.
As one can see, images with high similarity to the query
require much fewer evaluations of the quality bound. This
is because the quality function has a clear maximum in this
case. The branch-and-bound search quickly identifies a general
region of interest and then concentrates its computation on this
region to find the exact maximum. For images that do not fill
the query well, the quality function is typically rather flat,
and many regions have quality scores similar to the optimal
one. Consequently, many regions have to be checked before
the algorithm can be sure that the global maximum has been
identified.

The shape of the point cloud in Figure 9 allows some further
reasoning. All images with a quality greater than −1750
required few calculations, indicating that the quality function
found a clear maximum. We can therefore assume that all of
these will contain the logo that is used as query.

In fact, checking the detection results of the per-frame
search, the first false positive detection occurs at position 177
with locsim score of −1680, and in the range between −1680
and −1750, 8 more of 23 detections are false positives. In
the range of −1750 and −1800, 37 out of 47 detections are
from images not showing the query logo. With scores below
−1800, the logo occurs only sporadically, and is often strongly
distorted or truncated.

The same effect that good matches are easier to find than
bad ones also has a strong effect on the total runtime when
varying the number of images to return or images in the
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Fig. 9. Number of evaluations of the quality bound against the locsim value (Eq. (19)) for each image. Red squares indicate the top 100 images qualifying,
blue diamonds the other images. Images with high locsim score require much fewer evaluations of the quality bound.

Fig. 10. Performance of multi-image ESS search for varying database sizes.
With a larger database, the number of evaluations required to identify the 20
best matching images decreases.

database.
In Figure 10, we plot the total number of evaluations

required to find the top 20 image regions for varying database
sizes. For this, we reduce the database by subsampling it
in regular intervals. Counterintuitively, the runtime decreases
with more images in the database6. The reason for this is that
a larger dataset is more likely to contain more clear matches
to which ESS quickly converges.

Figure 11 shows the number of evaluations required by
ESS with a joint priority queue to return different numbers
of images from the dataset of 10242 keyframes. One can see
that the method scales approximately linearly in the number of
output images. For the first 19 hits, the slope is much smaller
than on average, indicating that the search was especially easy.
A check of the results shows that these detections are in fact
near duplicates of the query region.

VIII. CONCLUSION

We have demonstrated how to perform fast object local-
ization and localized retrieval with results equivalent to an
exhaustive evaluation of a quality function over all rectangular

6Since every image has to be inserted into the search queue, the method
cannot be sublinear in the sense of computation complexity. However, the
observed growth of runtimes is decreasing: the more images the database
contains, the fewer operations are necessary in total to find the top N .

Fig. 11. Performance of multi-image ESS search for varying number
of images to return. After an initial region of “easy” hits, the runtime is
approximately linear in the number of output images.

regions in an image down to single pixel resolution. Sliding
window approaches have the same goal, but in practice they
have to resort to subsampling techniques and approximations
to achieve a reasonable speed. In contrast to this, our method
retains global optimality in its search, which guarantees that
no maxima of the quality function are missed or misplaced.

The gain in speed and robustness allows the use of better
local classifiers (e.g. SVM with spatial pyramid kernel, near-
est neighbor with χ2-distance), for which we demonstrated
excellent results on the UIUC Cars, the PASCAL VOC 2006
dataset and in the VOC 2007 challenge. We also showed how
to integrate additional properties, e.g. shape penalties, and how
to search over large image collections in sublinear time.

In future work, we plan to study the applicability of ESS
to further kernel-based classifiers. We are also working on
extensions to other parametric shapes, like groups of boxes,
circles and ellipses. These are often more desirable in appli-
cations of biological, medical or industrial machine vision,
where high speed and performance guarantees are important
quality factors as well.
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(a) Red Wings logo used as query (b) Results of local search with χ2-distance

Fig. 12. Image retrieval using a local χ2 distance: the Red Wings logo (left) is used as a query region. b) shows the top results (one image per scene). The
logo is detected in 9 different scenes. There are no false positives amongst the top 100 detected regions within 10242 keyframes.
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