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An Optimal Nonorthogonal Separation of the
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Christoph H. Lampert and Oliver Wirjadi, Student Member, IEEE

Abstract—We give an analytical and geometrical treatment
of what it means to separate a Gaussian kernel along arbitrary
axes in R™, and we present a separation scheme that allows us to
efficiently implement anisotropic Gaussian convolution filters for
data of arbitrary dimensionality. Based on our previous analysis
we show that this scheme is optimal with regard to the number
of memory accesses and interpolation operations needed. The
proposed method relies on nonorthogonal convolution axes and
works completely in image space. Thus, it avoids the need for
a fast Fourier transform (FFT)-subroutine. Depending on the
accuracy and speed requirements, different interpolation schemes
and methods to implement the one-dimensional Gaussian (finite
impulse response and infinite impulse response) can be integrated.
Special emphasis is put on analyzing the performance and accu-
racy of the new method. In particular, we show that without any
special optimization of the source code, it can perform anisotropic
Gaussian filtering faster than methods relying on the FFT.

Index Terms—Convolution, feature extraction, filtering, multi-
dimensional digital filters.

I. INTRODUCTION

A. Anisotropic Gaussian Filtering

AUSSIAN convolution filters are frequently used tools in
1-D and multidimensional signal processing. The expo-
nential decay of their kernels in the signal domain, as well as
in the frequency domain, and their strict positivity make them
very well behaved low-pass filters. 1-D and isotropic multidi-
mensional Gaussians are completely described by a single vari-
ance parameter. This makes them easy to handle analytically
and simple and fast to implement. But in multidimensional ap-
plications, like image processing, Gaussian filters can have dif-
ferent shapes and more free parameters.
From the signal and image processing point of view,
anisotropic Gaussians are much more interesting, because these
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additional parameters encode information about orientation
as well as scale. During the last years a tendency towards
anisotropic filtering has become visible in many areas. Often,
one can rely on local image information, like gradient di-
rections, to build anisotropic filters, allowing smoothing and
de-noising while preserving edges [1], [2]. Wang et al. propose
the use of local covariance estimates to build anisotropic ker-
nels for adaptive video segmentation based on the mean shift
procedure [3]. This relies on the fact that from a probabilistic
view anisotropic Gaussians can express correlations between
different signal directions, while isotropic Gaussians are based
on the often unrealistic assumption that all quantities involved
are statistically independent. Sometimes, local orientation
information can be deduced from an imaging system: diffusion
tensor MRI (DT-MRI) computes a tensor describing water
diffusion in each voxel. This diffusion process correlates with
the physical structure of the imaged object [4]. The diffu-
sion tensor contains all necessary information for applying
anisotropic Gaussian filters of the type investigated in this
report. But even if local orientation is not known a priori,
anisotropic filters can often be useful. By arranging many such
filters with different orientations and variances in the form of
a filter bank, local orientations of line and surface structures
can be deduced—see [5]-[8]. This approach is often referred
to as orientation space theory [9], in analogy to the scale space
theory of isotropic Gaussians [10]. Detecting and enhancing
structure using orientation spaces is of particular interest in 3-D
imaging, e.g., medical imaging, where no established feature
extraction method like the classical 2-D Canny edge detector
is available.

Anisotropic filtering is also applied in other areas, including
hardware design and visualization. All modern graphics pro-
cessing units (GPUs) contain dedicated units for anisotropic fil-
tering, allowing visualization effects like adaptive motion blur
to be applied in real time [11].

We believe that if today anisotropic Gaussian filters have
not become a standard tool in image and signal processing in
the same way that isotropic ones have, then this is because
there is no established way to efficiently implement them. It
is well known that isotropic Gaussian filters can always be
separated, i.e., their n-dimensional convolution integral can be
implemented as a sequence of n 1-D convolutions along the
coordinate axes. For general anisotropic Gaussians, this is not
possible. Although they can be separated along their main axes,
decomposing the n-dimensional integral into n 1-D ones, the
directions of integration then are rotated with respect to the
coordinate grid, making this form of implementation cumber-
some and slow. Instead, it is in most cases faster to utilize the

1057-7149/$20.00 © 2006 IEEE



LAMPERT AND WIRJADI: OPTIMAL NONORTHOGONAL SEPARATION

Fourier Convolution Theorem to do the filtering: the signal is
Fourier transformed, multiplied with the transformed convo-
lution kernel, and transformed back using the inverse Fourier
transform. This requires more memory and computational
effort than in the isotropic case and usually makes the inclusion
of a mathematical library providing the fast Fourier transform
(FFT) necessary. Further, since the FFT is a global operation,
the whole image is processed at once and local filtering of just
a small window of the image is not as easy as when working
directly with the image data. Other drawbacks are that the FFT
cannot cope with missing sample data and requires a CPU
capable of performing floating-point operations.

Freeman and Adelson showed that it is not possible to con-
struct a steerable basis for the rotated Gaussians [12], and even
for an approximate solution as found by Perona in 1992 [13],
the basis turned out to be too large for practical use. Also, the
basis functions are not separable themselves and thus cannot be
implemented in an efficient way.

As late as the year 2002, Geusebroek and Smeulders pre-
sented an efficient scheme to separate anisotropic Gaussians in
R2 [14], [15]: their idea was to keep one direction of convolution
fixed (and usually axis-aligned), but to allow the other direc-
tions to vary depending on the parameters of the Gaussian. The
method does not yield orthogonal filtering directions, but allows
for an efficient implementation. Using the recursive approxi-
mation scheme for 1-D-Gaussian convolutions, as proposed by
Young [16], the result is an algorithm that is faster than the
Fourier-based one, achieving O(1) complexity per pixel.

Based on this approach, in 2005, Wirjadi and Breuel gave
an approximate formula in a special case in R3 [17]. They fix
two directions to be axis aligned, while the third varies with the
Gaussian parameters. This again allows for a fast implementa-
tion, but the approximation is not good enough to be used in
practice for many filter directions.

B. The New Contribution

The goal of this paper is to fill the gap that still exists for
dimensions larger than 2. We develop an intuitive, geometrically
motivated theory of what it means to separate a Gaussian kernel
along arbitrary axes in R™. From these considerations, we derive
a separation scheme for anisotropic Gaussians which is optimal
in terms of the number of memory accesses and interpolation
operations required.

To allow its application in real-life problems, we concretize
the result for the most important cases in image processing:
in R?, the result turns out to be identical to the separation by
Geusebroek and Smeulders, showing the optimality of their re-
sult in this case. For Gaussians in R® with two identical covari-
ance values, we give explicit formulas, parameterized by the
variances and major axes of the Gaussians. In the general case,
a simple numerical method based on the Cholesky decomposi-
tion is derived.

To further demonstrate the proposed method, we have imple-
mented it in plain C and have applied it to a number of typical
situations in image processing of 2-D and 3-D data. This makes
it possible to present visual output as well as thorough results
on accuracy and efficiency.
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The rest of the paper is structured as follows:

Section II studies the general form of how to separate the
Gaussian convolution kernel. Section III presents two exam-
ples of such separations, the classical one based on the singular
value decomposition and the one favored in this paper, relying
on a triangular factorization of Cholesky type. In Section IV,
the latter is calculated explicitly in R? and the most frequently
needed cases of R®. In R™, a numerical way to calculate the
separation coefficients is explained. Also, a geometrical inter-
pretation of the separations is given, which sheds light on how
and why the algorithm works the way it does. Section II deals
with the issues of implementing the theoretical results, in partic-
ular the question of how to discretize and interpolate the contin-
uous operators. In Sections VI and VII, runtime and accuracy of
the proposed filter setup are examined, comparing them to the
FFT-based approach. Section VIII presents some applications
of the algorithm to real life problems. Finally, Section IX sum-
marizes the results achieved and discusses current limitations
and possible extensions and improvements of the method.

II. GAUSSIAN CONVOLUTION INTEGRAL

A. Factorization of the Gaussian

The steps to factorize an isotropic Gaussian along the coor-
dinate axes are classical. In some areas, e.g., statistical pattern
recognition, the separation of possibly anisotropic Gaussians
along their main orthogonal axes is a standard procedure,
usually in the setup of the “whitening transform,” see e.g.,
[18, Ch. 2]. In this section, however, we will study the more
general question of if and how a Gaussian convolution filter
can be separated along arbitrary, possibly nonorthogonal axes
in R™. The main result is the following.

For any decomposition ¥ = V DV of the covariance ma-
trix 3. into square matrices D and V', where D is diagonal
and positive and V has determinant 1, there is a separation
of the n-dimensional Gaussian into 1-D Gaussians, where
the separation directions are given by the column vectors
of V.
In Section III, we will see that many such decompositions exist,
with or without orthogonal directions, and we will study their
properties with regard to an efficient implementation of the
Gaussian filter.

To prove the result itself, we first fix some notations. Unless
specified otherwise, all calculations will take place in R™, where
x = (x1,...,2,) andy = (Y1, ..., Yn) are n-dimensional co-
ordinate vectors with respect to the standard Euclidean coordi-
nate system. By Fun(X,Y’), we denote the space of functions
from some set X to some set Y. The anisotropic Gaussian filter
kernel g(x) € Fun(R™,R) with mean 0 and covariance matrix
> € R™*™ then has the form

1 1
o) = G ) O

where |X| is the determinant of . The goal is now to find a sep-
aration, i.e., to write g as a product of 1-D Gaussians. Assume
for the moment that a decomposition ¥ = V DV as described



3504

above is given. Then X! = V~*D~1V 1, and we can rewrite

the Gaussian to

_exp{—3x'(V'D 'V 1x}
- (27r)n/2|D|1/2

2)

where we also use the fact that | D| = |X|, which follows from
|V| = 1. Rewriting the numerator yields

_ exp{—3(V'x)'D7'(V~'x)} 3)
- (27r)n/2|D|1/2 :
After a linear change of coordinates fromx tov = (vy,...,v,)
with v := V ~Ix, this becomes
_ 1 1,4
= 7(27r)"/2|D|1/2 exp{—ivD V}. “)

D is known to be a diagonal matrix with positive entries, which
we will denote by d2 ..... ,d2, such that |[D|'/2 = d; - ... d,.
It follows that D~" is dlagonal with positive entries as well,
namely D! = diag((l/d%) .-, (1/d2)). Therefore, the
matrix product is in fact just a weighted sum of squares

1
= 2n)2d; - eXp{ Z d?} )

which we can split up using the addition theorem for the expo-

nential function
1 ( 1v%> 1 < 1v2> ©
=———exp|—=5 ) .. -—F——exp| —=—
V2mwdy 2 d? V2rd, 2d2
From this, we see that using the v-coordinate vector gives us the
desired product structure

=g1(v1) ...~ gn(vn) (7

where each

1 1 v?
gi(v;) == ond: exp <_§d_22> ®)

is an ordinary 1-D Gaussian of mean 0 and variance d?.

B. Separating the Convolution Integral

To see how this factorization of the Gaussian kernel gives rise
to a separation of the Gaussian filter, we study what happens to a
convolution integral when applying the aforementioned change
of coordinates.

For a general function f € Fun(R", R), the convolution with
the Gaussian g € Fun(R", R) is defined as

= b s

(f*g)(x (x —y)dyrdys . .. dyn. (9)
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Changing the coordinates as before, from x to u := V ~!x and
from y to v := V~ly, we obtain

:/R.../R/Rf(Vv)g(Vu—Vv)|V_1|dv1dvg...dv

(10)
where the factor |V ~!| enters from the rules for coordinate
changes in integration theory. Using the separation formula (7)
and |V| = 1, we can rewrite this as

= /gn(un_vn)/gn—l(un—l_vn_l)-.-
JR /R
/gl(ul—vl)f(Vv)dvldUQ...dvn. (11
JR

This is the standard form of a separated convolution integral.
To better understand what the formula means in practice, we
additionally split up the matrix-vector product Vv = )", vV,
such that

= /gn(un_vn>/gn71(un71_vn71>"'
JR R
/91 up — v1) (sz )dvldvg .dv, (12)
R

where the v* are the columns of the matrix V. Integration over
v; therefore means convolution along the direction v*. This can
be written very compactly using the notation of directional con-
volutions

= gn *yn .. g2 *y2 g1 Kyl f (13)

where the directional convolution operator *, : Fun(R,R) x
Fun(R™,R) — Fun(R™,R) is defined by

(G N = [ gWI&=avdn ()

Note that the integration is 1-D, even though the direction is
specified by a vector v € R™.

III. SYMMETRIC FACTORIZATIONS OF X

The result of the previous section was that any anisotropic
Gaussian is separable if we find a decomposition of the covari-
ance matrix of aform ¥ = V. DV'. We call this a symmetric fac-
torization. For symmetric and positive definite matrices >—as
covariance matrices always are—these can be constructed using
elementary matrix operations, see [19, Ch.1]. In fact, there are
even many of those with different properties, two of which we
will review here: the Singular Value Decomposition (SVD) and
the triangular factorization of Cholesky type. The result will be
that the latter is more suitable for implementing the Gaussian
filter in a discrete setting.
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A. SVD

In its general form, the SVD of a symmetric matrix A is
A = VDV?, where V is a rotation matrix and D is diagonal,
thus qualifying the SVD as a symmetric factorization. Because
V is a rotation matrix, its column vectors are orthogonal to each
other and each of length 1. They point in the directions of the
axes of the hyper-ellipsoid described by {x xtNTIx = 1}.
Using the previous result that we can separate the Gaussian
along the columns of V, this reproves the well-known fact that
an anisotropic Gaussian is always separable along its major
axes.

However, this approach has major problems for practical pur-
poses, because for a general Gaussian, all axes lie rotated in R™.
In a discrete implementation of (12), v does not have integer
entries and x — Av does not lie on the sampling grid. While this
is no problem from the mathematical point of view, in practice
we have to use interpolation in all » dimensions during each of
the n integration steps. This makes the computations slow and
numerical errors can occur and accumulate.

B. Triangular Factorization of Cholesky Type

To reduce the need for interpolation, we analyzed other de-
compositions to find a factorization ¥ = V DV'? that gives rise
to an algorithm requiring fewer interpolation steps. First, we
study for which choices of direction vector v the convolution
operator *, has a fast and numerically well-behaved implemen-
tation.

» The simplest case is when v is a standard unit vector of
the Euclidean coordinate system, e.g., v = (1,0,0,...,0).
This results in an axis parallel convolution and no interpo-
lation is necessary.

e If v lies in a plane spanned by two Euclidean coordinate
axes, e.g., v = (v1,v2,0,...,0), then only a 2-D-interpo-
lation step is necessary per sample. If further v; = 1 or
v = 1, interpolation is necessary only 1-dimensionally,
because with respect to the other directions the target loca-
tions lie on the sampling grid.

* Fora general vector v = (vy,vs, . .., v, ), the discrete con-
volution has to perform an n-dimensional interpolation for
each sample point. But, if one of the v; is 1, the interpola-
tion dimension is at least reduced to n — 1.

The directions resulting from a general SVD fall under the worst
case described above, each requiring n-dimensional interpola-
tion. Also, none of their vector components can be of integer
value, since the length of the direction vectors is known to be
1. Instead, we design a factorization with as many zero compo-
nents in the direction vectors v* as possible. Whenever an entry
cannot be made 0, we at least try to make it 1.

Since ¥ is a symmetric n X n-matrix, it has (n(n + 1)/2)
degrees of freedom. Any factorization into V' and D will need
to have at least as many degrees of freedom. n of those go into
diagonal entries of D. Therefore, at least (n(n — 1)/2) entries
of V' will have to remain free. The (n(n + 1)/2) other entries
of V' we can make either O or 1, while adhering the condition
that V' must have determinant 1.
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One decomposition that realizes this dimensional analysis
bound is the triangular factorization of Cholesky type, see [20,
Ch. I]. Starting from the Cholesky decomposition ¥ = UU*
with upper triangular U, we set D := diag (u%l, e ,ufm),
where the u;; are the diagonal entries of U, and V := D~1/2U.
Then it follows that ¥ = VDV with V an upper triangular

matrix with unit diagonal

I vz v Ui,n
1 w3 V2.n
V= (15)
1 Un—1,n
1

In the implementation of (12), this means that the convolution
along v can be calculated without need for interpolation. Along
vZ, 1-D interpolation in x1-direction is necessary, etc., until for
v, (n — 1)-dimensional interpolation in 1, ..., 2, 1 has to
be performed for each sample. There is never any interpolation
required in the x,, variable. Each of the convolution steps re-
quires fewer interpolation steps than any one in the SVD-based
separation scheme.

This choice of V in (15) is optimal for the conditions defined
above because it contains exactly (n(n — 1)/2) free variables,
its diagonal contains ones, thus making its determinant 1, and
all remaining entries are 0.

C. Calculation of the Triangular Factorization

After having seen that the triangular factorization has the po-
tential to give rise to an efficient separation of the anisotropic
Gaussian, we examine how to compute it for a given Y. In par-
allel to the most important applications, we study the cases of
n = 2, n = 3, and arbitrary n separately.

1) Explicit Formulas in R%: The triangular factorization can
easily be calculated in closed form by writing down the 2 x 2
matrices involved

_ 1 V1,2 _ d% 0
V—<0 1)andD_<0 &2

where v 2, d%, and d% are the unknown parameters. From this,
we obtain

(16)

d? + d2v?, div
t_ (01 V1,2 (3012
VDV' = ( vy &2 . (17)
For any positive definite symmetric matrix
= (‘91:1 51,2> (18)
81,2 522

we can rewrite the factorization equation ¥ = V DV compo-
nent wise, and by solving for the unknowns, we obtain
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Because X is positive definite, it is ensured that s 2 > 0 and
51,1822 — s%Q > 0. Therefore, all expressions are well defined.
We see that

d%d% = 51,182,2 — S%,Q (20)
which is the explicit formulation in R? of the fact that | D| = |X|.

2) Explicit Formulas in R3: For 3 x 3 matrices, the trian-
gular factorization can be calculated explicitly in the same way,
but one has to deal with more unknowns which complicates
the formulas. We write ¥ = (s; ;)i j=1,2,3 With s, ; = s;,
D= diag (d% d%/ d%) andV = ('Ui,j)i,j=172,3 with Vi = 1 and
v; j = 0 for4 > j. Now as before, solving the system of equa-
tions deriving from the individual components of ¥ = VDV*
yields

(81,233,3 - 31,382,3)2

51,3
d? =511 — e Q1)
53,3 (82,283,3 - 82’3) 53,3
2
B=spp— 22 2= 2
9 =822 — — 3 = 83,3 (22)
53,3
51,2833 — 51,3523 51,3
V1,2 = 3 1,3 = ——
52,2833 — S5 3 53,3
51,2
V23 =—". (23)
53,3

Note that instead of using (21), it is often more convenient to
utilize that d3d3d3 = |%|.

3) Numerical Factorization: In higher dimensions, it is still
possible but not practical to derive a closed formula for the fac-
torization matrices depending on the entries of X.. Instead, V'
and D can be efficiently calculated using numerical methods.
Since this has to be done only once for the filter kernel and not
for each pixel, the computational effort is negligible. Some nu-
merical libraries provide a dedicated routine for calculating the
triangular factorization; otherwise, it is possible to obtain it from
the Cholesky decomposition as described in Section I1I-B

D. Geometrical Interpretation

To understand how the triangular factorization really works,
it is useful to look at it from a geometrical point of view.
Finding a separation of the Gaussian can be thought of in the
following way: we perform a linear transformation (namely
V=) on the signal, filter with Gaussians along the coordinate
axes, and transform the signal back using the transform V.
From this, it is seen that the directions of convolution in (12)
are the V -transformations of the Euclidean coordinate axes.

This is better visualized geometrically in 2-D using ellipses.
Ellipses are the contour lines of Gaussians, and each ellipse
uniquely corresponds to a Gaussian kernel and vice versa, if we
fix the contour ellipse to lie at half of the Gaussian’s maximum
value.

1) SVD: 1t is well known that each ellipse can be made
axis-parallel by rotating it. This is how the SVD-based method
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Fig. 1. (a) Any ellipse in the 2-D plane can be transformed into an axis-aligned
ellipse by using either a (b) rotation or (c) shear.

works: the above mentioned linear transform is a rotation, map-
ping the ellipses’ main axes onto the coordinate axes. After ro-
tating back, this yields convolution directions which are orthog-
onal to each other and rotated with respect to the Euclidean
frame. See Fig. 1(b) for an illustration.

2) triangular factorization: Each ellipse can also be made
axis-parallel by a shear of the zs-axis, keeping the xz;-axis
fixed—see Fig. 1(c). This means that after transforming the
signal back, one convolution direction still is the z1-axis itself,
while the other is a sheared version of the x9-axis, intersecting
the original ellipsis in its highest point.

IV. ANISOTROPIC GAUSSIAN FILTERING IN
IMAGE AND SIGNAL PROCESSING

In practice, X is often not given explicitly, but implicitly by
specifying a number of directions in which the Gaussian fil-
tering should take place, and covariance values that give the
filter strength. The covariance matrix is then obtained as > =
R!S R, where the direction vectors form the columns of R, and
S is a diagonal matrix containing the variance values. In most
cases, the directions are not given as vectors, but from a number
of rotation angles. In this section, we give formulas for the pa-
rameters v* and d2, directly parameterized by such rotation an-
gles.

Although we have derived the theory in arbitrary dimension,
in this section, we restrict ourselves to 2-D and special cases of
3-D filtering. Other cases are of little practical interest in image
processing and we believe that deriving a (complicated) param-
eterization for them would not yield any additional insight.

A. Parameterizations for Image Processing in 2-D

At first, we study Gaussians in R? with coordinates (1, 7).
A Gaussian is then uniquely determined by an angle 6, spec-
ifying the major filtering direction, and the two variances o2,
o3. Its covariance matrix then is ¥ = R SRy with

_ (cosf —sinf (0?0
Re_(sin& cosﬂ) S_<0 U§>'

After multiplication, we obtain as a general parameterization

(24)

5 <a%2cos29+o%sin20 (a%—a%)cosﬁsin9>' 25)

(03 — 0%) cosfsinf o sin? @ + o2 cos f
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Using (19) leads to X’s triangular factor matrices

1 (05 —crf) cos @ sin @
V = o‘f sin? 6—1—0‘5 cos? 6 (26)
0 1
o202
D = o2 cos? 91+3'2 sin? 6 0 27
= 1 2 ) 9 9 . 2 . ( )
0 o7 cos” 0 + o5 sin” 6.

Introducing ¢ to denote the angle between V’s column vectors,
ie, p = L(vl,v?) or

o2 sin? 0 + 03 cos?

tanp = (28)

(03 — 0?)cosfsinb

we have separated the Gaussian into a convolution along
the xi-axis and a convolution with direction vector

vZ = (cotp,1)t. The corresponding Gaussian variances
are
o203
di = e 29
' 62c0s2 0 4 02sin? 0 29
d2 =02 cos® 0 + o2 sin? 6. (30)

This is exactly the result from [15], showing that the n-dimen-
sional theory is in fact a generalization of the 2-D work by
Geusebroek et al.

B. Parameterizations for Image Processing in 3-D

In R? with coordinates (71, 72, 73), several ways of speci-
fying the Gaussian from angles are possible. Typically, the con-
struction itself can be thought of as starting with an axis aligned
anisotropic Gaussian and rotating it in R? to its target orien-
tation. Our method of choice is based on Euler angles—see
[21]. The total rotation matrix is constructed from at most three
elementary rotations about the z;-axis, x3-axis and again the
r1-axis, i.e.,

where R, and R, denote the usual rotation matrices about the
x1 and z3 axes,and ¢ € [0, [, 6 € [0, (w/2)] and ¢ € [0, 7| are
the corresponding rotation angles. It is now possible to follow
the same track as in R?: calculate ¥ = R!SR explicitly and
solve the system of equations that result from ¥ = VDV? by
using (21)—(23).

However, the resulting formulas get very long and are not
instructive. We will instead only treat a special case which is of
most importance in 3-D image processing: when detecting lower
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dimensional structures in 3-D data, the anisotropic Gaussian is
typically chosen with oo = o3. Filtering with o1 > 09 then
means to filter in form of a prolate rotational ellipsoid, which
corresponds to objects that have mainly 1-D extent. Filtering
with 01 < o9 turns the Gaussian into the shape of an oblate
rotational ellipsoid, which is useful when searching for two-
dimensional objects.

Choosing 02 = o3 has the additional advantage that the
Gaussian is rotationally invariant to its first axis. With Euler
angles, this means that the first rotation in x;-direction can be
dropped from (31), and > ends up depending only on four pa-
rameters: two rotation angles # and ¢ and two variances o7 and
oay—see (32), shown at the bottom of the page. After elemen-
tary but tedious computation, we obtain the parameterization

olo?
di = L2 33
' 62cos2 0 + o2sin’ 6 33
9 o3 (J% cos? § + o7 sin® 9)
d2 = 2 2 2\ .+ 2 . 2 (34)
03 — (03 — 07)sin” psin® 6
d3 =03 — (U% — o%) sin? psin? 6 (35)
02 — 02) cos pcos fsin
v1,2=( = 1)2 —— (36)
05 — (05 — 07)sin”
— (03 — 02) sinpcosfsin
13 = 2(221)2.2 — (37)
03 — (05 — 07)sin” psin®
03 — 02) cos ¢ cos B sin
02,32(22 21) IR R e (38)
03 — (05 — 0%)sin” ¢sin” 0
When checking the special cases 01 = o2 = o3 (isotropic

Gaussian), or § = km with k € Z (axis aligned Gaussian), one
sees that the triangular factorization results in V' being the iden-
tity matrix and D = diag(c1, 02, 02). Thus, it is not necessary
to treat them as exceptions.

V. DISCRETIZATION AND IMPLEMENTATION

The results from the previous sections tell us how to fac-
torize Gaussians and we have proposed a specific factorization
in Section III-B, with properties which we expect to be useful
for implementation. Before implementing the separated filter,
the following issues need to be resolved.

A. Discrete Directional Convolution Operator

We need a discrete version of the theory. Therefore, we will
from now on study discrete signals and filter masks. To clearly
indicate this, we will use capital letters for those, instead of
small letters in the continuous case, e.g., the Gaussian will be
denoted by G(x) instead of g(x).

of+ (03 —o?) sin? f (03 — o) cospcosfsinf

Y= (03 — 07) cospcosfsinb
— (03 — of) sinpcosfsinf

0} — (03 — 0f) cos? @sin? 0
(o% - 0%) cos @ sin psin? f

— (03 — o1) sinpcosfsin §

2

(03 — 0%) cospsing sin? # (32)

o3 — (U% - 0’%) sin? psin? §
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For a discrete signal on a grid, the convolution integral (11)
turns into a sum

(Gixy F)(x) =Y Gi(k)F(x - kv)
kez

(39)

where the coefficients G; are derived from the 1-D Gaussian by
sampling at the grid points. With this, the discrete anisotropic
Gaussian filtering (12) can be written as

(G* F) =Gq #y1 Gy xy2 ... Gy #yn F. (40)

B. Interpolation

In (39), the direction vector v does not need to contain only
integer valued entries, so x — kv does not, in general, lie on the
sampling grid. To obtain a value for F' at this position, interpo-
lation from neighboring sample points becomes necessary, see,
e.g., [22, Ch.9].

To explain the interpolation needed when using the triangular
factorization from Section III-B, we study the case of R3. The
general case can easily be extrapolated from this. The convolu-
tion is then given by

G*F:G3 *y3 Gg *y2 G1 ¥yl F. (41)
Consider the first convolution step F; := G *,: F'. Its direction
is always given by v! = (1,0,0)?, so memory access is only
necessary in unit steps along x; . Thus, having compact memory
blocks and no need for interpolation, computation of F is fast
and accurate.

Except when the Gaussian is axis-aligned, all subsequent di-
rections will require interpolation orthogonal to one of the coor-
dinate axes. We will analyze the second directional convolution,
along vo = (v1.2,1,0)", more closely

G2 ¥y 2 F1 = Z GQ(k)Fl (X — k’(ULQ? 1,0)t)

= Z Gz(k)Fl(fI}l — ]{71}172,1}2 — k‘,fI}3) (42)

This shows that we need to interpolate along direction z; only.
Note that this is a direct result of the choice of factorization in
Section III-B. Each following directional convolution operation
will need one additional interpolation direction. In 3-D, we need
at most two (orthogonal) interpolation directions: let 1, z2, 3
denote integer valued coordinates and 0 < 41, 69 < 1 offsets
from the voxel origins. Then, we have the following cases, as is
also illustrated in Fig. 2.

(a) F(x1,x2,x3) lies on the grid, no interpolation necessary.

(b) F(z1+ 61,22,x3) needs interpolation in z1-direction.

(c) F(xy + 61,2 + 62, x3) needs interpolation in the zy,

xo-plane.

The interpolations can be calculated using nearest neighbor,
linear/bilinear, or higher order schemes, see, e.g., [23, Ch. 8].
Performing the same analysis in R™, we find that up to n — 1
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R .
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X2 0
0

(a)

Fig. 2. In 3-D, implementing the proposed separation results in three direc-
tional convolution operations, requiring (a) no interpolation, (b) 1-D, or (c) 2-D
interpolation.

interpolation directions are needed per step with interpolation
in x, never being necessary.

C. Finite and Infinite Impulse Response Filtering

The proposed decomposition requires computation of n 1-D
convolutions. Here we discuss different ways for performing
these operations.

Apart from filtering in Fourier space by use of the convolution
theorem, finite impulse response (FIR) filtering in image space
is the usual way of implementing a convolution filter. There, the
convolution sum in (39) is truncated

K

> Gi(k)F(x - kv)

k=—K

(Gi *y F)(x) = (43)

where K is chosen in a way such that only terms remain in the
sum where G; (k) differs significantly from 0, usually a constant
multiple of the standard deviation of the Gaussian. When doing
so, runtime increases with o. This drawback can be resolved
by using the infinite impulse response (IIR) implementation of
Gaussian filters proposed in [16]. Therein, the authors derive a
recursive filtering scheme based on a rational approximation of
the Gaussian function.

The original recursive filter is defined by a pair of filters
acting on a 1-D-signal. To support directional filtering, we
modify these to perform a 1-D-convolution along a direction
vector v within a higher dimensional grid. The resulting filter
uses v as the unit step, analogously to (43). The directional
convolution operator is then decomposed into a forward and
backward filter pair

w(x) =BF(x) + % Z brw(x — kv)
(G *y F)(x) = Bw(x)

3
+ bi > b(Gory F)(x+kv).  (44)
0 k=1

See [16] and [24] for details on the filter coefficients bg, b1, ba,
b3, and B and [25] for boundary conditions which need to be
applied to correct distortions. Because only the values of the
coefficients in (44) depend on o, but their number does not, the
runtime of this implementation of the Gaussian filter is indepen-
dent of o.
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D. Implementation

There are numerous ways of implementing the discrete direc-
tional convolution operator from (39) The first and most obvious
one is a direct implementation of the FIR filter in (43), and we
will refer to it as the “naive” implementation: for each pixel or
voxel in an image evaluate the convolution sum along a direc-
tion v.

Another way of interpreting the directional convolution is to
cast parallel rays in direction v through an image, which we
call the “line buffer” implementation. Convolutions can then be
computed along these lines, which is more efficient than eval-
uating the convolution at each image location separately. Also,
the fast recursive IIR filter described in Section V-C can be ap-
plied.

Note that the convolution operator was defined at a fixed
image location x. For a general direction v, the lines along
which we want to calculate the convolutions will not lie on the
sampling grid of a given image. To get an estimate of the re-
sulting value at x, we need to interpolate from lines around
that location. In essence, this results in interpolations for both
reading and writing data from the image. As above, this means
that one has to perform up to n» — 1 dimensional interpolations,
both for extracting values along lines and for writing values back
to the image.

The third and last type of implementation that we discuss
here is the “geometric” variant. We outlined in Section III-D
that the matrix V' in the proposed separation corresponds to a
shear. Thus, the directional convolution of the whole image is
readily implemented by performing a shear in the image using
V1, convolving along the coordinate axes using the variance
parameters derived in Section IV, and then performing the in-
verse shear using V.

Implementation of this is straight forward in 2-D. In the 3-D
case, the following observation can lead to an efficient imple-
mentation: given the triangular matrix V' with unit diagonal, the
total operation can be separated into first a shear in z-; and then
a shear in x5 direction. Shearing in x3 is never necessary. This
also implies that for this implementation, only 1-D interpola-
tions will be required in both 21 and x». The convolutions along
the coordinate axes can again be calculated using the recursive
IIR filter. Higher dimensional data can be treated similarly.

VI. RESULTS

For showing the practical use of the proposed separation
scheme, we performed several experiments on speed and ac-
curacy for two and three-dimensional data. In this section, we
describe the setup and explain the results of our experiments.
To separate facts from opinion, our interpretation of the data
will be presented in the subsequent Section VII.

For the tests, we implemented the directional convolution op-
erator in C using the naive, line buffer and geometric variants.
For the recursive IIR implementation of the 1-D Gaussian, we
used the source code that is publicly available at the homepage
of J. M. Geusebroek.! The hardware platform was a PC with 2.2
GHz Athlon64 3200+ CPU and 1 GB of RAM, using the Intel
icc 9.0 compiler under a 32-bit GNU/Linux Operating System.

Thttp://www.science.uva.nl/~mark/
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A. Accuracy

The first aspect is the accuracy of the separation method com-
pared to an exact Gaussian convolution. In 1-D, FIR and recur-
sive IIR filters are known to be good approximations to 1-D-
Gaussian filters [16]. In 2-D, the triangular factorization coin-
cides with the separation by Geusebroek et al., who analyzed it
and found it to be a close approximation of the true Gaussian
[15]. Here, we will therefore focus on the accuracy of 3-D fil-
tering.

To do so, we study the filter’s 3-D impulse response. The im-
pulse response is the result of filtering a delta signal. It is char-
acteristic for each linear filter, because it yields a reconstruction
of the filter kernel. In our case, we can determine the accuracy
of our filter implementation by comparing its impulse response
with the corresponding true Gaussian. Unless indicated other-
wise, the accuracy results reported are for the geometric method
with float data.

Experiments were performed in the same way as in [15] for
2-D. For a 65 x 65 x 65 image, different values for o1 and o5
were fixed and o3 was set to oo. Then, ¢ and 6 were varied in
steps of 5°, each time calculating the square root of the sum of
squared differences between the impulse response and the true
Gaussian. By this choice of image size, the error sum is deter-
mined using almost the same number of image elements as in
[15]. The maximum over all rotations of these L? error values is
shown in Table 3, once with bilinear interpolation and once with
nearest neighbor interpolation. The linear interpolation shows a
smaller error, especially for small variance parameters, but in
both cases, the errors are of comparable magnitude as reported
for the 2-D case.

To get an intuitive understanding of the filter accuracy, and
to see how the error is distributed over the image, the impulse
response was evaluated in graphical form, shedding light on
two questions: Does the three-step approach of the geometric
method (shearing, axis-aligned filtering, inverse shearing) re-
sult in the right filtering direction? And, what impact does the
method of interpolation have on the filters’ accuracy?

Fig. 4 shows orthogonal cross sections along the main coor-
dinate planes in an exemplary case (oq; = 10,09 = 03 = 5,6 =
30° and ¢ = 60°). In Fig. 4(a), linear interpolation was used.
The contour lines run close to the correct ones. Fig. 4(b) shows
the same situation for nearest neighbor interpolation. The con-
tour lines still have the right elliptic shape, but they show some
defects on a local scale. The curves in Fig. 5 show 1-D-profiles
that are obtained from the impulse response with linear interpo-
lation with two coordinates fixed and the third varying. The top
row of images shows this at the image center and the bottom one
at a distance of 10 voxels. In both cases, the impulse response
is close to the Gaussian, having the correct width and correctly
localized peaks. Off the center, there are some small deviations
in the filter strength. These will be discussed in Section VII.

B. Speed

The main motivation for deriving a separable anisotropic
Gaussian convolution filter is to achieve a faster implemen-
tation than those previously available. We experimentally
evaluated the speed of all proposed methods (naive, line buffer,
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geometric) using bilinear and nearest neighbor (NN) interpola-
tion on 2-D and 3-D images of single precision floating point
and of 8-bit integer type. In the 2-D case, we also included
the implementation of the anisotropic Gaussian filter that is
available from J. M. Geusebroek’s homepage. It integrates a
linear interpolation step into the filter loop and works only for
floating point images.

So far, the method of choice for anisotropic Gaussian filtering
is convolution in the Fourier transform (FT) domain. Therefore,
we compare all performance results to the speed of anisotropic
Gaussian filtering based on the FFT. As FFT-implementation,
we used the ffiw v3 library? in single precision mode. This
state-of-the-art library is highly optimized, including hand-op-
timized SIMD assembler code. It is widely recognized as the
best implementation of the discrete FT currently available.
Single precision with real input data is its fastest mode of
operation.

We measured the runtime of all routines on images
with side lengths N = 100,130,...,4990 for 2-D and
N = 50,55,...,450 for 3-D. For each measurement, the
average runtime of 30 runs was used after excluding the top and
bottom 10% as outliers. For the FFT, measurements contain
the forward and backward transforms as well as pointwise
multiplication with the transformed Gaussian kernel. A full
Fourier transform step for the Gaussian can be avoided by
pre-computing its transformed values and is therefore not
included in the timing measurements.

The geometric implementation was used for the detailed run-
time plots, because it turned out to be fastest in the experiments.

The results of the evaluation of filter runtime are presented in
Fig. 6. It shows the absolute performance (measured as the total
runtime) and the filter throughput (measured as the number of
image elements processed per second). We plot the results of the
geometric method with floating point data and linear interpola-
tion, comparing it to the FFT. The speed of an isotropic filter is
plotted for reference.

The geometric method and the isotropic filter show an almost
smooth runtime curve for the range of image sizes. Some peaks
of lower performance are visible at N = 2560, 3520, 4000,
4480, 4960 for 2-D, and at N = 160 and N = 320 for 3-D.
Our interpretation of those outliers will be given in the discus-
sion in Section VII. Apart from the smallest image sizes, where
the throughput is higher, an almost constant number of pixels
is filtered per second. The FFT shows a completely different
behavior. It is generally slower than the separated routines and
in particular, its runtime varies very strongly and non monoto-
nously with image size. This will be analyzed in the discussion
as well.

For the remaining methods, we present their performance in a
condensed form: for each image size, we calculated the relative
performance of all implementations compared to the reference
implementation (isotropic, float data). Their average values and
standard deviations over all image sizes are presented in Table
VII. The filter implementation by Geusebroek can only handle
floating point data. To measure its speed on 8-bit images, we
therefore measured the time needed for a conversion to float

http://www.fftw.org
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format, for the filtering itself and for a conversion back. For the
naive implementation, it is not possible to give a representative
value of average runtime, since it depend not only on the image
size but also on the variance parameters.

The table shows that all implementations of the Gaussian
filter that rely on the nonorthogonal separation are faster than
FFT-based filtering. The geometric method is the fastest in the
3-D case. In 2-D images, the routine by Geusebroek is fastest.
In all cases, the difference between linear and nearest neighbor
interpolation is small, and filtering images in 8-bit data format
is often faster than in floating point representation.

VII. DISCUSSION OF RESULTS

The results from Section VI can be summed up into two main
statements.

A. Calculating the anisotropic Gaussian using the separa-
tion scheme is faster than the FFT-based approach, often
even by a large factor.

B. The resulting filter is a good approximation of the actual
Gaussian.

In the rest of this section, both statements will be discussed in
more detail.

The runtime plots (Fig. 6) and tables (Fig. 7) show that
anisotropic Gaussian filtering can be performed faster in image
space than by using the Fourier transform and the convolution
theorem. This extends the results that were known for the 2-D
situation to higher dimensions and another implementation.
Also, the methods working in image space achieved almost
constant throughput, whereas in our experiments, the runtime
of the FFT varied strongly. We believe that this is because the
Jftw3 library contains specially optimized code paths for certain
image sizes, in particular for powers of two. Depending on the
image size, different routines in the library are used, causing
the varying filter speeds.

The separated implementation follows the same regular code-
path for all image sizes. Its runtime is mainly limited by floating
point calculations and memory latency. The last point is also our
explanation for the reduced performance at certain image sizes:
modern CPUs have prefetch mechanisms to load data from the
main memory that is likely to be needed later in the operation.
When the prefetch heuristics fail, the execution speed is signif-
icantly reduced. We believe that this is the case for the outlier
image sizes. A software prefetch mechanism could be integrated
to avoid this effect.

Working on 8-bit data instead of floating point values reduces
the total amount of memory needed and thereby increases the fil-
tering speed. However, this positive effect is almost completely
cancelled out by the additional CPU cost for integer-to-floating
point conversions that is necessary to apply the 1-D Gaussian
filter.

Finally, studying the relative speed of the methods, one can
see that the performance gains compared to the FFT are larger
in two than in three dimensions. In 2-D, the nonorthogonal
separable Gaussian clearly outperforms the convolution in the
Fourier domain. In 3-D, the separated filter is still faster than
the FFT-based implementation, but the gain is not as large,
at least not for all possible image sizes. Our explanation for
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| o1 | o2 | o3 | bilinear | nearest neighbor |

20| 10| 1.0 | 0.0223 0.0346
30| 1.0 ] 1.0 | 0.0170 0.0280
502020 0.0034 0.0057
7.0 | 20|20 | 0.0028 0.0046
7.0 | 4.0 | 4.0 | 0.0010 0.0013
10.0 | 3.0 | 3.0 | 0.0017 0.0019
10.0 | 5.0 | 5.0 | 0.0006 0.0008
10.0 | 7.0 | 7.0 | 0.0004 0.0004

Fig. 3. Euclidean error between the 3-D impulse response and the true
Gaussian kernel: Maximum square root of the summed square error over all
rotation angles.

— Gaussian
- - impulse response

— Gaussian
- - impulse response

(b)
Fig. 4. Orthogonal slices through the impulse response of the 3-D implemen-
tation, & = 30°, = 60°, 01 = 10 and 02 = o3 = 5. For compar-
ison, the contour lines of the true Gaussians are depicted as well. (a) Con-
volution using single-precision floating-point data and linear/bilinear interpo-

lation. (b) Convolution using single-precision floating-point data and nearest
neighbor interpolation.

this is twofold. For one, the computational complexity of the
FFT-method is O(N log N), if N is the size of the largest
image dimension. The complexity of the separated filter is
O(N), which therefore has an advantage of O(log N). This
factor is larger in 2-D data, where N can have values of several
thousands, than for 3-D, where N is in the range of a few
hundreds. The second reason is that the speeds of the different
methods in 3-D are, in general, closer to each other, because
the larger image size makes the problem more determined by
memory access than by CPU operations. This is because not
only the total size of the images influences the runtime, but
also the patterns how the memory cells are accessed. In 3-D,
the average distance between neighboring image elements is
larger, causing more cache-misses and thus reducing the filter
speed. This observation is backed up by the fact that the speed
advantage of the isotropic Gaussian compared with the new
methods and the FFT is larger in the 2-D than in the 3-D case.
Regarding the accuracy, the numerical and the graphical eval-
uations of errors (Figs. 3 and 4) show that the impulse response
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Fig. 5. 1-D profiles across the impulse responses from Fig. 4(a) against the true
Gaussian function at the coordinate center (top) and shifted by 10 voxels from
the center (bottom).
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Fig. 6. Performance of different methods to calculate the anisotropic Gaussian
filter: absolute speed (left) and relative throughput (right). (a) 2-D filtering
performance: geometric implementation versus FFT-based convolution versus
isotropic filtering (float data). (b) 3-D filtering performance: geometric imple-
mentation versus FFT-based convolution versus isotropic filtering (float data).

of the proposed filter closely matches the anisotropic Gaussian.
Thus, the implementation indeed performs a Gaussian filtering
with the correct rotational and variance parameters. There are
only minor deviations in the peak height (Fig. 5), which we be-
lieve are caused by two factors. Firstly, the IIR filter is only an
approximation of the true Gaussian. Applying it three times can
cause a visible difference in the enlarged plots. Secondly, in our
implementation the IIR filter acts in a wrap-around manner on
the image data instead of cutting the Gaussian off at the image
edges. This design was chosen to simplify the implementation.

The results also indicate that it does not play a major role
which interpolation method is used to access between pixel po-
sitions. Nearest neighbor interpolation does introduce an error,
but it is small and the filter still performs Gaussian smoothing
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method interpolation | rel. runtime | rel. runtime
float data 8 bit data
isotropic 1.00 0.98 + 0.07
geometric NN 1.21 £0.05 | 1.01 £0.07
geometric bilinear 1.224+0.05 | 1.10 £0.05
line buffer NN 2.114+0.22 | 1.46 £0.16
line buffer bilinear 3.73+£0.44 | 2.24 +0.27
FFT 4.30 4+ 3.99 (see text)
naive depends on o (see text)
(a) 3D relative performance
method interpolation | rel. runtime | rel. runtime
float data 8 bit data
isotropic 1.00 1.59 £ 0.30
geometric NN 1.98 +£0.55 | 1.62£0.29
geometric linear 2.01 £0.55 | 1.70 £ 0.29
line buffer NN 2.09+£0.06 | 2.01 +£0.35
line buffer linear 3.69£0.15 | 2.89 +£0.60
Geusebroek linear 1.26 +£0.07 | 1.42+£0.07
FFT 7.69 £ 6.92 (see text)
naive depends on o (see text)

(b) 2D relative performance

Fig. 7. Average performance of different implementations of the anisotropic
Gaussian filter, measured in relative units. For each method, the ratio between
their runtime and the runtime of the isotropic Gaussian was measured. The tables
shows their mean and standard deviation over all image sizes (see text).

with correct strength and orientation. However, linear interpo-
lation does give better results and is fast as well, so there is no
reason not to use it in practical applications.

VIII. APPLICATIONS

In this section we show some application examples of
anisotropic Gauss filters, both using them as directed filters
and to construct orientation space images. We have applied the
method to 3-D image data and to 2 4+ 1D video.

A. Processing of Fibrous Data

Many macroscopically homogeneous materials reveal het-
erogeneous characteristics when examined at a microscopic
scale. Quantization of such properties by means of image
analysis in three dimensional data is possible using micro-to-
mographic (uCT) data. Typically, binarization is a prerequisite
to performing such analyses, see e.g., [26]. In this setting,
anisotropic filtering is a useful preprocessing tool, especially
when one is dealing with images of strongly anisotropic objects
such as fibers.

Fig. 8 shows orthogonal cross-sections through a 3-D image
of a piece of wood obtained by pCT. Anisotropic filtering
with hand-selected orientation parameters can reduce the level
of noise, but Fig. 8(e) reveals that even though parameters
were aligned with the dominant fiber orientation, unwanted
smoothing across edges is occurring. These defects are elimi-
nated in the orientation space representation of the data, where
structures in cross-sections orthogonal to the dominant fiber
direction become visible, see Fig. 8(h). In the orientation space
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(a)

(b) (h)

(©)

Fig. 8. (a)-(c) Orthogonal cross-sections through a pCT of a piece of wood.
(d—(f) Anisotropic filtering with parameters aligned to dominant fiber direction
@ =77°¢=0°0; =5,0, = 03 = 1).(g)—(i) Orientation-space with an
angular resolution of 10°, showing maximal filter response in each voxel.

representation of an image, one selects the parameters which
maximize filter response in each voxel.

B. Spatiotemporal Smoothing of Video Sequences

For object detection in video sequences, typically low-level
image features like color and texture are used, or motion be-
tween frames is analyzed. For both, de-noising usually is the
first preprocessing step, which is done individually for each
frame. Afterwards, motion estimation and feature extraction are
performed, again frame by frame.

An alternative unified approach relies on the covariance infor-
mation between subsequent frames for smoothing. Since objects
do not appear or disappear spontaneously in a video sequence,
they cause dependencies between the pixel values at different
time steps. This can be utilized for filtering: instead of applying
a 2-D-smoothing filter to each image, we make use of the cor-
relations and apply an anisotropic 3-D-smoothing filter along
space and time at the same time.

Fig. 9 illustrates this using part of the mobcal video
sequence.3 It shows a moving toy train in front of a differently
moving background and other objects. After filtering the se-
quence with a prolate 3-D-Gaussian whose correlation matrix
is aligned to the train motion, we can see that the image is
blurred where the scene motion does not coincide with the train
motion. On the front of the train, the Gaussian mainly acts a
de-noising filter, without the strong blurring effect. Filtering

3ftp://ftp.1dv.e-technik.tu-muenchen.de/pub/test sequences/1080i/
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(b)

Fig. 9. Anisotropic filtering to selectively smoothen 2 + 1D video data. A
strongly prolate anisotropic 3-D-Gaussian is aligned with the motion of the front
of the toy train. The resulting filter acts as a motion aware blurring filter, only
weakly smoothing the first two cars of the train, but strongly blurring the back-
ground and other objects which show different movement patterns. (a) Original
frame #240. (b) Anisotropically filtered.

the 474-MB clip (80 RGB frames in 1920 x 1080 resolution)
took less than 1 min on a 2-GHz PC.

IX. CONCLUSION

We have presented a geometrically motivated method for sep-
arating the anisotropic Gaussian filter, i.e., for decomposing its
n-dimensional convolution integral into a sequence of n 1-D
ones. We were able to show that the separation based on the
triangular factorization of Cholesky type is optimal. Optimality
here means to require the minimal possible number of interpo-
lation operations and memory accesses. This theoretical result
generalizes and explains the mechanisms behind earlier results
of the nonorthogonal separation scheme in R? by Geusebroek
et al. [15].

Since the proposed algorithm works solely in the image do-
main, it is very flexible in implementation. It allows to incorpo-
rate different interpolation schemes and methods to calculate the
1-D Gaussian. When using an FIR filter subroutine, our method
can easily be applied locally, enabling it, for example, to cope
with missing data. Any of these implementations was shown to
be a good approximation of the true Gaussian filter: there was no
evidence for structural errors introduced to the results by using a
particular interpolation or convolution scheme. The main advan-
tage of the separation is that it is very fast. Already our plain C
implementation outperforms the usual FFT-based method, even
if that relies on SIMD-optimized assembler code.

Application examples of anisotropic Gaussian filters were
shown to put the proposed method into a larger context. The
focus of the present work was to develop a sound mathematical
basis and an optimal solution for an open problem. Addition-
ally, we were able to demonstrate the usefulness of the filter for
different tasks in image and video processing.

One problem of the nonorthogonal separation is that the cal-
culation of Gaussian derivative filters is less straightforward.
Because the directions of convolution do not coincide with the
Gaussian’s main axes, it is not possible to just convolve with
a derived 1-D convolution kernel, as it is the case for isotropic
Gaussians. The same phenomenon already exists in 2-D, where
the authors of [14] suggest the use of rotated finite differences
for calculating the derivatives. The necessary linear combina-
tions of the filtered samples can be interwoven into the separated
convolution steps themselves.

To improve the filtering method, it might be useful to look for
even better (faster, more accurate) separations by allowing other

3513

functions than Gaussians as 1-D convolution kernels. The first
candidates that come to mind would be of Gaussian form but
without a normalization constraint. This corresponds to trans-
formation matrices V' that are not unit diagonal. The higher
number of possible choices for the separation matrices would
in some cases allow shorter direction vectors for the 1-D con-
volutions. This results in more accurate interpolation and better
locality of memory accesses.
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