
Multi-source domain adaptation with guarantees

Anastasia Pentina
SDSC, ETH Zurich

anastasia.pentina@sdsc.ethz.ch

Christoph H. Lampert
IST Austria

chl@ist.ac.at

Abstract

This paper addresses the problem of unsupervised multi-source domain adaptation
and in particular the question of how to combine the source data in an optimal way.
We prove a generalisation bound that characterises how the amount of transfer
from different source tasks influences the final performance of a trained predictor.
In contrast to most previous works, which provide guarantees for fixed transfer
weights but do not allow choosing them in a data-dependent way, our bound yields
a principled algorithm for weighting the source tasks effectively.

1 Introduction

Machine learning algorithms are most successful when given sufficient amount of training data
coming from the same problem, as the one they will be tested on. However, there are scenarios,
like adaptation of a personalised speech recognition system or recommender system to a new user,
in which one wishes to make accurate predictions on a task for which there is only limited or even
no annotated data available. The question of how to successfully utilise data available from one or
more source tasks for solving a related, but different target problem is studied in the filed of domain
adaptation. Different approached to domain adaptation have been studied in the literature, ranging
from finding a weighted combination of source predictors [5] to optimal transport-based methods [2]
to using variational autoencoders [4].

In this work we study unsupervised multi-source domain adaptation and focus on the question of
how to weight the data from source tasks such that a hypothesis trained on this combination would
perform well on the target domain. This question was first studied in [1] and recently revisited
in [9]. Intuitively, one would want to use the most related source task for training a target hypothesis.
However, including data from less related tasks in the learning procedure could be beneficial from the
perspective of increasing the total amount of data used for training, and thereby reducing the danger
of overfitting. The interplay between these two aspects - bias and variance - of the trained hypothesis
as the result of using various weighted combinations of the source tasks has been theoretically
characterised both in [1] and in [9]. However, in both these works the parameters of the weighted
combination are assumed to be fixed in advance. The main result of this work is a high probability
generalisation bound on the target error as a function of the weights that holds for all possible convex
combinations. Thus, it extends the previous results in that it allows to derive an algorithm for selecting
a good weighted combination in a principled data-dependent way.

2 Main result

We assume that there are k source tasks 〈D1, f1〉, . . . , 〈Dk, fk〉 and a target task 〈DT , fT 〉, where
for every i = 1, . . . , k, T Di is a marginal distribution over a common input space X and fi : X →
{−1, 1} is a deterministic labeling function. For every source task i the learner is given a set Sui of
n training examples, sampled i.i.d. from the corresponding data distribution Di, and for a subset
Si ⊂ Sui of size mi the labels according to fi are provided. For the target task the learner is given
only a set SuT of n unlabeled examples sampled i.i.d. from DT .
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The goal of the learner is to find a hypothesis h in a hypotheses class H that would lead to low
expected error on the target task:

erT (h) = E
x∼DT

Jh(x) 6= fT (x)K. (1)

We assume that to find such hypothesis the learner minimizes a convex combination of training errors
on the source tasks:

êrα(h) =

k∑
i=1

αiêri(h) =

k∑
i=1

αi
mi

∑
(xij ,y

i
j)∈Si

Jh(xij) 6= yijK, (2)

where α ∈ Λ = {αi ≥ 0,
∑k
i=1 αi = 1}. The success of any domain adaptation algorithm depends

on how similar the target task is to the source ones. In the seminal work [1] the discrepancy measure
was used for quantifying the dissimilarity between the marginal distributions of the tasks. In this
work we use a very similar notion of disparity discrepancy:

dh,H(P,Q) = sup
h′∈H

| E
x∼P

Jh(x) 6= h′(x)K− E
x∼Q

Jh(x) 6= h′(x)K|, (3)

which was introduced in [8] and allows obtaining tighter generalization bounds.

The success of this approach mainly depends on the choice of the weights α and the following
theorem captures this dependence.
Theorem 1. Let d be the VC-dimension of the hypothesis setH and M =

∑
i∈I mi and assume that

M > d. Then for any δ > 0 with probability at least 1− δ over Su1 , . . . , S
u
k , S

u
T and S1, . . . , Sk, the

following inequality holds uniformly for all choices of weights α ∈ Λ and all possible choices of the
predictor h ∈ H:

erT (h) ≤ êrα(h) +

k∑
i=1

αidh,H(SuT , S
u
i ) +

k∑
i=1

αiλTi +A+B, (4)

where

A =

√
log(k) + 2 log(8/δ)

n
+

√
8d log(en/4d)

n
(5)

B = C

√
ln(32km0‖α‖2∗)

m0
+ 4‖α‖∗

√
πd ln

(
eM

d

)
+ ‖α‖∗

√
8 ln

(
logM

δ

)
(6)

dh,H(SuT , S
u
i ) = max

h′∈H
|êrT (h, h′)− êri(h, h

′)| êrt(h, h
′) =

1

n

n∑
j=1

Jh(xtj) 6= h′(xtj)K (7)

λTi = inf
h

(erT (h) + eri(h)) ‖α‖∗ =

√√√√ k∑
i=1

(αi)
2

mi
m0 = min

i=1,...,k
mi. (8)

and C is a universal constant.

Discussion Theorem 1 provides an upper bound on the expected error on the target task – the
quantity of interest – in terms of averaged λ-s, a data-independent complexity term A and three data-
dependent components – the weighted empirical errors on the source tasks, weighted dissimilarities
between unlabeled sample sets (measured by dh,H) and α-dependent complexity term B.

The complexity term A comes from the estimation of the disparity discrepancies from the finite
sets of unlabeled samples and behaves as Õ(

√
(log k + d)/n)), where n is the number of unlabeled

examples per task. Since collecting unlabeled examples is typically much cheaper than annotated
one, we can assume that n� mi for i = 1, . . . , k and thus this term has a negligible effect on the
whole bound.

Results of [1] and [9] have shown that ‖α‖∗ affects the convergence rates, however, only when α is
selected before observing the data. This left an undesirable gap in the theoretical understanding of
multi-source domain adaptation, since for any practical algorithm, the mixture coefficients need to
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be chosen after the data had been observed, e.g. based on an estimate of the task relatedness. The
complexity term B in our results shows that the same behavior holds even in the uniform-in-α case,
where α can be selected based on the observed data. Its last two terms are proportional to ‖α‖∗
and thus range from Õ(

√
d/m0), when all the weight is put on the source task with the smallest

training set, to the best possible rate of Õ(
√
d/M) when the weights are distributed proportionally

to the sizes of the training sets. In contrast, the first term in B does not exhibit this behaviour and
converges only as Õ(

√
1/m0). It is the consequence of the bound holding uniformly in α. However,

this component also does not depend on the VC-dimension ofH and thus, if d is sufficiently large,
the last two terms in B will be dominating.

The data-dependent part of the right-hand-side of (4) can be seen as a quality measure for the
hypothesis h and weights α and by minimizing it one could expect to find a beneficial combination
of these parameters. This results in the following optimisation problem:

min
h∈H,α∈Λ

êrα(h) +

k∑
i=1

αidh,H(SuT , S
u
i ) + γ‖α‖∗ (9)

for some regularisation constant γ ≥ 0. Optimisation (9) has an intuitive interpretation: we would
like to give more weight to the source tasks that are easy (their empirical error is low) and similar to
the target (small dh,H), while also sharing the weights among multiple source tasks to decrease the
variance of the estimate (low ‖α‖∗), and select a hypothesis that works well on the source data and
performs similarly on the source and on the target (low dh,H).

3 Experiments

Data. We use Amazon reviews dataset, containing reviews for four product categories - Books,
DVDs, Electronics, and Kitchen appliances. Each review is encoded by a 5000-dimensional vector
of unigrams and bigrams and has a binary label indicating the sentiment. We define four domain
adaptation tasks, one for each target category with the remaining three categories serving as source
tasks. For each domain we use 500 samples for training and the remaining samples from the target
domain for testing.

Methods. To highlight the effects that the weighting of the source data has on the final performance,
we omit the component of learning the representation that is often contained in domain adaptation
methods (with MDAN [9] being no exception) and focus on the case of linear classifiers. As a result,
MDAN is re-formulated as the following optimisation problem:

min
h

1

γ
log

k∑
i=1

exp (γ (êri(h) + disc(Sui , S
u
T ))) , (10)

where

disc(Sui , S
u
T ) = sup

h,h′∈H

∣∣∣∣∣∣ 1n
n∑
j=1

Jh(xij) 6= h′(xij)K−
1

n

n∑
j=1

Jh(xTj ) 6= h′(xTj )K

∣∣∣∣∣∣ (11)

is the discrepancy measure [1]. To make the comparison to [9] more direct we also use it in (9)
instead of the disparity discrepancy. We estimate it from the unlabeled data by training a lin-
ear classifier to separate SuT from Sui using logistic loss for every source task i. In both (9)
and (10) we use logistic loss. Following [9] we set γ in (10) to 10. In (9) we select γ from
the set {0., 0.0001, 0.001, 0.01, 0.1, 1., 2., 5., 10., 15., 20} using leave-one-task-out cross-validation:
we iterate over the source tasks by setting one of them aside, as if it was the target, and using the
remaining source tasks for training.

Results. We report test accuracy averaged over 10 random data splits in Table 1. These results
show that the algorithm derived from Theorem 1 is competitive with MDAN, and at the same time it
enjoys stronger theoretical guarantees.
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D+E+K→ B B+E+K→ D B+D+K→ E B+D+E→ K
MDAN 74.26 76.44 80.56 82.38

Ours 74.29 76.52 81.07 82.84
Table 1: Test accuracy on the target task on Amazon reviews dataset.
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A Proof

Our analysis heavily relies on the following two results from the literature:

Lemma 1 (Theorem 1 in [7]). Let X1, . . . , Xn be independent random variables taking values in
the set X and f be a function f : Xn → R. For any x = (x1, . . . , xn) ∈ Xn and y ∈ X define:

xy,k = (x1, . . . , xk−1, y, xk+1, . . . , xn)

(inf
k
f)(x) = inf

y∈X
f(xy,k)

∆+,f =

n∑
i=1

(f − inf
k
f)2.

Then for t > 0:

Pr{f −E f ≥ t} ≤ exp

(
−t2

2‖∆+‖∞

)
. (12)

Lemma 2 (Slightly modified Lemma 2 in [6]). Let M ≥ 2, A1, . . . , AM ⊂ Rn and A = ∪mAm.
Then:

G(A) ≤ max
m

G(Am) + sup
z∈A
‖z‖
√

2 ln(M). (13)
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Proof of Theorem 1. We start with applying Theorem B.2 from [8] to every pair of tasks which
results in the following bound on the average expected error over all tasks in terms of the error on the
labeled tasks:

erT (h) ≤ erα(h) +

k∑
i=1

αtidh,H(DT , Di) +

k∑
i=1

αiλTi. (14)

According to Theorem B.4 from [8] for any pair of tasks i, j and any δ > 0 with probability at least
1− δ the following holds for all h inH:

dh,H(Di, DT ) ≤ dh,H(Sui , S
u
T ) +

√
8d log(en/4d)

n
+

√
2 log(4/δ)

n
. (15)

Therefore, using the union bound argument, we obtain that for any δ > 0 with probability at least
1− δ/2 for any choice of weights α:

k∑
i=1

αidh,H(DT , Di) ≤
k∑
i=1

αidh,H(SuT , S
u
i ) +

√
8d log(en/4d)

n
+

√
log(k) + 2 log(8/δ)

n
. (16)

What remains is to upper-bound the difference between weighted expected errors and their empirical
counter-parts uniformly in weights α ∈ Λ and predictor h ∈ H.

We start with applying Lemma 1 to:

f(S1, . . . , Sk) = sup
α,h

erα(h)− êrα(h) = sup

k∑
i=1

mi∑
j=1

αi
mi

(eri(h)− `(h(xij), y
i
j)) (17)

Note that:

∆+,f ≤
k∑
i=1

mi∑
j=1

(
αi
mi

)2

=

k∑
i=1

(αi)
2

mi
(18)

Therefore, by applying Lemma 1 to:

Λρ =

{
α ∈ Rk : αi ≥ 0,

k∑
i=1

αi = 1,

k∑
i=1

(αi)
2

mi
≤ ρ2

}
(19)

we obtain that with probability at least 1− δ/2 for all α ∈ Λρ and h ∈ H:

erα(h)− êrα(h) ≤ E sup
α,h

(
erα(h)− êrα(h)

)
+ ρ
√

2 log(2/δ). (20)

To bound the first term on the right-hand-side, we use the symmetrization trick and switch to Gaussian
random variables:

E sup
α,h

(
erα(h)− êrα(h)

)
= E sup

α,h

k∑
i=1

mi∑
j=1

αi
mi

(eri(h)− `(h(xij), y
i
j)) (21)

= E sup
α,h

k∑
i=1

mi∑
j=1

αi
mi

(E
S̄
`(h(x̄ij), ȳ

i
j)− `(h(xij), y

i
j)) (22)

≤ E
S
E
S̄

sup
α,h

k∑
i=1

mi∑
j=1

αi
mi

(`(h(x̄ij), ȳ
i
j)− `(h(xij), y

i
j)) (23)

≤ 2E
S
E
σ

sup
α,h

k∑
i=1

mi∑
j=1

σijαi

mi
`(h(xij), y

i
j) (24)

≤
√

2πE
S
E
ξ

sup
α,h

k∑
i=1

mi∑
j=1

ξijαi

mi
`(h(xij), y

i
j). (25)
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where σij are independent Rademacher random variables that take values +1 and −1 with probability
0.5 and ξij are independent standard Gaussian random variables. Now, fix h ∈ H. Then:

E
S
E
ξ

sup
α

k∑
i=1

mi∑
j=1

ξijαi

mi
`(h(xij), y

i
j) = E

S
E
ξ

sup

k∑
i=1

mi∑
j=1

ξijαi

mi

1− h(xij)y
i
j

2
(26)

≤ 1

2

E
ξ

sup

k∑
i=1

mi∑
j=1

ξij
αi
mi

+ E
S,ξ

sup

k∑
i=1

mi∑
j=1

ξijh(xij)y
i
j

αi
mi

 = E
ξ

sup

k∑
i=1

mi∑
j=1

ξij
αi
mi

. (27)

Define:

B =

{
β ∈ Rk :

k∑
i=1

βi = 1,

k∑
i=1

(βi)
2

mi
≤ ρ2

}
(28)

K =

{
γ ∈ Rk : ‖γ‖2 ≤ 1, ‖γ‖(1) = ρ

k∑
i=1

√
miγi ≤ 1

}
(29)

Then Λρ ⊂ B. Therefore:

E
ξ

sup
α∈Λρ

k∑
i=1

mi∑
j=1

ξij
αi
mi
≤ E

ξ
sup
β∈B

k∑
i=1

mi∑
j=1

ξij
βi
mi

= E
ξ

sup
β∈B

k∑
i=1

βi√
mi
· 1
√
mi

mi∑
j=1

ξij (30)

= E
ξ

sup
β∈B

k∑
i=1

βi√
mi

ξi = ρE
ξ

sup
β∈B

k∑
i=1

βi
ρ
√
mi

ξi ≤ ρE
ξ

sup
γ∈K

k∑
i=1

γiξi (31)

K is a unit ball with respect to the norm ‖γ‖∗ = max{‖γ‖2, ‖γ‖(1)}. Therefore, for a fixed
(ξ1, . . . , ξk):

sup

k∑
i=1

ξiγi = ‖ξ‖∗∗,

where ‖ · ‖∗∗ is dual norm to ‖ · ‖∗. It can be expressed as:

‖ξ‖∗∗ = inf
ξ1+ξ2=ξ

‖ξ1‖∗2 + ‖ξ2‖∗(1), (32)

where ‖ · ‖∗2 is dual to ‖ · ‖2, so just ‖ · ‖2, and ‖ · ‖∗(1) is dual to ‖ · ‖(1):

‖ξ‖∗(1) = max
i

|ξi|
ρ
√
mi

.

To upper-bound the infinum in (32), consider the following split: let I1 be the set of indices of⌈(
1

ρ
√
m0

)2
⌉

largest elements of (|ξ1|, . . . , |ξk|), where m0 = minmi, and let I2 be the set of

remaining indices. Then:

‖ξ‖∗∗ ≤
√∑
i∈I1

ξ2
i + max

i∈I2

|ξi|
ρ
√
mi

. (33)

By the choice of I1 and I2, the largest element in I2 is not bigger than any element in I1, and thus
not bigger than their average. Therefore:

max
i∈I2

|ξi|
ρ
√
mi
≤ max

i∈I2

|ξi|
ρ
√
m0
≤

1
|I1|
∑
i∈I1 ξ

2
i

ρ
√
m0

≤

√
1
|I1|
∑
i∈I1 ξ

2
i

ρ
√
m0

=

√∑
i∈I1

ξ2
i . (34)

Thus:

‖ξ‖∗∗ ≤ 2

√∑
i∈I1

ξ2
i (35)
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By Corollary 3.4 in [3]:

E

√∑
i∈I1

ξ2
i ∼

√
|I1|
√

2 + ln(2k/|I1|) ≤
1

ρ
√
m0

√
log(8km0ρ2) (36)

Thus, we obtain that:

ρE
ξ

sup
γ∈K

k∑
i=1

γiξi = ρE ‖ξ‖∗∗ ≤ ρ
C

ρ
√
m0

√
log(8km0ρ) = C

√
log(8km0ρ2)

m0
(37)

for some absolute constant C.

According to Lemma 2

√
2πE

S
E
ξ

sup
α,h

k∑
i=1

mi∑
j=1

ξijαi

mi
`(h(xij), y

i
j) ≤ C

√
log(8km0ρ2)

m0
+ ρ

√
2d ln

(
eM

d

)
. (38)

Combining this with (20) and (27) we obtain that for any fixed ρ > 0 and δ > 0 with probability at
least 1− δ/2 the following inequality holds for all α ∈ Λρ and h ∈ H:

erα(h) ≤ êrα(h) + C

√
log(8km0ρ2)

m0
+ 2ρ

√
πd log

(
eM

d

)
+ ρ

√
2 log

(
2

δ

)
. (39)

By combining these bounds for ρ = 1
2s for various s using the union bound argument (and taking

into account that 1√
M
≤ ρ ≤ 1√

m0
) we obtain that for any δ > 0 with probability at least 1− δ/2 the

following inequality holds for all α ∈ Λ and h ∈ H:

erα(h) ≤ êrα(h) + C

√
log(32km0‖α‖2∗)

m0
+ 4‖α‖∗

√
πd log

(
eM

d

)
+ ‖α‖∗

√
8 log

(
logM

δ

)
.

(40)

Combination of (40) with (16) gives the statement of the theorem.
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