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Abstract

We address the problem of metric learning
for multi-view data, namely the construction
of embedding projections from data in dif-
ferent representations into a shared feature
space, such that the Euclidean distance in
this space provides a meaningful within-view
as well as between-view similarity. Our moti-
vation stems from the problem of cross-media
retrieval tasks, where the availability of a
joint Euclidean distance function is a pre-
requisite to allow fast, in particular hashing-
based, nearest neighbor queries.

We formulate an objective function that ex-
presses the intuitive concept that matching
samples are mapped closely together in the
output space, whereas non-matching samples
are pushed apart, no matter in which view
they are available. The resulting optimiza-
tion problem is not convex, but it can be
decomposed explicitly into a convex and a
concave part, thereby allowing efficient op-
timization using the convex-concave proce-
dure. Experiments on an image retrieval
task show that nearest-neighbor based cross-
view retrieval is indeed possible, and the pro-
posed technique improves the retrieval accu-
racy over baseline techniques.

1. Introduction

In this work we study the problem of data retrieval in a
multi-view setting, i.e. for data collections that contain
entries in different representations. Typical examples
are multi-media databases, which contain images, au-
dio files and videos, or simply the world wide web,
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seen as a huge collection of data, created by content
providers as well as users in various, typically mutu-
ally incompatible data formats. Retrieving relevant
data from such heterogeneous sources has become a
task of major interest to large internet-based compa-
nies as well as to home users, and the application of
machine learning techniques is one of the most promis-
ing approaches in this area.

We concentrate on the aspect of jointly learning a dis-
tance function for multi-view data in which Euclidean
distance comparisons are meaningful not only within
a single view, but also between different views. Such a
representation allows one to subsequently rely on con-
ventional retrieval techniques. Since compatibility to
these is an underlying motivation of our work, we start
by introducing these before motivating and introduc-
ing our new contribution.

1.1. Efficient Nearest Neighbor Retrieval

Despite certain success in the development of super-
vised learning techniques for retrieval tasks, for exam-
ple learning to rank (see (Liu, 2009) for an overview),
the majority of retrieval techniques today rely on some
form of (k-)nearest neighbor search. Supervision is
still useful to improve the quality of retrieved results,
but typically this is done in a query-independent way
through metric learning, which transforms the original
representation of the data samples into a new, prefer-
ably low-dimensional, representations in which similar
samples have a small Euclidean distance to each other,
and dis-similar samples are separated by a large dis-
tance. The Euclidean metric is not chosen arbitrarily
here, but motivated by considerations of efficiency: ex-
haustive nearest neighbors search does not scale well to
the target regime of millions of database samples, and
even fast approaches based on specially designed data
structures, such as kd-trees (Friedman et al., 1977),
are not efficient anymore when they have to deal with
data in hundreds or even thousands of dimensions.



Learning Multi-View Neighborhood Preserving Projections

Approximate nearest neighbor techniques are applied
instead, and these are available mainly for queries
with respect to the Euclidean distance, e.g. random-
ized neighborhood graphs (Arya et al., 1998), navi-
gating nets (Krauthgamer & Lee, 2004) and cover
trees (Beygelzimer et al., 2006). Methods for fast
(approximate) nearest neighbor retrieval for other dis-
tance functions are rare in comparison, and typically
still limited, e.g., to metrics (Omohundro, 1987), and
Bregman divergences (Cayton, 2008).

For datasets of millions or even billions of entries, even
approximate search-based techniques are typically in-
feasible, and one has to resort to hashing approaches.
Based on the original introduction of locality sensitive
hashing (Indyk & Motawani, 1998), several methods
have been developed that transform an original fea-
ture representation into a hash code, i.e. a short binary
string that can act as an index to directly access el-
ements in a database, e.g. (Salakhutdinov & Hinton,
2007; Weiss et al., 2009; Kulis & Darrell, 2009).

1.2. Metric Learning

Approximate nearest neighbor search in general, and
hashing-based approaches in particular, provide a
powerful and well developed tool for efficient informa-
tion retrieval from large databases. However, they typ-
ically rely on the availability of a meaningful Euclidean
metric between the data samples. If such a metric is
not readily available, metric learning can be applied
to construct one. Basic techniques in this area are un-
supervised, such as PCA for dimensionality reduction
and the suppression of noise in already vectorial data,
or kernel-PCA (Schölkopf et al., 1998) to construct a
vector representation based from a kernel function.

Supervised techniques typically work by identifying
linear projection directions that make related samples
similar, and unrelated sample dis-similar in the output
space, for example based on a maximum margin crite-
ria (Schultz & Joachims, 2002; Shalev-Shwartz et al.,
2004). Neighborhood component analysis (Goldberger
et al., 2004) achieves a similar goal by (approxi-
mately) minimizing the leave-one-out classification er-
ror, and Weinberger & Saul (2009) combines both as-
pects.

Relatively little prior work, however, exists regarding
the integration of multi-view data, and the methods
that do exists are often tailored with specific applica-
tion domains in mind: Vinokourov et al. (2002) and
Hardoon et al. (2004) use canonical correlation analy-
sis to construct a joint feature space from image and
text data. Text-to-Image retrieval can then be per-
formed by maximizing the inner product between text

queries and database images. Lampert & Kroemer
(2010) use maximum covariance analysis in a similar
setup to jointly reduce the dimension of only weakly
paired multi-view data. Ham et al. (2005) use pair-
wise correspondences between two views to perform
manifold alignment based on a correlation-like mea-
sure. The resulting alignment, however, does not ex-
tend to out-of-sample examples. Jeon et al. (2003) and
Monay & Gatica-Perez (2007) learn joint probabilis-
tic models between image and text annotation, from
which the best matching image for a subsequent text
query can be found by marginalization. None of these
approaches learn a Euclidean output metric, so they
can not directly be combined with existing hashing-
based retrieval techniques.

In a recent abstract, Hadsell et al. (2010) express a goal
similar to ours: to learn a similarity function between
multiple views that can be used as replacement for the
Euclidean metric. It will be interesting to compare
their approach to ours, however, so far no details or
results of their work are available.

2. The Model

Here we describe our model of learning a shared latent
space from the multiple representations of the objects.
For the purpose of explaining our basic idea, we focus
on the case when we want to learn a shared latent space
from two data sources or views. We discuss the general
setting of more than two data sources in Section 5.

We are given two sets of m observed data points,
{x1, . . . , xm} ⊂ X and {y1, . . . , ym} ⊂ Y describing
the same objects. For example, for image objects, X
can be features extracted based on the content of the
image itself and Y can be texts surrounding the image
on a webpage. Note that the dimensionality of X and
Y in general are not the same. We assume that for each
xi ∈ X there exists a set Sxi of data points from Y that
are deemed similar to xi. In the simplest form, the set
Sxi

is a singleton and contains only a data point yj
describing the same object. We explore other types of
neighborhood sets in Section 4.

For X = Rd1 and Y = Rd2 , we seek projection func-
tions,

g1 : Rd1 → RD and g2 : Rd2 → RD (1)

with potentially D � min(d1, d2) that respect
the neighborhood relationship {Sxi

}mi=1. We fur-
ther assume a linear parameterization of the func-
tions gw1 (xi) := 〈w1, φ(xi)〉 for H1 basis func-
tions {φh(xi)}H1

h=1 and w1 ∈ RD×H1 and simi-
larly gw2 (yi) := 〈w2, ψ(yi)〉 for H2 basis functions
{ψh(yi)}H2

h=1 and w2 ∈ RD×H2 .
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2.1. Regularized Risk Functional

Our regularized objective function for learning a
shared representation has the form

L(w1, w2,X,Y, S) := (2)
m∑

i,j=1

Li,j(w1, w2, xi, yj , Sxi
) + ηΩ(w1) + γΩ(w2),

where Li,j(.) is the loss function, Ω(.) is a regularizer
on the parameters and the trade-off variables η and
γ control the relative influence of loss and regulariza-
tion terms. For Ω(.) one typically chooses the `2 norm,
or the `1 norm if one wants to induce sparsity in the
parameters. The loss function expresses the proper-
ties we expect the projected data to have, in our case
that enforce similar objects across different views are
mapped to nearby points, whereas dis-similar objects
across different views to be pushed apart.

2.2. Loss Function

We choose the loss function as

Li,j(w1, w2, xi, yj , Sxi
) = (3)

I[[yj∈Sxi
]]

2
× Li,j1 +

(
1− I[[yj∈Sxi

]]

)
2

× Li,j2 (4)

with (5)

Li,j1 = ‖gw1
1 (xi)− gw2

2 (yj)‖2Fro (6)

Li,j2 (βd) =


− 1

2β
2
d + aλ2

2 , if 0 ≤ |βd| < λ
|βd|2−2aλ|βd|+a2λ2

2(a−1) , if λ ≤ |βd| ≤ aλ
0, if |βd| ≥ aλ,

(7)

where βd = ‖gw1
1 (xi)− gw2

2 (yj)‖Fro for appropriately
chosen constants a and λ. The above loss function
consists of the similarity term Li,j1 that enforces simi-
lar objects to be at proximal locations in the latent
space and the dis-similarity term Li,j2 that pushes
dis-similar objects away from each other. For simi-
lar objects, the optimization problem in (2) is con-
vex in w1 for a fixed w2 and vice versa. This form
of the similarity loss function has been used in many
metric learning literatures (for example Hadsell et al.
(2010)). In many cases, however, the form of dis-
similar loss function is taken to be a truncated ver-
sion of the negative of the similarity loss function, i.e.
max(0, 1−‖gw1

1 (xi)− gw2
2 (yj)‖2Fro). While this is intu-

itive, it leads to an undesirable non-convex optimiza-
tion problem without appealing decomposition proper-
ties. The loss function we introduce is also non-convex,
but it has a decomposition form that is amenable to ef-
ficient iterative optimization. We call this function as a

smoothly clipped inverted squared deviation (SCISD)
function (see Figure 1(a)). This SCISD function de-
compose into a difference of two concave functions,
thus (2) can be solved efficiently by using the con-
cave convex procedure (CCCP) (Yuille & Rangarajan,
2003). This is discussed in greater detail in Section 3.

3. The Optimization

As discussed in Section 2, the optimization problem
in (2) for dis-similar objects is non-convex in w1 for
a fixed w2 and vice versa. One potential approach to
solve the optimization problem is to use successive lin-
ear lower bounds on Li,j2 (.) and to solve the resulting
convex problem and this is known as the concave con-
vex procedure (CCCP). CCCP works as follow: for a
given function f(x) = g(x) − h(x), where g is convex
and −h is concave, an upper bound can be found by

f(x) ≤ g(x)− h(x0)− 〈∂h(x0), x− x0〉 . (8)

This upper bound is convex and can be minimized
effectively over a convex domain. Subsequently one
finds a new location x0 and the entire procedure is
repeated. This procedure is guaranteed to converge to
a local optimum or a saddle point (Sriperumbudur &
Lanckriet, 2009).

To apply CCCP in our situation, we first confirm that
the function Li,j2 (βd) can be written as the difference
of two concave functions (see Figure 1):

Li,j2 (βd) = L1
cv(βd)− L2

cv(βd),with (9)

L1
cv(βd) = −1

2
β2
d +

aλ2

2
(10)

L2
cv(βd) =


0, if 0 ≤ |βd| < λ
2aλ|βd|−|βd|2−β2

d(a−1)−aλ
2

2(a−1) , if λ≤|βd|≤ aλ
− 1

2β
2
d + aλ2

2 , if |βd| ≥ aλ,
(11)

Together with the convex regularization functions, the
term −L2

cv(βd) forms the convex part of the objective
function while the term L1

cv(βd) contributes the con-
cave part. Each iteration of CCCP approximates the
concave part (the L1

cv(βd) term) by its tangent (linear
upper bound), that is 〈∂h(x0), x〉 in (8). With this lin-
earization, the convex upper bound of (2) with respect
to w1 is then in the form of

m∑
i,j=1

I[[yj /∈Sxi
]]

2

[
−L2

cv(βd) + (〈w1, xi〉 − 〈w2, yj〉)xTi
]

+

m∑
i,j=1

I[[yj∈Sxi
]]

2
× Li,j1 + ηΩ(w1) (12)
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βd

L
i,

j
2

(β
d
)

(a) Difference of Concave, Li,j
2 (βd) =

L1
cv(βd)− L2

cv(βd)

βd

L
c
a
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e

1
(β

d
)
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cv(βd)

βd
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1
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d
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Figure 1. Smoothly Clipped Inverted Squared Deviation, SCISD (a = 3.7 and λ = 1/a). This proposed function is suitable
for pushing dis-similar objects away from each other. Furthermore, it admits a desirable concave-convex decomposition
property.

Algorithm 1 Multi-View Neighborhood Preserving
Projection

Input: Data sources X = {x1, . . . , xm} and Y =
{y1, . . . , ym}, an inter-view neighborhood relation-
ship {Sxi

}mi=1, number of alternations N
Output: w∗1 and w∗2
Initialize w1 and w2

for t = 1 to N do
Solve the convex optimization problem in (12)
w.r.t. w1 and obtain wt1
Solve the convex optimization problem in (13)
w.r.t. w2 and obtain wt2

end for

and similarly with respect to w2 it has the following
form

m∑
i,j=1

I[[yj /∈Sxi
]]

2

[
−L2

cv(βd) + (〈w2, yj〉 − 〈w1, xi〉)yTj
]

+

m∑
i,j=1

I[[yj∈Sxi
]]

2
× Li,j1 + γΩ(w2). (13)

Our neighborhood preserving projection learning es-
sentially consists of alternating convex optimizations
over w1 and over w2 (see Algorithm 1). Several ex-
isting convex solvers can be used to solve each of the
convex optimization steps. Since we have a decompos-
able loss function, we can also apply a stochastic gra-
dient style of optimization (Bottou & Bousquet, 2007),
thereby facilitating large scale learning.

Algorithm 2 Hybrid-{PCA and Multi-NPP}
Input: Data sources X = {x1, . . . , xm} and Y =
{y1, . . . , ym} and an inter-vew neighborhood rela-
tionship {Sxi

}mi=1

Output: wPCA
1 and w∗2

Initialize w2

Solve the optimization problem in (13) w.r.t. w2

while fixing w1 = wPCA
1 and obtain w∗2

4. Experiments

Datasets We use 1000 images from the Israeli-
Images dataset described in Bekkerman & Jeon
(2007)1. We use 80% of the dataset as training sets
and the remainder as test sets. The images consist of
11 classes, i.e. {birds, desert, flowers, trees,

food, housing, christianity, islam, judaism,

personalities and symbols} with close to uniform
class proportions. To simulate a multi-view setting,
we choose to represent each image by one feature vec-
tor based on global color information and one feature
vector based on local SIFT descriptors that mainly
encode surface texture. Note that images that are
deemed similar in the color space could be categorized
as dis-similar in the SIFT space, for example a black
animal jaguar and a black automobile jaguar. Any
multi-view learning projection should exploit this
seemingly contradictory information beyond simply
maximizing correlation between features in different
views. As global image representation, we extract
HSV color histograms using 8 uniformly spaced bins
for Hue, 4 for Saturation and 2 for Value and form the
normalized histogram. This means the dimensionality

1
http://www.cs.umass.edu/~ronb/image_clustering.html



Learning Multi-View Neighborhood Preserving Projections

Table 1. Accuracy ± standard deviation. Cross-view retrieval via hybrid-{PCA and Multi-NPP}. This hybrid between
our proposed learning setup and PCA achieves between-view retrieval results as good as ordinary within-view retrieval
(vide Table 2 and 3).

Crossing Type #dim 5-NN 10-NN 30-NN 50-NN 70-NN 100-NN
Color Query 10 24.2±2.59 24.9±2.72 26.3±2.82 26.4±2.56 25.8±1.90 25.8±1.73

- SIFT Database 30 28.9±2.64 29.8±3.04 30.6±2.51 30.0±2.63 29.9±2.75 29.4±2.38
50 30.0±3.20 29.2±3.12 30.2±3.42 29.6±3.74 29.6±4.04 29.0±3.51

SIFT Query 10 18.8±3.59 19.1±3.14 19.4±3.71 19.8±3.91 19.7±4.19 19.9±3.92
- Color Database 30 24.0±3.30 24.3±3.44 24.8±3.57 24.6±3.87 24.8±3.81 24.8±3.42

50 27.8±4.27 26.8±4.28 27.0±3.09 27.4±3.78 27.8±3.90 27.9±3.82

of our color features is 64. As local image representa-
tion, we extract colorSIFT descriptors (Van De Sande
et al., 2010) and construct a codebook of 300 visual
words using k-means clustering algorithm. Images are
represented by normalized histograms of visual words
occurrence, resulting in a features dimension of 300.

Algorithms We compare our proposed projection
method with Principal Component Analysis (PCA)
and Canonical Correlation Analysis (CCA) baselines.
PCA finds un-correlated lower-dimensional projections
by performing a variance-maximizing rotation. CCA
seeks projections of paired datasets such that the cor-
relation between the projected representations is max-
imized. In the context of a multi-view setting, PCA
finds lower-dimensional representations from each of
the view independently whereas CCA finds the rep-
resentation by considering the multi-view datasets as
paired datasets. Our Multi-NPP method learns lower-
dimensional projections which preserves neighborhood
structure across multiple views as defined by the set
Sxi

. In this experiment, this inter-view neighborhood
set contains yj data points from the other view having
the same class label as i-th object. As well, we sample
the non-neighboring points such that the cardinality
of the non-neighbor set is in the same order as the
neighbor set.

Model Selection We set the parameters of the
SCISD function to be at a = 3.7 and λ = 1/a (see Fig-
ure 1(a)). This means we try to push non-neighboring
objects to be a unit apart from the object of inter-
est. We perform a cross validation model selection
approach in choosing the regularization parameters, η
and γ. However, we find that our proposed method is
mildly sensitive to the parameters and instead we fix
both values at 10−6.

Evaluation Metric Given a training set (or
database), we use each sample in the test set as a
query to retrieve k most similar samples or nearest

neighbors in the database. We use k nearest neigh-
bor classification metric to assess the quality of the
retrieval results.

Results The experimental results of 10 repeated tri-
als are summarized in Table 2–5. We project the orig-
inal data representations to {10, 30, 50}-dimensional
space. Table 2 and Table 3 simulate the standard re-
trieval setting when the query and the database have
the same feature representations, color and SIFT, re-
spectively. Our Multi-NPP method performs com-
parably to PCA and CCA approaches in color rep-
resentation (Table 2) and outperforms the two base-
lines by a significant margin in SIFT representation
(Table 3). For color space (Table 2) projecting data
to lower-dimensional representation only slightly de-
grades the feature representations in the original space.
For SIFT space, Table 3, simultaneous learning of
lower-dimensional representations across 2 views im-
proves performance (Multi-NPP). Table 4 and 5 sim-
ulate our motivating example of a cross-view retrieval
task when the query and the database are described
by different feature representations. It is clear that for
this particular task, Multi-NPP exceeds random per-
formance of PCA baseline and near to random perfor-
mance of CCA baseline.

We also assess the performance of a variant of
our method where instead of performing alternat-
ing optimizations between two projection matrices for
each view, only a single convex optimization is per-
formed. This is achieved by finding un-correlated
lower-dimensional projections via PCA of one of the
view and subsequently learning neighborhood preserv-
ing projections of the other view defined on the un-
correlated PCA space (refer to Algorithm 2). In the
cross-view retrieval task, this turns out both computa-
tionally attractive and highly effective. Table 1 sum-
marizes the experimental results for {10, 30, 50} lower-
dimensional projections. For 50-dimensional space,
the retrieval performance of cross-view setting is on
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Table 2. Accuracy ± standard deviation. View 1 - a 64-dimensional histogram vector of local color features. View 2 -
a 300 dimensional histogram vector of global SIFT features. Original: original data space, PCA: principal component
analysis lower-dimensional projection, CCA: canonical correlation analysis lower-dimensional projection and Multi-NPP :
our neighborhood preserving lower-dimensional projection. Retrieval setting of color feature queries (test points) from
a pool of color feature database (training set). Color Query - Color Database. The best result over all methods for a
particular problem is highlighted in boldface.

Method #dim 5-NN 10-NN 30-NN 50-NN 70-NN 100-NN
Original 64 31.4±2.52 31.3±3.87 30.4±3.55 28.6±3.29 26.2±3.93 25.2±3.51

PCA 10 28.9±2.25 30.1±2.35 29.4±3.08 28.2±2.57 27.3±2.90 24.8±1.79
30 31.0±3.27 32.6±3.63 30.4±3.82 28.2±3.51 26.8±4.26 26.2±3.29
50 31.3±3.12 31.4±3.46 30.3±2.99 28.6±3.32 26.2±3.61 25.2±3.44

CCA 10 24.8±3.86 24.7±3.42 24.0±3.78 24.4±3.75 22.8±4.18 21.6±4.18
30 28.8±3.71 27.9±3.86 26.1±4.81 24.4±5.04 23.2±4.33 20.6±5.37
50 29.9±3.43 28.2±2.78 26.6±4.06 24.7±4.61 24.2±4.88 20.9±5.14

Multi-NPP 10 26.4±4.33 27.6±3.39 27.4±3.54 27.3±2.97 25.9±3.07 25.1±2.43
30 29.0±3.15 29.9±3.28 29.9±3.54 29.6±3.53 28.2±3.44 27.8±4.44
50 30.0±3.90 29.5±2.81 30.2±3.98 28.7±3.40 27.7±2.48 26.2±2.71

Table 3. Retrieval setting of SIFT feature queries (test points) from a pool of SIFT feature database (training set). SIFT
Query - SIFT Database.

Method #dim 5-NN 10-NN 30-NN 50-NN 70-NN 100-NN
Original 300 32.2±2.37 33.2±3.18 30.2±4.00 29.7±4.58 28.2±3.74 25.7±4.02

PCA 10 29.6±1.99 30.2±3.18 29.9±2.84 29.6±3.49 28.8±2.07 28.2±2.15
30 31.4±2.60 32.6±2.97 30.8±4.05 29.6±2.86 29.0±3.78 26.4±3.34
50 31.8±3.30 32.8±3.33 30.2±4.05 29.4±3.36 28.9±4.02 26.4±3.23

CCA 10 16.7±1.88 17.7±2.48 19.1±2.00 20.0±2.07 18.8±2.53 19.0±2.71
30 18.8±3.03 20.4±2.95 20.9±3.82 20.2±3.36 19.2±2.36 18.9±1.78
50 19.4±3.14 21.7±3.91 20.6±3.08 18.8±1.32 19.1±2.65 18.9±2.97

Multi-NPP 10 31.4±3.92 32.9±3.16 33.4±3.62 32.5±2.70 32.9±3.49 32.0±3.47
30 34.5±2.77 35.4±3.70 34.4±2.53 34.0±2.86 33.5±2.28 33.0±2.45
50 34.0±2.76 35.4±2.83 34.2±1.67 34.4±2.86 33.6±2.71 32.8±2.64

Table 4. Retrieval setting of color feature queries (test points) from a pool of SIFT feature database (training set). Color
Query - SIFT Database.

Method #dim 5-NN 10-NN 30-NN 50-NN 70-NN 100-NN
PCA 10 9.3±1.66 9.3±2.03 10.0±2.31 9.5±1.83 9.2±1.86 9.2±1.87

30 8.9±1.62 10.2±1.90 11.0±2.05 10.0±1.74 10.2±1.90 10.7±2.05
50 9.4±1.17 10.7±1.38 10.5±2.04 11.0±1.50 10.7±1.55 10.4±2.29

CCA 10 15.4±4.27 15.8±4.53 15.9±4.59 15.6±3.80 14.8±4.27 14.8±3.90
30 15.3±4.31 17.6±5.58 16.8±5.04 17.9±5.15 16.8±5.90 16.8±5.44
50 16.2±4.83 16.8±5.27 18.2±6.30 17.8±6.02 18.0±6.19 17.6±6.15

Multi-NPP 10 18.6±2.07 18.9±2.28 18.7±2.21 19.2±2.28 19.0±2.32 19.0±1.99
30 20.8±3.16 20.8±3.25 21.0±2.60 20.9±2.58 21.4±3.13 20.0±3.01
50 20.4±3.43 20.4±2.88 21.8±3.21 21.8±3.25 21.8±2.90 22.0±3.42

Table 5. Retrieval setting of SIFT feature queries (test points) from a pool of color feature database (training set). SIFT
Query - Color Database.

Method #dim 5-NN 10-NN 30-NN 50-NN 70-NN 100-NN
PCA 10 8.2±2.54 9.2±3.35 9.4±3.36 9.4±3.30 8.8±3.35 9.4±2.72

30 9.1±3.19 9.4±2.58 9.6±2.80 9.6±2.56 9.9±2.18 10.0±3.20
50 8.6±2.65 9.8±2.47 9.8±3.33 9.6±2.91 9.8±2.66 9.8±2.66

CCA 10 12.5±2.98 13.8±2.36 13.8±2.82 14.3±2.90 13.4±2.69 13.8±2.82
30 13.7±3.11 13.6±2.85 15.7±3.31 14.0±2.81 14.2±2.65 14.2±2.50
50 13.2±1.77 13.2±2.32 13.4±2.62 12.9±2.71 12.7±3.04 12.7±1.77

Multi-NPP 10 19.0±3.63 20.8±3.52 22.0±3.98 22.8±3.84 23.3±3.92 22.8±3.96
30 21.8±3.65 23.8±3.10 25.1±3.28 24.6±3.53 23.9±3.15 23.9±2.50
50 22.6±2.07 22.9±1.93 22.4±4.30 26.1±3.61 23.6±3.88 22.8±3.69
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the par with the standard retrieval setting. Essentially,
this shows that nearest-neighbor based cross-view re-
trieval is indeed possible.

5. Extensions

Kernelization Multi-NPP can easily be extended
by using kernel methods to work in a nonlinear feature
space, as opposed to the original input space. Since
our objective function in (2) consists of a loss compo-
nent and a strictly monotonic increasing regularization
component, the generalized Representer Theorem is
thus applicable for our setting (Schölkopf et al., 2000).
Consequently, the solution of (2) lies in the span of m
particular kernels centered on the given training data
points and thus the projection solution admits a rep-
resentation of the form

w1 =

m∑
i=1

αik(xi, ·), and w2 =

m∑
j=1

βil(yj , ·), (14)

for a positive-definite kernel k on X and a kernel l on
Y. With this, the regularized objective function in (2)
can be expressed purely in term of inner products thus
kerneled.

Beyond 2-View Section 2 describes the Multi-NPP
objective function for the case of 2-view problem. For
the case with more than two data sources we build an
objective function analogous to (2) to by summing up
the terms of all pairwise objectives.

6. Discussion and Conclusion

We have proposed Multi-NPP, a new metric learning
technique for multi-view data. The method jointly
learns projection directions for all views into a shared
feature space. In combination with an existing fast
nearest neighbor technique, e.g. hashing-based, this
allows fast query-by-example operations not only for
data within the same view, but also between views.

In order to achieve this goal, we introduced a new ob-
jective function for metric learning. It is based on
the classical principle of pulling samples together, if
they are related, and pushing them apart if they are
not. Our contribution lies in a new loss function for
the “pushing” part, which can be expressed explicitly
as the difference of two concave functions. This al-
lows application of the convex-concave procedure for
optimization. As a technique based on explicit lin-
ear projections, Multi-NPP can easily be kernelized,
in order to perform non-linear projection and handle
non-vectorial data.

Our experiments show improved performance over

PCA or CCA as baselines. We obtain a result of par-
ticular interest for the case in which one knows a priori
which view will be used for queries later. In this case, a
hybrid between the proposed learning setup and PCA
achieves between-view retrieval results as good as or-
dinary within-view retrieval.

Despite the success in our experiments, there are still
open questions that we plan to study in future work.
In particular, we plan to explore further the question
of how to avoid local extrema in the non-convex opti-
mization, and how to select a kernel and regularization
parameters in an unsupervised scenario. Furthermore,
we plan to extend our model to merging the phases
of metric learning and the hash code generation into
a single learning problem, instead of treating them as
separate modules.
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