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Abstract
Markov random field (MRF, CRF) models are popular in

computer vision. However, in order to be computationally
tractable they are limited to incorporate only local inter-
actions and cannot model global properties, such as con-
nectedness, which is a potentially useful high-level prior
for object segmentation. In this work, we overcome this
limitation by deriving a potential function that enforces the
output labeling to be connected and that can naturally be
used in the framework of recent MAP-MRF LP relaxations.
Using techniques from polyhedral combinatorics, we show
that a provably tight approximation to the MAP solution of
the resulting MRF can still be found efficiently by solving
a sequence of max-flow problems. The efficiency of the in-
ference procedure also allows us to learn the parameters
of a MRF with global connectivity potentials by means of a
cutting plane algorithm. We experimentally evaluate our al-
gorithm on both synthetic data and on the challenging seg-
mentation task of the PASCAL VOC 2008 data set. We show
that in both cases the addition of a connectedness prior sig-
nificantly reduces the segmentation error.

1. Introduction
We consider a discrete conditional random field [20, 28]

representing a distribution p(y|x,w) over a discrete label
set y ∈ Y , given a sample x ∈ X and a parameter vector
w ∈ Rd. The distribution is a Gibbs distribution over the
possible labels,

p(y|x,w) =
1
Z

exp (−E(y;x,w)) ,

where E(y;x,w) is an energy function and Z =∑
y∈Y exp (−E(y;x,w)) is a normalization constant

known as partition function. The energy function is repre-
sentable in terms of the graph structure of the random field
as a sum over potential functions ψc : Yc × X × Rd →
R+ ∪ {∞} over the cliques c ∈ C of the graph, i.e.

E(y;x,w) =
∑
c∈C

ψc(yc;x,w).

A convenient simplification is to define the potential func-
tions as inner products between the parameter vector w

and a feature function φ which is independent of w, that
is ψc(yc;x,w) := w>φc(yc,x). This makes the overall
model log-linear, as the potential function and hence the
energy are linear functions in w. If we treat all cliques of
size k in the same way – termed clique template in [28], we
can define individual feature functions φ(k)

c (yc,x) and use
one weight vectorwk for all cliques of the same size. Then,
the energy can be written as follows.

E(y,x,w) =
∑
i∈V

w>1 φ
(1)
i (yi,x) + (1)∑

(i,j)∈V×V

w>2 φ
(2)
i,j (yi, yj ,x) + · · ·+w>|V |φ(|V |)

V (y,x).

Many computer vision applications assume a grid structure
for the graph such that the cliques c ∈ C are only single
nodes and pairs of nodes, hence only w1, w2 and φ(1)

and φ(2) are used. The function φ
(1)
i (yi,x) is the node

feature function, extracting a feature vector at node i for
a given labeling yi. Likewise, the edge feature function
φ

(2)
i,j (yi, yj ,x) extracts a feature vector for the edge (i, j)

with respective node labeling yi and yj . Restricting the en-
ergy to only pairwise potentials limits the modeling power
to local properties but allows efficient algorithms such as
graph cuts [4] to minimize (1), the so called MAP problem.

Maximum Aposteriori Inference. For a given sample x
and weight vector w, it is of great practical importance to
find the maximum aposteriori (MAP) labeling y, that is, to
solve for

y∗ = argmaxy∈Y p(y|x,w) = argminy∈Y E(y;x,w).

Linear Programming Relaxation. Recently, linear pro-
gramming relaxations have been rediscovered [32, 34, 37]
for approximately solving for the MAP solution y∗ when
the underlying graph G = (V,E) consists of single and
edge potentials. The MAP problem can then be formulated
exactly as integer linear program (ILP). By relaxing the
integer requirement one can obtain a corresponding linear
program (LP). In order to avoid confusion, in the following
integer linear program, only µ are variables, all remaining
expressions are constants. The variable µi(yi) ∈ {0, 1} in-
dicates whether node i is in state yi ∈ Yi. The variable
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µi,j(yi, yj) ∈ {0, 1} indicates whether node i is in state
yi ∈ Yi and node j is in state yj ∈ Yj .

min
µ

X
i∈V

X
yi∈Yi

µi(yi)
“
w>1 φ

(1)
i (yi,x)

”
(2)

+
X
(i,j)
∈E

X
(yi,yj)
∈Yi×Yj

µi,j(yi, yj)
“
w>2 φ

(2)
i,j (yi, yj ,x)

”

sb.t.
X

yi∈Yi

µi(yi) = 1, i ∈ V,

X
yj∈Yj

µi,j(yi, yj) = µi(yi), (i, j) ∈ E, yi ∈ Yi,

µi(yi) ∈ {0, 1}, i ∈ V, yi ∈ Yi,

µi,j(yi, yj) ∈ {0, 1}, (i, j) ∈ E, (yi, yj) ∈ Yi × Yj .

The first set of equality constraints enforce that each node is
assigned exactly one label. The second set of equality con-
straints enforce proper consistency between node and edge
states. Given a solution vector µ to the ILP (2) the labeling
y∗ is obtained by simply setting yi ← argmaxyi∈Yi

µi(yi).
The integer program (2) is exact but NP-hard. The

corresponding LP relaxation is obtained by relaxing the
last two set of constraints to the range [0; 1]. The LP re-
laxation has been analyzed extensively [32, 33, 34]. Al-
though linear programming is among the best developed
numerical disciplines [2], the primal LP (2) is practically
restricted to medium sized graphs with a few ten thou-
sand nodes and tens of node labels, because on the order
of O(|V |2(maxi∈V |Yi|)2) variables are used. Recent im-
provements have been made in several directions, i) improv-
ing the relaxation tightness [16, 19, 26, 27, 35], ii) examin-
ing tightness of relaxations [18, 13], iii) deriving fast spe-
cialized solvers for (2) by means of the dual [8, 17, 19, 27],
and iv) making precise the relationship between (2) and tra-
ditional message passing algorithms [14, 33].

Related work. Recently, higher-order than pairwise po-
tentials have been considered. They are known as “higher-
order cliques” [11, 23, 32], or “high-arity interactions” [35].
With exception of the last paper, the potentials considered
in these works are of a restricted form or limited to small
clique sizes of three or four nodes.

Kohli et al. [11] extend the generalized Potts model for
pairwise potentials [4] to higher order interactions. For a
clique C ⊆ V of size two or larger, he considers poten-
tial functions which are zero if all nodes in the clique are
assigned the same label and a constant if otherwise. For
|C| = 2 the potential function reduces to a pairwise Potts
P2 potential In [12], Kohli et al. use potential functions of
this form to ensure label-consistency over large image re-
gions. The image regions are created by multiple unsuper-
vised segmentations of the image and each region becomes
a clique with associated high-order potential function, such

that homogeneous and large regions receive a large potential
if their respective pixel labels are not assigned to the same
label. In [11] specialized α-expansion graphcut moves are
developed to solve these high-order potentials.

For the general problem of global potential functions,
Werner [35] is most close to our work; he discusses global
interactions and uses as example a hard potential on the
number of nodes labeled with a certain class label. A simple
greedy algorithms is used to solve a relaxation. We continue
his line of work and derive global constraints to be used
in (2) directly from the combinatorial polytope associated
with the global interaction.

Segmentation under connectivity constraints has re-
cently been considered by Vicente, Kolmogorov and
Rother [31]. They define a “problem C0” which is a bi-
nary segmentation task where the subset of nodes labeled
as foreground is restricted to form a single connected com-
ponent. Because Vicente et al. consider this problem too
complex to solve, they propose a simplified problem C1, in
which only a given pair of nodes must be connected. They
prove NP-hardness for these problems. For this restricted
problem C1 they propose DijkstraGC, a heuristic based on
the graphcut algorithm [4] able to produce good connected
segmentations from an unconnected segmentation and user-
supplied pairwise connectivity constraints. The DijkstraGC
method is not directly applicable in our setting because it
does not solve problem C0. Our contribution can be seen to
provide a tractable way to solve problem C0.

Zeng et al. [38] incorporate global topology-preserving
constraints into the graph cut framework. Given a global
user initialization, their algorithm finds a local optimum
which respects the initial topology. Impressively, the al-
gorithm is as fast as the popular min-cut algorithm of [4].
Their algorithm considers a global NP-hard potential but
only obtains a local minimum; our method instead also uses
a NP-hard global potential, but solves a relaxation for the
global optimum. Das et al. [5] propose a simple global
shape prior which favors compact shapes and can be real-
ized within the normal graph cut energy framework. For
this approach to work, the object center needs to be marked
by a user; moreover their approach is not rotation invariant.

The potential functions we consider are defined on all
nodes in the graph, denoted ψV (y;x,w). We consider a
“connectedness potential”, which enforces connectedness
of the output labeling with respect to a graph. We derive our
algorithm in a principled way using results from polyhedral
combinatorics. Although in this work we only consider one
global potential function, the overall approach by which we
incorporate the function is general and applicable to other
higher-order potential functions.

In the following section we formalize connectedness by
analyzing the set of all connected MRF labelings. In Sec-
tion 3 we derive tractable global potential functions. Sec-



tion 4 evaluates the proposed MRF/CRF with connected-
ness potentials on both a synthetic data set and on the chal-
lenging PASCAL VOC 2008 segmentation data set; we con-
clude in Section 5.

2. Connected Subgraph Polytope
The LP relaxation (2) has variables µi(yi) ∈ {0, 1} en-

coding if a node i has label yi. In this section we derive
a polyhedral set which can be intersected with the feasible
set of LP (2) such that for all remaining feasible solutions
all nodes labeled with the same label form a connected sub-
graph. This set is the connected subgraph polytope, the con-
vex hull of all possible labeling which are connected. We
first define this set and then analyze its properties.

Definition 1 (Connected Subgraph Polytope) Given
a simple, connected, undirected graph G = (V,E),
consider indicator variables yi ∈ {0, 1}, i ∈ V . Let
C = {y : G′ = (V ′, E′) connected, with V ′ = {i : yi =
1}, E′ = (V ′ × V ′) ∩E} denote the finite set of connected
subgraphs of G. Then we call the convex hull Z = conv(C)
the connected subgraph polytope.

The convex hull of a finite set of points is the tightest pos-
sible convex relaxation of the set. Furthermore, for the case
of minimizing a linear function over the convex hull, it is
known from classic linear programming theory [2, 25] that
at least one optimal solution exists at a vertex of the poly-
tope. By construction, this solution is then also in C and
the relaxation is exact. Unfortunately, optimizing over this
polytope is NP-hard, as the following theorem shows. The
theorem is identical to Theorem 1 in [31]; we state it here
for the reference to the earlier work of Karp [10].

Theorem 1 (Karp, 2002) It is NP-hard to optimize a lin-
ear function over Z = conv(C).

The problem is known as Maximum-Weight Connected
Subgraph Problem and it has been shown to be NP-hard
in [9, 10].

Therefore, if we plan to intersect conv(C) with the feasi-
ble set of (2), we are planning to optimize a linear function
over this polytope. Unfortunately, from Theorem 1 it fol-
lows that optimizing a linear function over conv(C) is NP-
hard, and it is unlikely that conv(C) has a “simple” descrip-
tion (one which is polynomially separable), see [25, chapter
18]. To overcome this difficulty we will derive a tight relax-
ation to conv(C) which is still polynomially solvable.

To do this, we focus on the properties ofC and its convex
hull Z. We first show that Z has full dimension, i.e. does
not live in a proper subspace. Second, we show that yi ≥ 0
and yi ≤ 1 are facet-defining inequalities for all graphs.
Figure 1 shows what this means: d>1 y ≤ 1 and d>2 y ≤ 1 are
both valid, but only d>3 y ≤ 1 is facet-defining [36].

Z

d>1 y ≤ 1

d>2 y ≤ 1
d>3 y ≤ 1

Figure 1. Valid inequal-
ities.

i j

S

. . . . . . . . .. . .

Figure 2. Vertex i and j and one ver-
tex separator set S ∈ S̄(i, j).

Lemma 1 dim(Z) = |V |.

Lemma 2 For all i ∈ V , the inequalities yi ≥ 0 and yi ≤ 1
are facet-defining for Z.

The proofs can be found in the supplementary materials.

Definition 2 (Vertex-Separator Set) Given a simple, con-
nected, undirected graph G = (V,E), for any pair of ver-
tices i, j ∈ V , i 6= j, (i, j) /∈ E, the set S ⊆ V \ {i, j} is
said to be a vertex-separator set with respect to {i, j} if the
removal of S from G disconnects i and j.

If the removal of S from G disconnects i and j, then
there exist no path between i and j in G′ = (V \
S,E \ (S × S)). As an additional definition, a set
S̄ is said to be an essential vertex-separator set if it
is a vertex-separator set with respect to {i, j} and any
strict subset T ⊂ S̄ is not. Let S(i, j) = {S ⊂
V : S is a vertex-separator set with respect to {i, j}} de-
note the collection of all vertex-separator sets, and S̄(i, j) ⊂
S(i, j) be the subset of essential vertex-separator sets.

Theorem 2 C, the set of all connected subgraphs, can be
described exactly by the following constraint set.

yi + yj −
∑
k∈S

yk ≤ 1,∀(i, j) /∈ E : ∀S ∈ S(i, j), (3)

yi ∈ {0, 1}, i = 1, . . . , |V |. (4)

The proof can be found in the supplementary materials.
Theorem 2 has a simple intuitive interpretation, shown in

Figure 2. If two vertices i and j are selected (yi = yj = 1,
shown in black), then any set of vertices which separate
them (set S) must contain at least one selected vertex. Oth-
erwise i and j cannot be connected because any path from i
to j must pass through at least one vertex in S.

Having characterized the set of all connected subgraphs
exactly by means of (3) and (4) it is natural to look at the
linear relaxation, replacing (4) by yi ∈ [0; 1],∀i. Such a re-
laxation yields a polytope P ⊇ Z = conv(C) ⊃ C, which
can be a tight, hence good, or loose, hence bad, approxima-
tion to conv(C). The quality of the approximation improves
if facets of the polytope P are true facets of conv(C). The
following theorem states that in our relaxation a large subset
of the constraints (3) – exactly those associated to essential
vertex-separator sets – are indeed facets of conv(C).



Theorem 3 The following linear inequalities are facet-
defining for Z = conv(C).

yi + yj −
∑
k∈S

yk ≤ 1, ∀(i, j) /∈ E : ∀S ∈ S̄(i, j). (5)

The proof can be found in the supplementary materials.
Let us summarize our progress so far. We have described

the set of connected subgraphs and the associated connected
subgraph polytope. Furthermore we have shown that a re-
laxation of the connected subgraph polytope is locally ex-
act in that the set of linear inequalities (5) are true facets of
conv(C). However, in general the number of linear inequal-
ities (5) used in our relaxation is exponential in |V |.

We now show that optimization over the set defined
by (5) is still tractable because finding violated inequali-
ties – the so called separation problem – can be solved effi-
ciently using max-flow algorithms.

Theorem 4 (Polynomial-time separation) For a given
point y ∈ [0; 1]|V | to find the most violated inequality (5)
or prove that no violated inequality exists requires only
time polynomial in |V |.
Proof. We give a constructive separation algorithm based on
solving a linear max-flow problem on an auxiliary directed
graph. For a given point y ∈ [0; 1]|V |, consider all (i, j) ∈
V × V with i 6= j, (i, j) /∈ E and yi > 0, yj > 0. For any
such (i, j) consider the statement

yi + yj −
∑
k∈S

yk − 1 ≤ 0, ∀S ∈ S̄(i, j).

Note that in the above statement, the individual variables
y are not necessarily binary. We can rewrite the set of in-
equalities above in equivalent variational form,

max
S∈S̄(i,j)

(
yi + yj −

∑
k∈S

yk − 1

)
≤ 0. (6)

If we prove that (6) is satisfied, we know that no violated
inequalities exists for (i, j). If, however, a violation exist,
then the essential vertex-separator set producing the highest
violation is given as

S∗(i, j) = argminS∈S̄(i,j)

∑
k∈S

yk. (7)

In order to find this separator set, we transform G into a di-
rected graph G′ with edge capacities. In the directed graph
each original edge is split into two directed edges with in-
finite capacity. Additionally each vertex k in the original
graph is duplicated and an edge of finite capacity equal to
yk is introduced between the two copies.

Formally, we constructG′ = (V ′, E′),E′ ⊆ V ′×V ′×R
as follows. Let V ′ = V ∪ {k′ : k ∈ V \ {i, j}}. Further
let E′ = {(i, k,∞) : k ∈ V, (i, k) ∈ E} ∪ {(k′, j,∞) :

k ∈ V, (j, k) ∈ E} ∪ {(s′, t,∞), (t′, s,∞) : (s, t) ∈
E \ ({i, j} × {i, j})} ∪ {(k, k′, yk) : k ∈ V \ {i, j}}. The
construction is illustrated for an example graph in Figures 3
and 4. Finding an (i, j)-cut of finite capacity inG′ is equiv-

i j

a b

c

Figure 3. Example graph G. There are three vertex-separator sets
in S(i, j) = {{a, c}, {b, c}, {a, b, c}}, of which only {a, c} and
{b, c} are essential.

∞

∞

∞

∞

∞

∞ ji

ya yb

yc

Figure 4. Directed auxiliary graph G′ for finding the minimum
essential vertex-separator set in G among all sets in S̄(i, j).

alent to finding an essential (i, j) vertex separator set in G.
This can be seen by recognizing that the only edges that can
be cut – hence saturated in a maximum flow problem – are
the edges (k, k′) with finite capacity, which correspond to
vertices in the original graph. Solving the max-flow prob-
lem in the auxiliary directed graph solves (7). After finding
S∗(i, j), we simply check whether (6) is satisfied.

Solving a linear maximum network flow problem is very
efficient [4]. The best known algorithms have a computa-
tional complexity of O(|V |3) and O(|V ||E| log(|V |)). We
need to solve one max-flow problem per (i, j) pair with
yi > 0, yj > 0, so the overall separation problem of
checking feasibility with respect to (5) can be solved in time
O(|V |5). �

In practice we do not have to check all (i, j) node pairs.
Instead, we decompose the graph into connected compo-
nents such that for all vertices in a connected component
there exist an all-1-path to each other vertex in the com-
ponent. Only one representative node is chosen at random
from each component and the separation is carried out only
for the representative vertices. This procedure is exact.

3. Global Potentials
We now transform the connected subgraph polytope into

a potential function of a random field.

From the Connected Subgraph Polytope to ψconn
V . Let

µj(y) = [µ1(yj), . . . , µ|V |(yj)]> ∈ R|V | be the set of vari-



Algorithm 1 MAP-MRF LP Cutting Plane Method
(y, B) = LPCUTTINGPLANE(x,w)
Input:

Sample x ∈ X , weight vector w ∈ Rd

Output:
Approximate MAP-MRF labeling y∗ ∈ Y
Lower bound on MAP energy B ∈ R

Algorithm:
C ← Rdim(Y), B ← −∞ {Initially: no cutting planes}
loop
y∗ ← argminy∈Y,y∈C E(y;x,w)
c←most violating constraint (5) with c>µj(y∗) > 1
if no c>µj(y) > 1 can be found then

break
end if
C ← C ∩ {y : c>µj(y) ≤ 1}

end loop
B ← E(y∗;x,w)

ables in the LP relaxation (2) indicating assignment to class
j over all vertices. One way to enforce connectivity in the
LP solution for the vertices assigned to the j’th class is to
define the following hard connectivity potential function.

ψhard(j)
V (y) =

{
0 µj(y) ∈ Z
∞ otherwise (8)

This potential function can be incorporated by adding the
respective constraints (5) to the LP relaxation (2). Alterna-
tively we can define a soft connectivity potential by defin-
ing a feature function measuring the violation of connec-
tivity. We define ψsoft(j)

V (y;w) = wsoft(j)φ
conn(j)(y) where

φconn(j) ≥ 0 measures the violation of connectivity:

φconn(j)(y) =
{

0 µj ∈ Z
maxd∈D{d>µj(y)− 1} otherwise

,

where D is the set of coefficient vectors of the inequali-
ties (5). We can calculate maxd∈D{d>µj(y) − 1} effi-
ciently by means of Theorem 4. This potential function can
be realized by introducing constraints into the LP relaxation
as for ψhard(j) but also adding one global non-negative slack
variable lower bounded by φconn(j) for all y ∈ Y and having
an objective coefficient of wsoft(j).

LP MAP-MRF with ψV . Algorithm 1 iteratively solves
the MAP-MRF LP relaxation (2). After each iteration (8)
is checked and if the labeling is connected, the algorithm
terminates. In the case of an unconnected segmentation, a
violated constraint is found and added to the master LP (2).

4. Experiments and Results
We now validate our connectedness potential on two

tasks, i) a MRF denoising problem, and ii) object segmen-
tation by learned CRFs.

X pattern

5 10 15 20 25 30

5

10

15

20
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Figure 5. Pattern “X” to be rec-
ognized.

Noisy X pattern
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Figure 6. Noisy node potential,
σ = 0.9.

4.1. Motivating Experiment: Denoising

We consider a standard denoising problem [15]. The
32x32 pixel pattern shown in Figure 5 is corrupted with ad-
ditive Gaussian noise, as shown in Figure 6. The pattern
should be recovered by means of solving a binary MRF. We
use a 4-neighborhood graph defined on the pixels, and the
node potentials are derived from ground truth labeling as

ψi(“FG”) =
{ −1 +N (0, σ) if i is true foreground

0 otherwise

ψi(“BG”) =
{ −1 +N (0, σ) if i is true background

0 otherwise

The edge potentials are regular [15] and chosen as Potts
ψi,j(yi, yj) = |N (0, k/

√
d)|I(yi 6= yj), where d = 4

is the average degree of our vertices. The parameters are
varied over σ ∈ {0, 0.1, . . . , 1.0}, k ∈ {0, 0.5, . . . , 4} and
each run is repeated 30 times. For each of the 30 runs, the
potentials are sampled once and we derive three solutions,
i) “MRF”, the solution to standard binary MRF, ii) “MR-
Fcomp”, the largest connected component of the MRF, iii)
“CMRF”, a binary MRF with additional hard-connectivity
potential (8) on the foreground plane.

The results are shown in Figures 7 to 9. They show the
connected MRF averaged absolute error over the parame-
ter plane and the relative errors to the standard MRF and
component heuristic. The advantage of the connectedness
constraint over a standard MRF can be seen by looking at
the relative errors in Figure 8. For almost all parameter
regimes the error of the MRF is higher (positive values in
the plot). Also, from Figure 9 it can be seen that the con-
nectedness constraint outperforms the largest-connected-
component heuristic except when very weak edge potentials
are used (upper left corner). Typical examples are shown in
Figure 10 and 11.

4.2. Experiment: Learning Object Segmentation

Connectivity is a strong global prior for object segmenta-
tion. In this experiment we use the connectivity assumption
to segment out objects from the background in the PASCAL
VOC 2008 data set [6]. The data set is known to be partic-
ularly challenging as the images contain objects of 20 dif-
ferent classes with a lot of variability in lighting, viewpoint,
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Figure 7. Connected MRF labeling error.
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Figure 8. Error difference MRF-CMRF.
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Figure 9. Error diff. MRFcomp-CMRF.
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Figure 10. MRF/MRFcomp/CMRF results, with energies E =
−985.61, E = −974.16, E = −984.21, and errors 36, 46, 28,
respectively. The connectivity constraint solution CMRF is a sub-
stantial improvement over the solutions of MRF and MRFcomp.
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Figure 11. MRF/MRFcomp/CMRF results, with energies E =
−980.13, E = −974.03, E = −976.83, and errors 34, 34, 24,
respectively. Note although the CMRF solution becomes fractional,
it is a substantial improvement over the MRF result.

size and positioning of the objects. We first look at a simple
statistic of the training and validation set for the detection
task: How many objects of each individual class are present
on an image? It turns out that in 70% of all images, there
is no more than a single object of each class present on the
image. (The supplementary materials have a plot.)

Experimental Setup. In our setting, we letx = (V,E) be
the graph resulting from a superpixel segmentation [24] of
an image, where each i ∈ V is a superpixel. The superpixel
segmentation is obtained using the method1 of Mori [22],
where we use ≈ 100 superpixels. Segmentations are shown
on the left side of Figures 12 to 14. Using superpixels
has two advantages, i) the information in each superpixel
is more discriminative because all image information in the
region can be used to describe it, and ii) the complexity of
the inference is drastically reduced with only a negligible
approximation error. Each superpixel becomes a vertex in
the graph. An edge joins two vertices if the superpixels are
adjacent in the image. Therefore connectivity in the graph
implies connectivity of the segmentation. For each image,
we extract 50,000 SURF features [1] at random positions
and assign each feature to the superpixel which contains the
center pixel of the feature. For each vertex, a bag-of-words
histogram xi ∈ RH is created by nearest-neighbor quantiz-
ing the features associated to the superpixel in a codebook
of 500 words (H = 500), created by k-means clustering on
a random sample of 500,000 features from the training set.

We treat each of the twenty classes separately as a binary
problem. That is, for each image showing an object of the

1http://cs.sfu.ca/˜mori/research/superpixels/

class, a class-vs-background labeling is sought. Hence each
vertex i in the graph has a label vector yi ∈ {0, 1}×{0, 1}.
We report the average intersection-union metric, defined as

TP
TP+FP+FN ratio, where TP , FP , FN are true positives,
false positives and false negatives, respectively, per pixel la-
beling for the object class [6]. Because the VOC2008 seg-
mentation trainval set includes only 1023 images for
which ground truth is available, with some classes having
as few as 44 positive images (only 19 for train alone), we
use a three-fold cross validation estimate on the trainval
set. For all CRF variants we will describe later, we use the
following feature functions.

• Node features, φ(1)
i (yi,x) = vec(xiy

>
i ).

Thus the output of φ(1)
i (yi,x) is a (H, 2)-matrix of two

weighted replications of the node histogram xi. The
matrix is stacked columnwise.

• Edge features φ(2)
i,j (yi, yj ,x) = vec∆(yiy

>
j ).

This is the upper-triangular part including diagonal of
the outer product yiy

>
j . By making this feature avail-

able, the CRF can learn the weights for the inter-class
and intra-class Potts potentials separately.

We test three CRFs, i) a CRF with these feature functions,
ii) the same CRF with ψhard(class)

V , and iii) the same CRF with
ψsoft(class)

V .

Learning the parametersw. For learning the parameters
of the model, we use the structured output support vector
machine framework [30], recently also used in computer



vision [3, 21, 29]. It minimizes the following regularized
risk function.

min
w

‖w‖2 +
C

`

∑̀
n=1

max
y∈Y

(∆(yn,y) (9)

+E(yn;xn,w)− E(y;xn,w)) ,

where (xn,yn)n=1,...,` are the given training samples and
∆ : Y × Y → R+ is a compatibility function which has
a high value if two segmentations are different and a low
value if they are very similar. More precisely, we define
∆(y1,y2) =

∑
i∈V

riP
j∈V rj

(
y1

i + y2
i − 2y1

i y
2
i

)
, where

ri is the size in pixels of the region i in the superpixel
segmentation. Note that this definition is, i) symmetric,
∆(y1,y2) = ∆(y2,y1), ii) zero-based, ∆(y,y) = 0, and
non-negative, iii) corresponds to the Hamming loss if all
elements are binary, and iv) decomposes linearly over the
individual elements if one of y1, y2 is constant. Because of
the last point it is easy to incorporate into the MRF inference
procedure by means of a bias on the node potentials [7, 29].
We train with C ∈ {100, 10, . . . , .00001} and report the
highest achieved performance of each model.

The objective (9) is convex, but non-differentiable.
Still, it can be solved efficiently by iteratively solving
a quadratic program, see [30]. Given a parameter vec-
tor w, for each sample (xn,yn) one needs to solve
maxy∈Y (∆(yn,y) + E(yn;xn,w)− E(y;xn,w)). As
the last term is constant and ∆(yn,y) can be incorporated
into E(y;xn,w), Algorithm 1 can be used to find the max-
imizer y∗n. It defines a new constraint and by iterating be-
tween generating constraints and solving the QP we can ob-
tain successively better parameter vectors w.

Finley and Joachims [7] have shown that if the inference
in the learning problem is hard, then approximately solving
this hard problem can lead to classification functions which
do not generalize well. Instead, it is preferable to solve ex-
actly a relaxation to the original inference problem. This is
precisely what we are doing, because the intersection of (5)
with the MAP-MRF LP local polytope defines an exactly
solvable relaxation.

Results. Table 1 shows for each class the averaged
intersection-union scores of the three different methods.

For most classes the connected CRF models outperform
the baseline CRF. This is especially true for classes such
as aeroplane and cat, whose images usually contain only
one large object. In contrast, classes such as bottle and
sheep most often have more than one objects on an image.
This is a violation of our connectedness assumption and in
this case the CRF model outperforms the connected ones.
We also see that in some cases the extra flexibility of the
soft connectedness over the hard connectedness prior pays
off: for the boat, bus, cow and motorbike classes, the abil-
ity to weight the connectivity strength versus the other po-
tentials is useful in improving over both the baseline CRF

and the hard connected CRF. The typical behaviour of the
hard-connectedness CRF on test images is shown in Fig-
ures 12 to 14 for the aeroplane class. In the first two seg-
mentations, connectedness helps by completing a discon-
tinuous segmentation and by removing clutter. Figure 14
shows a hopeless case: if the CRF segmentation is wrong,
connectedness cannot help.

5. Conclusions
We have shown how the limitation of only consider-

ing local interactions in discrete random field models can
be overcome in a principled way. We considered a hard
global potential encoding whether a labeling is connected
or not. We derived an efficient relaxation that can naturally
be used with MAP-MRF LP relaxations. Experimentally,
we demonstrated that a connectedness potential reduces the
segmentation error on both a synthetic denoising and real
object segmentation task.

Clearly, other meaningful global potential functions
could be devised by the method introduced in this paper.
The principled use of polyhedral combinatorics opens a
way to better model high-level vision tasks with random
field models. Another direction of future work is to see
if the addition of complicated primal constraints like (5)
can be accommodated into recent efficient dual LP MAP
solvers [8, 17, 19, 27].

All software and experiments used in this paper are avail-
able as open-source software at http://www.kyb.mpg.
de/bs/people/nowozin/cmrf/.
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