
KS(conf): A Light-Weight Test if a Multiclass Classifier
Operates Outside of Its Specifications
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Abstract We study the problem of automatically de-

tecting if a given multi-class classifier operates outside

of its specifications (out-of-specs), i.e. on input data

from a different distribution than what it was trained

for. This is an important problem to solve on the road

towards creating reliable computer vision systems for

real-world applications, because the quality of a clas-

sifier’s predictions cannot be guaranteed if it operates

out-of-specs.

Previously proposed methods for out-of-specs detec-

tion make decisions on the level of single inputs. This,

however, is insufficient to achieve low false positive rate

and high false negative rates at the same time. In this

work1, we describe a new procedure named KS(conf),

based on statistical reasoning. Its main component is a

classical Kolmogorov-Smirnov test that is applied to the

set of predicted confidence values for batches of sam-

ples. Working with batches instead of single samples al-

lows increasing the true positive rate without negatively

affecting the false positive rate, thereby overcoming a

crucial limitation of single sample tests.

We show by extensive experiments using a variety of

convolutional network architectures and datasets that

KS(conf) reliably detects out-of-specs situations even

under conditions where other tests fail. It furthermore

has a number of properties that make it an excellent

candidate for practical deployment: it is easy to imple-

ment, adds almost no overhead to the system, works

with any classifier that outputs confidence scores, and

requires no a priori knowledge about how the data dis-

tribution could change.
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C. H. Lampert, IST Austria, E-mail: chl@ist.ac.at

1 A preliminary version of this manuscript was published
at GCPR 2019 [56].

1 Introduction

Over the last years, and in particular with the emer-

gence of deep convolutional networks (ConvNets), com-

puter vision systems have become accurate and reli-

able enough to perform tasks of practical relevance au-

tonomously and over long periods of time. This has

opened opportunities for the deployment of automated

image recognition systems in many commercial settings,

such as video surveillance, self-driving vehicles, and so-

cial media.

However, a major concern our society has about au-

tomatic decision systems is their reliability: if decisions

are made by a trained classifier instead of a person, how

can we be sure that the system works reliably now,

and that it will continue to do so in the future? For

other safety-critical software components, such as de-

vice drivers, static code analysis and formal verifica-

tion techniques have been established to identify risks

before even deploying the software. Unfortunately, such

methods are still in their infancy for machine learning.

Instead, quality control for trained system typically re-

lies on extensive testing, making use of data that a) was

not used during training, and b) reflects the expected

situation at prediction time. If a system works well on

a sufficiently large amount of data fulfilling both condi-

tions, practical experience as well as statistical learning

theory tell us that it will also work well in the future.

We call this operating within the specifications (within-

specs).

In practice, problems emerge when a chance exists

that the data distribution at prediction time differs

from the one the creators of the classifier expected at

training time, i.e. when condition b) is violated. Such

operating outside of the specifications (out-of-specs) can

happen for a variety of reasons, ranging from user er-

rors, over problems with the image acquisition setup, to
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unexpected objects occurring in the images, and even

deliberate sabotage. Standard performance guarantees

do not hold anymore in out-of-specs situations, and the

prediction quality often drops substantially. This is ir-

respective of how well and on how much data a classifier

was originally trained: even a system that works 100%

accurately under within-specs conditions can produce

predictions at chance level or worse when operating out-

of-specs. Consequently, the out-of-specs problem has

emerged as one of the major obstacles for deploying

deep learning solutions for real-world applications.

Surprising as it is, today’s most successful image

classification methods, multi-class ConvNets, are them-

selves not able to tell if they operate inside or outside

the specifications. For any input they will predict one

of the class labels they were trained for, no matter if

the external situation matches the training conditions

or not.

Clearly, it would be highly desirable to have an au-

tomatic test that can reliably tell when a given classi-

fier operates out-of-specs, e.g. to send a warning to a

human operator. Our main contribution in this work

is such a test, KS(conf), that is light-weight and the-

oretically well-founded, yet very powerful in practice.

It builds on the observations that the confidence scores

of a probabilistic classifier can be expected to change

when operating out-of-specs. Intuitively, one would ex-

pect these changes not to be drastic enough to yield

a test of sufficient quality (high true positive rate, low

false positive rate), and this is indeed confirmed by a

number of experiments that we report on. The main

insight behind KS(conf) is that a more powerful test

can be constructed by not judging individual samples,

but batches of inputs together. Specifically, it compares

the score distribution of predicted values to a reference

set using a classical Kolmogorov-Smirnov test. The re-

sult is a simple and light-weight yet powerful test that

is particularly well suited for practical use, because it

works with arbitrary classifiers, including pretrained

ConvNets. It also requires neither access to internal lay-

ers of the network nor a manipulation of the input im-

ages. By adjusting the batch size, the true positive rate

can be improved without increasing the false positive

rate at the same time. This is in contrast to single sam-

ple tests that only allow for a trade-off between both

quantities.

Given the importance of the problem, in this work

we put particular emphasis on a thorough experimen-

tal evaluation. We demonstrate the power of KS(conf)

using five state-of-the-art ConvNets architectures (Res-

Net50, VGG19, SqueezeNet, MobileNet25, NASNetA-

large), challenging real-world image datasets (ImageNet

ILSVRC 2012, Animals with Attributes 2, DAVIS) and

a variety of possible out-of-specs scenarios (new classes,

change of low-level image properties, loss of variability,

problems in the image acquisition setup). To support

other researchers testing the method for their own clas-

sifiers with their own data, we make our source code

publicly available under a free and open-source license.

The rest of the manuscript is structured as follows:

we first formalize the setting in Section 2 and formulate

first principles that any practical test for out-of-specs

operation should have. We then discuss existing work

for out-of-specs detection in Section 3 and we highlight

connections to related research areas. In Section 4 we

describe our proposed method, including an analysis of

its resource requirements. In particular, we show that

it fulfills all the required criteria and also exhibits sev-

eral additional useful properties. After an introduction

to the experimental setting and data sources in Sec-

tion 5, we present our experimental evaluation divided

into three parts, each of which we consider of poten-

tially independent interest: an analysis of the limits of

tests acting on single samples for out-of-specs detection

(Section 6), an analysis of batch-based methods (Sec-

tion 7), and a study how modern ConvNets react to

changes of their inputs acquisition setup. In Section 9

we discuss shortcomings of the proposed approach and

provide an outlook on possible improvements. Finally,

we conclude with a summary in Section 10.

2 Testing for Out-of-Specs Operation

The task of testing for out-of-specs operation has ap-

peared in different variants in the literature. In this sec-

tion, we formally introduce the setting and define nec-

essary criteria for tests to be applicable in real-world

settings.

Throughout this work, we take the perspective of a

computer vision system deployed in the real world in

order to solve a practical task, such as classifying prod-

ucts in a store. The overarching goal is to determine

whether the conditions under which the classifier oper-

ates at any time differ from the conditions for which it

was created. Assuming a fully automatic classification

system, the only relevant difference that can occur is

a change in the input data distribution between train-

ing/validation and prediction time. Consequently, we

define the goal of detecting out-of-specs operation as

identifying such changes of the classifier’s input distri-

bution, which we formalize in the following way:

Definition 1 For a given classifier, let X denote its

input, which we treat as a random variable with under-

lying distribution PX . The classifier is said to operate
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out-of-specs, if the distribution, PX , at prediction time

differs from the one at training time.

In the rest of this section, we introduce some impor-

tant properties that any test for out-of-specs operation

should have. First, we ask for the test to be

– passive. The test should not influence the behavior

of the classifier, even if an out-of-specs situation is

detected.

The role of a passive test is to raise an alarm if a prob-

lem was detected, such that a human operator or ex-

pert can examine the problem and potentially resolve

it. This is in contrast to active tests, that change the

classifiers’ behavior, e.g. cause them to refuse to make

predictions, or try to adapt them to the new conditions.

While in other situations such active behavior might be

desirable, in the context of this work we only consider

passive systems, because we expect them to find easier

acceptance by practitioners.

A second important constraint is that we expect

out-of-specs conditions to occur rarely, maybe never

during the lifetime of the system. Therefore, we par-

ticular care about the ability to avoid false alarms and

ask tests to be

– tunable. The false positive rate (FPR) should be

adjustable to any user-preferred level, ideally on-

the-fly without interrupting the system’s operation.

In practice, reducing the false positive rate often comes

at the expense of a lower true positive rate (TPR), i.e.

more out-of-specs situations are missed, and the opti-

mal setting reflects a task-dependent trade-off between

both quantities. Studies have shown, however, that a
too high false positive rate has a disproportionately

negative effect: it will annoy the human operator, who

then decides to ignore the alarms or switch off the test

completely [9,13,17].

A third crucial property is that any test that is

meant to operate under real-world conditions needs to

be

– agnostic. The test should not require a priori

knowledge how the data distribution could change.

Unfortunately, this condition is violated in many tests

that can be found in the literature, which assume that

some data of the out-of-specs situations is a priori avail-

able. We want to avoid this, because in a real-world

setting, the out-of-specs distribution is typically not

known until it occurs, so the test must be able to cap-

ture any potential change.

Two more properties describe the classifiers to

which a test is applicable. For highest practical useful-

ness, a test should be

– universal. The same test procedure should be ap-

plicable to different classifier architectures.

– pretrained-ready. The test should be applicable

to pretrained and fine-tuned classifiers and not re-

quire any specific steps during training.

The first condition ensures that the same test remains

useful, even when new classifier architectures emerge.

The second condition reflects that practitioners typi-

cally do not have the resources or expertise to train a

classifier from scratch, but prefer to rely on available

pre-trained models.

Finally, in order to make a test as broadly applicable

as possible, it should be

– black-box ready. The test should not require

knowledge of any classifier internals, such as the

depth, activation functions or weight matrices of

a ConvNet, or access to intermediate computation

results, such as a ConvNet feature layer.

This condition ensures that the test can be used with

proprietary, e.g. commercial, classifiers, which typically

do not reveal their inner working mechanisms.

3 Related Work

A variety of methods have been proposed that aim at

solving the problem of detecting out-of-specs operation

or similar tasks. In this section, we discuss them in par-

ticular in light of the criteria we introduced in the pre-

vious section. A tabular overview of the properties of

different methods can be found in Table 1.

Out-of-specs detection. A number of recent works have

proposed methods for detecting data samples that de-

rive from a different data distribution than expected.

All of them implicitly rely on the assumption that these

samples are atypical with respect to the original data

distribution, i.e. they perform a form of outlier detec-

tion. For general remarks about this research direction,

see our discussion below.

Most related to our setup, it has been reported

in [21] that modern multi-class ConvNets typically pre-

dict with lower confidence on data that is sampled from

a data distribution different from the training data.

Therefore, one obtains a simple test of out-of-specs

behavior by raising an alarm when the confidence

score of a data point falls below a threshold. This

threshold classifier indeed fulfills all criteria we defined

in Section 2. We discuss it in more detail in Section 6

and also provide an experimental comparison using

more challenging image classification tasks than what

was reported in the original works.
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method task granularity criteria
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proposed: KS(conf) out-of-specs detection batch 3 3 3 3 3 3

threshold-based test [21] out-of-specs detection single sample 3 3 3 3 3 3
ODIN [37] out-of-specs detection single sample 3 3 3 3 7 3/7
OpenMax [6] out-of-specs detection single sample 3 7 3 7 7 3
numerous methods, e.g. [11,33,35,36,39] out-of-specs detection single sample 3 3 7 7 7 3

numerous methods, e.g. [29,58,59] outlier detection single sample 3 3 7 7 3/7 3/7
robust learning [30] outlier detection dataset — — 3 7 7 3

numerous methods, e.g. [2,10,53,65] failure prediction single sample 3 3 3/7 3/7 3/7 7

invariant feature learning, e.g. [15,27,38,60] domain adaptation dataset 7 — 3/7 7 7 7
classifier adaptation, e.g. [44,63] domain adaptation dataset 7 — 3/7 3/7 7 7
class prior adaptation [50] domain adaptation batch 7 — 3 3 3 7

continual learning,e.g. [28,48] handling unseen classes batch — — 7 7 7 7
open set recognition, e.g. [5,25] handling unseen classes dataset — — 7 7 7 7
zero-shot learning, e.g. [1,42,34,64] handling unseen classes dataset — — 7 7 7 7

numerous methods, e.g. [16,46] score calibration single sample 3/7 — 3 3 3 7

numerous methods, e.g. [47,3] change point detection time series 3 3/7 — — — 3/7
numerous methods, e.g. [18,31,54,62,66] concept drift detection time series 3 3/7 — — — 3/7

Table 1: Overview of related methods and their properties. The task column indicates which problem the methods

tries to solve. The granularity column specifies the type of input data (single samples, batches of samples, complete

datasets, time series) that the methods take as input. For a definition of the criteria, see Section 2. As entries, 3

indicates that a method has a certain property, 7 indicates that it does not, 3/7 indicates that methods might or

might not have this property, — indicates that this property does not apply in the situation.

In [37] it was observed that the difference in con-

fidence scores between within-specs and out-of-specs

operation grew when adding a supportive perturbation

to the images and applying temperature scaling to the

output. The resulting ODIN test requires access to the

network internals, so it does not fulfill the criterion of
being black-box ready. Nevertheless, we discuss and ex-

perimentally evaluate it in Section 6, again going be-

yond the original work by using state-of-the-art Conv-

Net classifiers and more challenging classification tasks.

Several further authors, e.g. [11,33,35,36,39], and

also a section of [21], propose methods that require

changing the classifier architecture, the training pro-

cedure, or the evaluation methodology to improve the

ability of detecting if the data distribution changed. We

do not discuss these further or evaluate them experi-

mentally, because they fail to fulfill several of the core

conditions, in particular of being universal, pretrained-

ready and black-box ready. This means they cannot sim-

ply be used in combination with any given classifier.

Outlier/anomaly/novelty detection are classical tasks

in unsupervised machine learning or data mining [8,

19,22]. They aim at identifying data points that are

atypical in comparison to the bulk of the data in order

to either remove them, or study them in more detail.

A
BC

Fig. 1: Illustration of the difference between outlier de-

tection and out-of-specs detection. Let the region A re-

flect the data distribution at training time. Outlier de-

tection methods are able to identify if at prediction time

data from a new region, e.g. B, occurs. They are not

able to identify if at prediction time only data from a

subset of the training region occurs, e.g. only data from

C, or no data from C at all. Out-of-specs detection aims

at detecting all of these as well as any other change of

data distribution.
.

This is not the same problem as detecting an out-of-

specs situation, but only a subset of it. Figure 1 illus-

trates the difference. Indeed, one possible out-of-specs

scenario is when data samples of a type emerge that was

not present at training time. For example, in a super-

market scenario an unknown product appears. Another
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out-of-specs situations, however, is when data of a type

that is expected to occur fails to show up. For exam-

ple, in a supermarket suddenly only cheap products are

bought but no more expensive ones. A reliable out-of-

specs detector would raise an alarm in both scenarios,

while an outlier detector would only detect the first.

Classical outlier detection techniques work either

probabilistically, e.g. by nonparametric density estima-

tion [29], or geometrically, e.g. by one-class classifica-

tion [59]. Neither approach is directly suitable for nat-

ural image data, though, because of the high data di-

mensionality and diversity of image data.

Recent work on robust learning [30] aims at identify-

ing outliers on the level of datasets instead of individual

samples. This allows the use of unreliable data sources,

but it happens at training time and does not address the

problem of out-of-specs detection at prediction time.

Failure prediction. Similar approaches as for outlier de-

tection have been used to identify failures, i.e. predict

when the label predicted by a classifier is incorrect [2,

10,53,65] and for score calibration [16,46], i.e. adjust-

ing the predicted scores to better reflect the probability

of an error. These tasks are orthogonal to ours, as they

concentrate on the situation where the network oper-

ates on data from the within-specs distribution, but

nevertheless some predictions should not be trusted.

Learning new classes. A specific out-of-specs situation

is when new classes occur in the input data. Dedicated

systems to handle this situation at training time have

been suggested for continual [28,48] or open set learn-

ing [5,25]. These methods operate at training time,

though, and only for specific classifier architectures,

therefore, they violate several of the relevant criteria

of Section 2.

As an alternative, a threshold-based classifier was

proposed in [6]. The authors introduce a score normal-

ization procedure based on extreme-value theory. The

exact method require access to the image features and

the training set, though, so it is not pretrained-ready

and not blackbox-ready.

For the case that new classes occur at prediction

time and one still wants to classify them correctly, a va-

riety of zero-shot learning [64] methods have been pro-

posed, e.g. [1,34,42]. All of these require specific classi-

fier architectures and additional side-information about

the class set, though, and are therefore not applicable

to the situation we are interested in.

Domain Adaptation / Transfer Learning. The study

how classifier performance differs when the data distri-

butions changes between training and prediction time

and how this can be prevented is studied in the research

area of domain adaptation [4]. Typical techniques ad-

just the classifier training procedure to prevent a change

in data distribution from negatively affecting the pre-

diction quality [44,63]. One way to do this is by learning

invariant features [15,27,38,60] that ensure that even

if the input data distribution changes in a certain way,

the difference disappears after feature extraction. An

alternative way is to learn explicit transformation be-

tween the features at training time and the features at

prediction time, such that a mechanism is available for

adapting the classifier to the new situation [7,52]. Both

approaches, however, require some information about

how the data distribution will change, at least in the

form of unlabeled samples. If even a labeled dataset

for the new distribution is available, transfer learning

methods, such as model fine-tuning can be employed [32,

43]. In all cases, the criterion of being agnostic to the

out-of-specs conditions is violated, and often also the

black-box ready and pretrained-ready criteria. An ex-

ception is [50], which post-processes the output scores

at prediction time to match a new distribution. This,

however, is not a passive technique, and it only works

for a specific class of out-of-specs situations, namely

changes in class priors.

Time series analysis. The detection of changes in the

data characteristics is also an important problem in

time series analysis. In change point analysis [3,47], the

goal is to find the time points at which the character-

istics of a time series make a substantial change. This

differs from the problem we are interest in several ways.

On the one hand, the problem has the additional diffi-

culty that the position in the sequence where the change

occurs is unknown. On the other hand, one typically

deals with low-dimensional data, and stronger statis-

tical techniques can be used because of the temporal

structure of the data.

Concept drift detection [14] is another task in which

one is interested in detected changes of a time series.

In contrast to change point analysis, subtle changes are

of interest, too. This is a hard task, and most existing

methods are not directly applicable, because they re-

quire label annotations, e.g. [18,62], or low-dimensional

data, e.g. [31,54]. An exception is [66], which even dis-

cusses the use of a Kolmogorov-Smirnov test. However,

that is in the context of binary classifiers without a clear

way to generalize the results to multi-class classification

with large label sets.
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4 KS(conf): out-of-specs detection by statistical

testing of batches

In this section we introduce the proposed KS(conf)

method for identifying when a classifier operates

outside of the specifications.

We assume an arbitrary fixed multi-class classifier

that, for any input, X, outputs a class label, Y , as well

as a confidence score, Z, for its decision. For simplicity

of discussion, we assume that the scores lie in the inter-

val [0, 1], as it is the case for probabilistic systems, such

as ConvNets with softmax output layer. Technically,

this assumption is not necessary, though, as the method

we describe only requires the scores to be bounded, i.e.

lie in a finite interval, and that condition can always be

achieved by a suitable, e.g. sigmoid, score transforma-

tion.

By our treatment of X as a random variable, Z also

becomes a random variable with an induced probability

distribution that we call PZ . Analogously to the defini-

tion of out-of-specs operation in Section 2, we introduce

the concept of out-of-specs prediction:

Definition 2 A classifier is said to predict out-of-specs,

if the output score distribution, PZ , at prediction time

differs from the one at training time.

Based on this nomenclature, we put forward the

following hypothesis: testing for out-of-specs pre-
diction can serve as an easy to implement and

computationally light-weight proxy of testing

for out-of-specs operations, provided that a suit-

able batch-based test is used. The last condition

is important, because – as our experiments will show –

existing tests based on single sample confidence scores

are fundamentally limited in their ability to achieve a

high true positive rate and a low false positive rate at

the same time.

4.1 Kolmogorov-Smirnov Test of Confidences

We propose a new method for out-of-specs testing that

we call KS(conf), which stands for Kolmogorov-Smirnov

test of confidences. Its main component is the applica-

tion of a Kolmogorov-Smirnov (KS) test [41] to the dis-

tribution of confidence values, which at prediction time

is estimated from batches of samples. KS(conf) has two

main routines: calibration that is run once, and batch

testing that is run continuously while the classifier is in

operation.

Calibration. In the calibration step, KS(conf) estab-

lishes a reference distribution that reflects the within-

Z1 Z2 Z3 Z4

⅖

⅗

⅘

⅕

0

1

0 1

Fig. 2: Illustration of (1): estimation of the cumula-

tive distribution function (cdf) for n = 4 data points.

After sorting, each data point Zk is located at the k
n+1 -

quantile, i.e. the cdf has value k
n+1 . Between the data

points linear interpolation is used.

specs conditions. It is meant to be run when the classi-

fier system is installed at its destination and a human

expert is still present to ensure that the environment is

indeed within-specs for the duration of the calibration

phase.

To characterize the within-specs regime, we use

the confidence scores, Zval
1 , . . . , Zval

n , of a set of valida-

tion images, Xval
1 , . . . , Xval

n . For simplicity we assume

all confidence values to be distinct. In practice, this

can be enforced by perturbing the values by a small

amount of random noise. Because the Z-values are

one-dimensional with known range, one could, in prin-

ciple, estimate a probability density function (pdf)

from a reasonably sized set of samples. For exam-

ple, one would divide the interval [0, 1] into regular

bins and count the fraction of samples falling into

each of them. For our purposes, uniform bins would

be inefficient, though, because classifier confidence

scores typically concentrate at high values and are

therefore far from uniformly distributed. To avoid a

concentration of samples in a small number of bins

with the remaining ones empty, one would have to

resort to a data-adaptive estimation technique, e.g.

data-dependent bins. KS(conf) avoids the need for this

by starting with a pre-processing step. It estimates

the cumulative distribution function, F , of the scores,

which is possible without binning, see Figure 2 for an

illustration. First, one sorts the confidence values such

that one can assume the values Zval
1 , . . . , Zval

n in mono-

tonically increasing order. Then, for any p ∈ [0, 1], the

estimated cdf value at p is obtained by piecewise linear

interpolation: for k ∈ {0, . . . , n} with p ∈ [Zval
k , Zval

k+1],

F (p) =
k

n+ 1
+

p− Zval
k

(n+ 1)(Zval
k+1 − Zval

k )
(1)

with the convention Zval
0 = 0 and Zval

n+1 = 1.
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Z'1 Z'2 Z'3

⅔

⅓

0

1

0 1

Fig. 3: Illustration of (2): KS statistics for m = 3 data

points. To identify the biggest absolute difference be-

tween the empirical cdf (dashed line, black) and the

uniform target cdf (solid line, gray), it suffices to check

the difference between the two curves at the location of

the data points. After sorting, at any Z ′k the empirical

cdf jumps from k−1
m to k

m , while the target cdf has the

value Z ′k.

The quantity that KS(conf) actually works with are

normalized scores, Z ′ := F (Z), where F remains fixed

after calibration. By construction of F , the values Z ′

will be distributed approximately uniformly in [0, 1],

when Z’s distribution matches the distribution at cali-

bration time. If the distribution of Z changes at a later

time, this will be reflected by the distribution of Z ′ dif-

fering from uniformity.

Besides removing the need for data-dependent (or

any) density estimation, the above transformation is

also useful for efficiency reasons: in the batch testing

phase, we will not have to compare two arbitrary distri-

butions to each other, but only the currently observed

distribution with the uniform one.

Batch testing. The main step of KS(conf) is batch test-

ing, which identifies if the system currently predicts

within-specs or out-of-specs. This step it meant to be

run repeatedly at the classifier’s operation time, i.e. af-

ter the system has been activated to perform its actual

task.

The batches of images, X1, . . . , Xm, used for test-

ing can, but do not have to, coincide with the image

batches that are often used for efficient classifier evalu-

ation on parallel architectures such as GPUs. A possible

real-word scenario would be that batch testing is run

at regular intervals, e.g. once per hour for applications

that are not time-critical.

The actual test consists of the following steps. First,

one applies the cdf that was learned during calibration

to the confidence scores, resulting in values, Z ′1, . . . , Z
′
m.

As above, we treat these as sorted. Then, one computes

their Kolmogorov-Smirnov (KS) test statistics

KS := max
(

max
k=1,...,m

{
Z ′k−

k − 1

m

}
, max
k=1,...,m

{ k
m
−Z ′k

} )
.

(2)

KS measures the largest absolute difference between the

empirical cdf of the observed batch and a linear in-

creasing reference cdf, see Figure 3 for an illustration.

For a system that operates within-specs (and therefore

predicts within-specs), Z ′ will be close to uniformly dis-

tributed, and KS can be expected to be small. It will not

be exactly 0, though, because of finite-sample effects.

A particularly appealing property of the KS statistic

is that its stochastic fluctuations are well understood

and confidence thresholds for the finite-sample situation

have been derived [41]. This yields the Kolmogorov-

Smirnov test: for any α ∈ [0, 1] there is a threshold θα,

such that when we consider the test outcome positive

for KS > θα, then the expected probability of a false

positive test result is α. The values θα can be com-

puted numerically [40] or approximated well (in the

regime n � m that we are mainly interested in) by

θα ≈ (
−0.5 log(α

2 )

m )
1
2 . A list of tabulated values can be

found in Table 10 in the appendix.

The Kolmogorov-Smirnov test has several advan-

tages over other tests. Importantly, it is distribution-

free, i.e. the thresholds θα are the same regardless of

what the distribution PZ is. Also, it is invariant under

reparameterization of the sample space, which in partic-

ular means that the KS statistics and the test outcome

we compute when comparing Z ′ to the uniform distri-

bution are identical to the one for comparing the origi-

nal Z to the original within-specs distribution. This fact

implies that KS(conf) will not be negatively affected by

classifiers that produce overly confident outputs, and

that KS(conf) is compatible with and invariant to po-

tential classifier score calibration techniques. Finally,

the Kolmogorov-Smirnov test is known to have asymp-

totic power 1, meaning that if given enough data, it will

detect any possible difference between distributions.

While one could imagine constructing tests based

on other measures of similarity between distributions,

these generally do not share the advantageous proper-

ties of KS(conf). For example, total variation distance

requires density estimation and can therefore only

be approximated, not computed exactly. It is also

not invariant under reparametrizations of the scores.

Kullback-Leibler or Jensen-Shannon divergence cannot

reliably be estimated at all from finite sample sets,

unless one makes additional assumptions about the

underlying distributions. Furthermore, they might take

infinite values.
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Table 2: Details of the ConvNets used for the experimental evaluation. Evaluation time (excluding image prepro-

cessing and network initialization) for different batch sizes (bs) on powerful GPU hardware (NVIDIA Tesla P100)

or weak CPU hardware (Raspberry Pi Zero). Missing entries are due to memory limitations.

ILSVRC2012 error number of speed: GPU CPU
network name top-1 top-5 parameters bs = 1 bs = 10 bs = 100 bs = 1
MobileNet25 [23] 48.4% 24.2% 0.48 M 3.3 ms 5.2 ms 34 ms 682 ms
SqueezeNet [24] 45.6% 21.4% 1.2 M 5.7 ms 10.1 ms 113 ms 2288 ms

ResNet50 [20] 25.1% 7.9% 26 M 12.2 ms 34.1 ms 293 ms —
VGG19 [55] 28.7% 10.2% 144 M 9.9 ms 53.5 ms 385 ms —

NASNetAlarge [67] 17.5% 3.9% 94 M 45.8 ms 227.9 ms 2107 ms —

Properties and resource requirements. A quick check of

its properties shows that KS(conf) fulfills all criteria for

a practical test that we introduced in Section 2. Fur-

thermore, it can be implemented in a straight-forward

way and requires only standard components, such as

sorting and linear interpolation. The largest resource

requirements occur during calibration, where the net-

work has to be evaluated for n inputs and the resulting

confidence values have to be sorted. The calibration step

is performed only once and offline though, before actu-

ally running the classification system under real-time

conditions. Therefore, O(n log n) runtime is not a ma-

jor problem, and even very large n remain practical. A

potential issue is the O(n) storage requirements, if cal-

ibration is meant to run on very small devices or very

large validation sets. Luckily, there exist specific data

structures that allow constructing approximate cdfs of

arbitrary precision in an incremental way from stream-

ing data, for example, t-digests [12].

The batch testing step runs during the standard op-

eration of the classification system and therefore needs

to be as efficient as possible. Implemented as described

above, it requires applying the cdf function to every

sample, which typically would be done by an O(log n)-

binary search. Subsequently, the m confidence values

need to be sorted, and the maximum out of 2m values

identified. Overall, the runtime complexity is at worst

O(m log n) and the memory requirement is O(m).

In summary, with only logarithmic overhead,

KS(conf)’s computational cost is negligible compared

to evaluating the classifier itself. For even more re-

stricted settings one could rely on incremental variants

of the Kolmogorov-Smirnov test, e.g. [49].

5 Experiments: Overview

In the following sections we report on a variety of ex-

periments that compare different methods for out-of-

specs detection, including KS(conf), and provide an in-

depth analysis of their success and failure cases. Given

the large number of different scenarios, we only provide

summary results and highlight specific cases that we

consider of specific interest. A complete set of results

as well as source code for their reproduction is available

on the accompanying website 2.

5.1 Experimental Setup

With our objective of practical usefulness in mind, we

aim in our experiments for results that can be expected

to generalize also to future image classification systems.

We therefore emphasize three aspects in our experi-

ments: 1) tackling a challenging task of high-resolution

natural image classification; 2) obtaining results for a

diverse set of ConvNet classifiers that constitute the

state-of-the-art in different application scenarios; 3)

working under as realistic conditions as possible, in

particular not making use of information that is not

available for real-world systems. This focus constitutes

a major difference to many existing works that provide

results on simpler datasets, such as MNIST or CIFAR,

benchmark only few and relatively small network ar-

chitectures, or adjust hyper-parameters on out-of-specs

data.

Specifically, we reports results for five popular Conv-

Net architectures: ResNet50 [20] and VGG19 [55] are

standards in the computer vision community; Squeeze-

Net [24] and MobileNet25 [23] have smaller computa-

tional and memory requirements, making them suit-

able, e.g., for mobile and embedded applications; NAS-

NetAlarge [67] achieves state-of-the-art performance in

the ImageNet challenges, but is quite large and has

high computational requirements. Technical details of

the networks are given in Table 2.

All classifiers are pretrained on the training part of

the ImageNet ILSVRC 2012 dataset [51] (1.2 million

training images of 1000 classes), which is the dataset

most commonly used for this purpose3. We use the

50.000 validation images of the same dataset as ref-

2 http://cvml.ist.ac.at/KSconf/
3 We use the publicly available models from

https://github.com/taehoonlee/tensornets.

http://cvml.ist.ac.at/KSconf/
https://github.com/taehoonlee/tensornets
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erence set for within-specs behavior. We do not make

use of ground truth labels of the validation set (or the

test set) at any time, as those would not be available

for actually deployed systems, either.

At prediction time, for within-specs operation we

use the 100,000 images of the ILSVRC 2012 test set as

data source. For out-of-spec operation, we study three

situations: 1) images with different contents than what

is present in ILSVRC, e.g. new object classes; 2) images

with the same contents as ILSVRC but different low-

level characteristics that could, e.g., be caused by image

acquisition problems; and 3) images with of the same

type as ILSVRC, but occurring repeated over time, i.e.

”frozen” images as they can occur during image trans-

mission failures.

As additional data sources, we use the 10 test

classes (proposed split) of the Animals with Attributes

2 (AwA2) dataset [64]. These are 7913 natural images

of similar appearance as ILSVRC, but showing classes

that are not present in the larger dataset. Additionally,

we also use the 3456 images from the DAVIS [45]

dataset (480p part). Those images are in fact video

frames and therefore also exhibit different characteris-

tics than the still images of ILSVRC, such as motion

blur.

To simulate repeating images, for each test image we

form virtual data sets that consist of as many copies of

that images as currently required. Results reported for

this setting are always average values over all tested

images.

In Section 8, where we provide a detailed assess-

ment how state-of-the-art network react to potential

problems in the image acquisition, we create images

with synthetic distortions, such as added noise or blur.

These are described in detail in the corresponding sec-

tions.

6 Experiments: out-of-specs detection from

single samples

Previous work on detecting if a classifier operates on un-

expected data, in particular [21,37], act on individual

data samples. At prediction time, for every input im-

age a separate decision is made whether it stems from a

within-specs or out-of-specs situation. The experimen-

tal evaluation was limited to rather small networks and

image sizes, though. In this section, we repeat and ex-

tend these single-sample experiments in the more chal-

lenging and diverse situation that we are interested in.

Following [21] we test a threshold-based detector

that classifies a sample as out-of-specs if its confidence

score lies below a threshold. By varying the threshold

and recording the false positive as well as the true posi-

tive rate, one obtains a receiver operating characteristic

(ROC) curve, one for each classifier and each out-of-

specs situation.

Figure 4 shows the curves for the out-of-specs case

where the classifier’s input is the AwA2 (all classes) or

DAVIS data. Also listed the area under the ROC curve

(AUC) values, which corresponds to the probability that

a randomly selected within-specs samples has a higher

confidence score than a randomly selected out-of-specs

sample. In order to better understand the limitations of

detecting out-of-specs situations from single samples,

we visualize the actual score distribution in Figure 5

and include an estimate of the total-variation distances

between the out-of-specs situations and the respective

within-specs ones.

We do not include separate experimental results for

the case when the out-of-specs condition is caused by

repeating images, because for single-sample tests these

can be deduced from other experiments: for ILSVRC-

test, single-sample tests are inherently unable to distin-

guish the scenario of repeating images from the within-

specs one. Consequently, the best true positive rate is

identical to the false positive rate, i.e. chance perfor-

mance, and the AUC is 0.5. For AwA2 and DAVIS, the

average AUC over all images is identical to the values

in Figure 4.

6.1 Discussion of Results

From Figure 4 one can see that overall the DAVIS sit-

uation is easier to detect than AwA2, but in neither

case and for none of the ConvNets a threshold-based

classifier is a strong tool for out-of-specs detection.

From Figure 5 we can understand the reasons. The

first row reflects within-specs behavior. It confirms

the folk wisdom that ConvNet scores are biased to-

wards high values. However, it also shows remarkable

variability between different networks. For example,

MobileNet25 has a rather flat distribution compared

to, e.g., VGG19, and the distribution for NASNetA-

large peaks not at 1 but rather at 0.9. The other two

rows show that out-of-specs operation indeed leads

to a change of score distribution. The effect is not

as strong as one might have expected, though, and

in particular, there is no drastic shift of confidence

scores towards very small values. The estimated total-

variation distances between the out-of-specs situations

and the respective within-specs ones quantify this ef-

fect. In particular, the TV value provides a theoretical

upper limit on how well any single-sample test can

distinguish between two distributions, even if it had
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Fig. 4: ROC curves of a threshold-based classifier based on confidence scores of five ConvNets classifiers for two

data sources. AUC denotes the area under the ROC curve. One can see that the DAVIS out-of-specs situations is

generally easier to detect than the AwA2, but none of the classifiers is able to achieve high TPR and high FPR

at the same time.
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Fig. 5: Distribution of confidence scores (x-axis) for different ConvNets and data sources. The dashed line indicates

the average score. The TV value is the estimated total-variation distance between the plotted distribution and the

corresponding within-specs situation.

access to perfect information about the distributions.

Formally, the following two statements hold:

Theorem 1 1) For any single-sample test (not only

threshold-based), the difference between true positive

rate and false positive rate cannot be larger than TV.

2) No threshold-based test can achieve an AUC
higher than 1

2 (1 + 2TV− TV 2).

The first statement was proved in [26] with correc-

tion in [61]. The second statement follows from the im-

plied upper bound to the ROC curve.

To illustrate the result, we look at AwA2, in which

images have similar low-level characteristics as in the

within-specs situation and TV < 0.2 for all classifiers.

The theorem implies that none of the ConvNets would

allow a single-sample test that achieves a TPR more

than 0.2 higher the FPR, and the AUC of a threshold-

based test cannot exceed 0.68. Indeed, this analysis is

consistent with the results in Figure 4. Unfortunately,

for practical applications these values are clearly insuf-

ficient.

6.2 Results with pre- and post-processing

A potential remedy for above problem could be image

pre-processing and score post-processing, e.g. like the

ODIN procedure in [37]. There it was reported that

the quality of a threshold-based detector could be im-

proved drastically by adding a supportive perturbation



KS(conf): A Light-Weight Test if a Multiclass Classifier Operates Outside of Its Specifications 11

Table 3: Detection quality (AUC) of a threshold-based

test with ODIN pre-/postprocessing. The values in

brackets indicate the difference to the plain test, as in

Figure 4. ODIN’s hyperparameters are chosen to max-

imize detection quality, i.e. not agnostically. Neverthe-

less, the improvements are rather limited.

AwA2 DAVIS
MobileNet25 0.58 (+0.04) 0.74 (+0.05)
SqueezeNet 0.54 ( 0.00) 0.76 (+0.05)
ResNet50 0.71 (+0.07) 0.80 (+0.05)
VGG19 0.60 (+0.01) 0.79 (+0.04)
NASNetAlarge 0.62 (+0.06) 0.69 ( 0.00)

to the image before classifying it and post-processing

the scores by temperature scaling. By adopting these

steps the resulting test is not blackbox-ready anymore,

because computing the supportive perturbations re-

quires access to the network’s internal structure and

parameters.

For completeness, we evaluated the tests anyway,

following the description and source code of [37]. We

provide a summary of results here, more details can

be found as part of the accompanying website. Table 3

shows the highest AUC score achieved for any choice of

temperature and strength of supportive perturbation

on the AwA2 and DAVIS data. One can see certain

improvements over a threshold-based test without pre-

and postprocessing, as reported in Figure 4. However,

they are smaller than the ones reported in [37]. In par-

ticular, as a test of out-of-specs prediction, the qual-

ity is still far from sufficient for real-world problems.

Consequently, we do not make use of pre- or postpro-

cessing in the rest of this work. However, if desired,

ODIN or any other image preprocessing and score post-

processing techniques could readily be combined with

KS(conf) or any other universal test that only requires

confidence scores as input.

7 Experiments: out-of-specs detection from

batches

In this section, we report on an experimental evaluation

of batch-based tests for detecting out-of-specs opera-

tion. Besides KS(conf), we test a variety of alternative

ways for combining the set of confidence scores in the

batch and how to come up to a within-specs or out-

of-specs decision. Specifically, we include the following

tests as baselines:

Mean-based tests. We saw in Section 6 that on aver-

age, the confidence scores are in fact lower in the out-

of-specs situation than within-specs, but that the high

variance prevents single-sample test from being reliable.

The use of batches allows reducing the variance, which

suggests a straight-forward test for out-of-specs behav-

ior: for a batch of images, compute the average confi-

dence and report a positive test if that value lies below

a threshold.

To set the threshold, we have two options:

– z-test. We compute the mean, µ, and variance, σ2,

of the confidence values on the validation set. Under

an assumption of Gaussianity, the distribution of

the average confidence over a within-specs batch of

sizem will have variance σ2/m. We set the threshold

to identify the lower α-quantile of that Gaussian.

– (non-parametric) mean test. To avoid the as-

sumption of Gaussianity, we use a bootstrap-like

strategy: we sample many batches from the valida-

tion set and compute the mean confidence for each

of them. The threshold is set such that at most a

fraction α of the batches is flagged as positive.

The z-test has the desirable property that the thresh-

old can be adapted on-the-fly even after the test has

already been deployed. The mean test can be expected

to work better for small batches, where the assump-

tion of Gaussianity is likely violated, but any change

of threshold will require a new step of bootstrapping,

which, in particular, requires access to the previously

confidence values or to new validation data.

Probabilistic tests. Assuming probabilistic classifier

outputs, the right way of combining scores within a

batch is by multiplying them, or equivalently, averag-

ing their logarithms. Doing so yields two tests, log-z

and log-mean that follow the same steps as the z-test

and the mean-tests, respectively, but work with the

logarithms of the confidence values.

Symmetric tests. The four tests described above are

asymmetric: they will detect if the confidences become

too low, but not if they become too high. To cover that

possibility, we also include symmetric versions of the

above tests, for which we determine two thresholds, an

upper and a lower one, allowing for α/2 false positives

on each side.

Label-based test. Instead of using the confidence values,

it would also be possible to detect out-of-specs behavior

from the distribution of actually predicted labels.

– χ2 test. During calibration, we compute the relative

frequency of labels on the validation set. For any

batch, we perform a χ2 goodness-of-fit test, whether

the empirical distribution is likely to originate from

the stored one and report a positive test if the p-

value lies below the desired FPR.
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(a) KS(conf) (b) mean-test (c) z-test (d) χ2-test

Fig. 6: False positive rates of KS(conf) and three baselines across five different classifiers (colors) and different

batch sizes (bs, symbols). The x-axis indicates the target FPR, the y-axis indicates the tests’ actual FPR. For an

ideal test all entries should lie on the diagonal or below with no discernable pattern in the deviations. KS(conf)

and the mean-test achieve this, while the z-test and the χ2-test produce more false positives than targeted, in

particular for small batch sizes.

7.1 Results: false positive rates

As discussed in Section 2, it is a crucial property

of a practical test to have a controllable false posi-

tive rate. We check this property for KS(conf) and

the other batch-based tests by the following proce-

dure: for any batch size bs ∈ {1, 10, 100, 1000} and

α ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5} we

set the test’s parameter for a target FPR of at most

α. Then we run the test on batches sampled randomly

from the ILSVRC test set, i.e. fully under within-specs

conditions. Consequently, all positive tests are false

positives and the fraction of tests that return positively

is the FPR.

Exemplary results are depicted in Figure 6, where

we report the average FPR of four of the tests. The re-

maining results are summarized below and can be found

in the accompanying website. Each plot contains 160

measurements: one for each combination of 5 classifier

(encoded in color), 4 batch sizes (encoded in symbols)

and 8 target FPRs (encoded by x-coordinate). The y-

coordinate shows the actually measured FPR, averaged

over 10,000 repeats. For an ideal test, all points should

lie on the diagonal or below.

One can see that KS(conf) and the mean-test re-

spect the FPR rather well. For KS(conf), this is ex-

pected, as the underlying Kolmogorov-Smirnov test has

well understood statistics and optimal thresholds are

known for any FPR and batch size. For the mean-

test, the reason is that the thresholds were obtained by

simulating the testing procedure on within-specs data

many times. This is computationally costly, especially

for large batch sizes, but it ensures that the FPR is

respected, as long as the validation set size is large

enough. The same outcomes also hold for the log-mean

test and the symmetric variants of both tests, which are

not visualized here.

In contrast, the z-test often produces more false pos-

itives than intended, especially for small batch sizes.

This is an indication that the assumption of Gaussian-

ity, which is violated for small batch sizes, actually mat-

ters in practice. While not depicted here, the log-z test

and the symmetric variants have the same problem as

the z-test.

Finally, the label-based χ2-test produces far too

many false positives. The likely reason for this is the

large number of classes: a rule of thumb says that the

χ2-test is reliable when each bin of the distribution

has at least 5 expected entries. This criterion is clearly

violated in our situation, where the number of samples

in a batch is often even smaller than the number of

classes (which is the number of bins).

In summary, of all methods, only KS(conf) achieves

the two desirable properties that the FPR is respected

for all batch sizes, and that adjusting the thresholds

is possible efficiently and without access to validation

data. Tests based on averaging the scores or loga-

rithms of the scores should only be used with the

bootstrap-based procedure for threshold selection. The

z-approximation as well as the χ2-based test are not

reliable enough for practical use, so we exclude them

from further experiments.

7.2 Results: true positive rate

The ultimate quality measure for any test is whether, at

a fixed FPR, it can reliably detect if the input distribu-

tion changes in any way. For this, we run the different

batch-based tests on different out-of-specs situations: as

a diverse scenario, we use the classifiers to make predic-
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Fig. 7: Exemplary curves of true positive rates (TPR, y-axis) versus target false positive rates (FPR; x-axis) for

SqueezeNet on diverse AwA2 data (top row) and static AwA2 data (bottom row) with different batch sizes, bs.
Note that the curves differ slightly from typical ROC-curves because the x-axis shows the tests’ target FPR, not

a measured one. In particular, this means that the TPR might not reach a value of 1 even for FPR = 1. For a

discussion of the results, see Section 7.2.
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Fig. 8: Exemplary curves of true positive rates (TPR, y-axis) for different tests run with different batch size (x-axis)

on different out-of-specs data with FPR = 0.01. For a discussion of the results, see Section 7.2.
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KS(conf) mean log-mean sym.mean sym.log-mean
diverse
AwA2 (all classes) 1.00 0.99 0.85 0.97 0.80
DAVIS 1.00 1.00 1.00 1.00 1.00
specific
AwA2-bat 1.00 1.00 1.00 1.00 1.00
AwA2-blue-whale 1.00 0.00 0.00 0.43 0.00
AwA2-bobcat 1.00 0.00 0.00 1.00 0.00
AwA2-dolphin 1.00 1.00 0.60 1.00 0.60
AwA2-giraffe 1.00 1.00 1.00 1.00 1.00
AwA2-horse 1.00 1.00 1.00 1.00 1.00
AwA2-rat 1.00 1.00 1.00 1.00 1.00
AwA2-seal 1.00 0.00 0.00 1.00 0.00
AwA2-sheep 1.00 0.00 0.00 0.80 0.00
AwA2-walrus 1.00 1.00 1.00 1.00 1.00
static
ILSVRC (test) 1.00 0.40 0.34 0.96 0.96
AwA2 (all classes) 1.00 0.51 0.44 0.96 0.44
DAVIS 1.00 0.71 0.65 0.97 0.65

Table 4: True positive rates, averaged across 5 ConvNets, of KS(conf) and baselines (columns) under different

out-of-specs conditions (rows). For all tests, the target FPR is set to 0.01 and the batch size to 1000. Test that

fail occasionally (TPR < 1) are marked in gray, tests that fail completely (TPR = 0) in dark gray.

tions on a mixture of all AwA2 classes or on the DAVIS

data. As a specific scenario, we use each of the AwA2

classes individually as out-of-specs data source. Finally,

as static scenario, we use all ILSVRC-test data, AwA2

data or DAVIS data, but the classifiers run on static

data, i.e. each batches consists of multiple copies of the

same image.

The first two cases correspond to a situation in

which the classifier operates unperturbed, but on un-

expected data. The third case reflects the situation

where the input to the classifier is perturbed, e.g. be-

cause of network problems or by explicit manipulation.

Note that it can still be interpreted as change in data

distribution, only that the distribution at prediction

time is a delta-peak on a single image.

For the diverse and specific situations, we compute

the fraction of positive tests out of randomly created

10,000 batches. For the static situation, we create one

batch for each image of the respective dataset and re-

port the averages. In all cases, the system runs com-

pletely out-of-specs. Therefore, all positive tests are cor-

rect and reported averages directly correspond to the

TPR.

Because of the large number of scenarios and re-

sults, we only report on some characteristic cases and

unexpected findings. The full set can be found in the

accompanying website. Specifically, we first provide a

quantitative summary (Table 4) and we then discuss the

qualitative dependence between TPR and FPR (Fig-

ure 7), between TPR and batch size (Figure 8).

Quantitative Summary. Table 4 summarizes the re-

sults numerically at a single glance. It reports averaged

TPRs across the five ConvNets for batch size 1000 and

FPR 0.01.

It shows that in the diverse setting with all AwA2

classes or the DAVIS dataset as out-of-specs data,

KS(conf), the mean test and, to a lesser degree, the

symmetric mean test do a good job detecting the

change of distribution. The logarithmic variants overall

achieve lower TPRs.

In the specific scenario, only KS(conf) reliably de-

tects all of the 10 out-of-specs cases. The other tests

show a more diverse picture. Out of the 10 object classes

used, only 5 are reliably detected by all tests. Of the

remaining ones, the mean test misses four completely.

The symmetric mean test does better, but still often

fails to identify the out-of-specs situation for 2 of the

classes. The log-mean test and symmetric log-mean do

worse than their non-logarithmic counterparts across

the board and have problems with all five classes.

Finally, in the static scenario, KS(conf) again identi-

fies all out-of-specs situations, while the mean, log-mean

and symmetric log-mean tests have severe problems.

Only the symmetric mean test is able to recognize the

out-of-specs operation in a substantial fraction of the

cases (96%–97%), but it also never achieves a perfect

detection rate, as KS(conf) does.

A special case is the static scenario using ILSVRC

data. On first sight, it might not be obvious how any

of the tests is able to detect this out-of-specs situation

at all. After all, all individual images come from the

same distribution at the training data. A test based
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on single samples would not be able to do better than

chance level, and given that in the static scenario all

images in a batch are identical, the statistics computed

from a batch, e.g. the mean, are identical, regardless

of the batch size. The answer lies in the way how the

thresholds are chosen: these depend on the batch size,

as for independent samples the computed statistics be-

come more concentrated the larger the batch size. This

results in a smaller interval of acceptable values, more

rejected batches, and therefore a higher TPR.

Dependence between TPR and FPR. For single-

sample tests, the trade-off between TPR and FPR is

of crucial importance. It is less critical for batch-based

tests, though, because for a well-defined test, increasing

the batch size will increase the TPR without negatively

affecting the FPR.

Figure 7 (top row) illustrates this effect on the ex-

ample of the SqueezeNet classifier on AwA2 data. For

very small batches (bs = 10), most tests perform simi-

larly and none of them is able to achieve high TPR and

low FPR at the same time. When increasing the batch

size, the TPR increases for all tests across all FPR val-

ues, with the mean test usually achieving the best re-

sults, followed closely by KS(conf). For sufficiently large

batch (bs = 1000), some tests are able to achieve high

TPR even at very low FPR, in particular KS(conf) and,

slightly below, the mean test and the symmetric mean

test.

An interesting phenomenon is illustrated in the bot-

tom row of Figure 7: in the static out-of-specs situation,

the selected FPR has a much weaker influence on the

TPR than in the diverse scenario. Except for KS(conf)

and the symmetric mean test, all tests have regimes

where their average TPR is even below the targeted

FPR. Note, however, that these occur for high FPR

values, so they are not of core interest for practical ap-

plications.

Dependence between TPR and batch size. One in-

sight from of our experiments is that, at a fixed FPR,

the batch size needed to achieve a certain TPR de-

pends strongly on the characteristics of the out-of-specs

situation. For the sake of concreteness, we use a fixed

FPR = 0.01 in the discussion of this effect.

For the diverse scenarios all test reliably detect the

out-of-specs situation if the batch sizes is at least 50–

100 (DAVIS) or 1000–5000 (AwA2). Figures 8a) and

8b) illustrates the easiest (DAVIS, VGG19) and the

most difficult (SqueezeNet, AwA2) cases. In several of

the easier cases, KS(conf) require slightly larger batch

sizes than some of the other tests, presumably because

the other tests make implicit assumptions that are in-

deed fulfilled in these situations.

In the specific scenario, KS(conf) reliably detects

all of the 10 out-of-specs cases with batches of size

50–1000. Figures 8c) and 8d) illustrate the diversity of

these problems, again by displaying an easy (ResNet50,

bat) and a hard case (SqueezeNet, seal).

The difference between KS(conf) and the other tests

becomes most apparent in the case where the out-of-

specs situation is not just due to different image data,

but also due to a lack of diversity. KS(conf) reliably de-

tects this static situation already at batch sizes as low

as 30. All other tests, however, have problems and reach

high TPR only for large batch sizes, or not at all. Fig-

ures 8e) and 8f) illustrate two examples (MobileNet25,

static ILSVRC-test; NASNetAlarge, static DAVIS).

7.3 Results: Fine-grained analysis

A main result of the previous section is that all test,

except for KS(conf), fail in some of the tested situa-

tions. To shed more light on this effect, we performed

additional fine-grained experiments, where we create

batches as mixtures where a fraction of β of the im-

ages is taken from from AwA2 classes and a fraction

1− β from ILSVRC2012-test. By varying β ∈ [0, 1] we

are able to control not only the type of out-of-specs

situation, but also the strength. While, technically, all

mixtures with β > 0, are out-of-specs, it is clear that

mixtures with smaller β will be harder for tests to de-

tect, if only because each batch contains fewer out-of-

specs examples.

For each situation, we run all detection methods
with batch size 1000 and FPR = 0.01. The results fall

into three characteristic clusters: 1) some sources, for

example AwA2-bat, are identified reliably by all tests

for all ConvNets, as long as the mixture proportions

exceed a critical value. 2) other sources, for example

AwA2-bobcat, are identified reliably by some tests, but

not at all by others. 3) for some sources, here AwA2-

blue-whale, tests show different sensitivities, i.e. some

tests work only for high mixture proportions. Figure 9

(a) illustrates the above examples for the ResNet50

classifier.

Interestingly, the results differ substantially not only

between data sources but also between networks. For

example, ResNet50 allows for perfect detection at lower

mixture proportions than MobileNet25. For NASNetA-

large on blue whale data, the symmetric mean test

works as least as well as KS(conf), while the same test

on the same images fails completely for VGG19. An

illustration of these examples is provided in Figure 9

(b).
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ResNet50 - bat ResNet50 - blue whale ResNet50 - bobcat

(a) Examples of three different clusters of detection performance. Left: reliable detection by all methods. Middle: large differences
in required batch size for different classifiers. Right: some methods fail to detect the out-of-specs situation.

MobileNet25 - bat NASNetAlarge - blue whaleVGG19 - blue whale

(b) Examples of variability between different networks. Left: MobileNet25 requires larger batches to reliably detection an
out-of-specs situation (here: AwA2 bat) than, e.g., ResNet50 (upper row, left). Middle/right: on the same image data (here:
AwA2 blue-whale), a test (here: sym.mean) might work well for one ConvNet (here: NASNetAlarge) but not at all for another
ConvNet (here: VGG19).

Fig. 9: Results of detecting out-of-specs behavior with different tests for different ConvNets and data sources.

x-axis: fraction of out-of-specs (AwA2, DAVIS) vs. within-specs (ILSVRC-test) data in batch. y-axis: detection

rate (TPR).

A possible explanation of the observed effects lies in

the fact that score distributions differ not only strongly

between ConvNets, as we had observed in Figure 5,

but also between different data sources for the same

ConvNets. For example, AwA2-bat exhibits a pattern

as one would ideally expect from an unknown class:

confidences are overall much lower, so the difference in

distribution is easy to detect for all tests. The distribu-

tion for AwA2-blue-whale data differs much less from

the within-specs situation, making it harder to detect.

Finally, AwA2-bobcat shows quite unexpected behav-

ior: even though no images of this class were used at

training time the networks makes overall more confi-

dent predictions than for within-specs data. This is also

the reason why the single-sided mean-based tests fail for

this out-of-specs situation. For space reasons, we do not

include illustrations of all discussed score distributions.

They can be found on the accompanying website.

7.4 Discussion of Results

Overall, our experiments show that KS(conf) works reli-

ably in all experimental conditions we tested. This is in

agreement with the expectations from theory, because

the underlying Kolmogorov-Smirnov test is known to

have asymptotic power 1, meaning that if given enough

data, it will detect any possible difference between dis-

tributions. In contrast to this, the baseline tests show

highly volatile behavior, making them unsuitable as a

reliable out-of-specs detector.

On first sight, the results of diverse vs. specific vs.

static situations might appear counter-intuitive. Intu-

itively, one could expect that a more specialized data

distribution, e.g. all images showing the same object

class, should be easier to detect than a more generic

distribution, and for KS(conf) this is indeed the case.

For the baseline tests, however, the opposite seems

to be true. The explanation lies in a bias-variance trade-

off: all baseline tests essentially perform outlier detec-

tion, i.e. they trigger if a batch contains a certain num-

ber of images that would have been unlikely to occur

in the with-specs situation. For a generic out-of-specs

distributions, any sufficiently large batch is likely to

contain sufficiently many such unexpected images, and

the tests will indeed trigger quite reliably. For a highly

peaked out-of-specs distribution, however, the score dis-

tribution has a higher bias and lower variance: depend-

ing on the data, is will consists either mostly of atypi-
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original loss-of-focus (σ = 2) sensor noise (σ = 20) dead pixels (p = 1%)

incorrect geometry incorrect colors under-exposure (c = 1/2) over-exposure (c = 1/2)
(vertical flip) (RGB↔BGR)

Fig. 10: Illustration of the effect of camera system changes on the input images.

cal images, which indeed is easily detected, or mostly of

typical images, which causes the test to miss the batch.

It is in this aspect where KS(conf) works fundamentally

different than the other tests. As it compares the full

distribution of scores, it identifies not only the situation

when the scores are too low or too high, but also when

the score distribution in a batch is not diverse enough.

8 Experiments: detecting changes to the image

acquisition setup

We now turn our attention to a specific form of out-

of-specs operation for image classifiers: changes in the

characteristics of the image acquisition setup, such as

increased pixel noise due to an aging image sensor, or

image blur due to a misaligned lens.

In order to study these in a quantitative way, we cre-

ate new test images by applying characteristic manip-

ulations to the images of the ILSVRC test set. Specif-

ically, we perform the following operations. Details of

their implementation can be found in the corresponding

sections.

– loss-of-focus: we blur the image by filtering with a

Gaussian kernel,

– sensor noise: we add Gaussian random noise to each

pixel,

– dead pixels: we set a random subset of pixels to pure

black or white,

– incorrect geometry : we flip the image horizontally or

vertically, or we rotate it by 90, 180 or 270 degrees,

– incorrect RGB/BGR color processing : we swap the

B and R color channel,

– under- and over-exposure: we scale all image inten-

sities towards 0 or 255.

Figure 10 illustrates the operations at low to medium

strength.

The main goal of our experiments in this section

is not to compare the power of different out-of-specs

tests, as we believe the previous sections did so in suf-

ficient detail. Instead, we are interested in the effect

itself: how exactly do different ConvNets react if their

inputs change due to external effects, such as incor-

rect camera installation, incorrect image exposure, or

broken sensor pixels? We find this a question of inde-

pendent interest, with potential influence on the design

of image classification system for practical tasks.

For each situation we first illustrate the changes in

score distributions by three complimentary quantities:

the area under the ROC curve, reflecting in how far the

confidence scores of distorted images are lower than for

undistorted images; the total variation distance, pro-

viding a classifier-independent measure of similarity be-

tween the distributions, and the smallest batch size at

which KS(conf) with FPR = 0.01 consistently identifies

the change in all cases across 10,000 batches, serving as

a proxy how hard the detection of the change is for an

actual out-of-specs test.
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We then highlight individual cases in more details,

concentrating on the extreme or unexpected cases. As

a more in-depth analysis could find further noteworthy

effects, the raw data and the code of the analysis are

available for public use.

8.1 Loss of focus

To analyze how a defocussing of the camera setup in-

fluences the ConvNet outputs, we create 100,000 per-

turbed test images by applying a Gaussian filter with

variance σ, for each σ ∈ {1, 2, . . . , 10}. The filtering is

performed in horizontal and vertical directions, but not

across color channels.

X̃t = Xt ∗ gσ (3)

for t = 1, . . . , 100000. Note that here and in the follow-

ing sections, all operations act on the original images,

that is, before potential rescaling or normalization that

are part of the ConvNets’ preprocessing.

Table 5 summarizes the characteristics of the result-

ing confidence score distributions. On the one hand, it

shows the expected trend, that stronger distortions lead

to stronger difference in score distribution and are eas-

ier to detect. On the other hand, what is noteworthy

is a rather big difference between different networks.

For some networks, such as SqueezeNet and VGG19,

already a rather mild blur level, such as σ = 2, leads to

a substantial change of score distribution, which can be

detected quite reliably even by a single-sample thresh-

old test. In contrast, for NASNetAlarge the impact on

the score distribution is much smaller, and the same

level of detection quality would only be achieved by a

much stronger blur of σ = 6. Similarly, for batch-based

testing, the necessary batch size for reliably detection

differs by a factor of 10 between the both extremes. The

ResNet50 shows a curious pattern: very strong blurs,

σ ≥ 8, become harder to detect than weaker ones, at

least for single-sample tests. Figure 11 illustrates this

behavior by showing the actual distribution of confi-

dence scores. For MobileNet25, with stronger distor-

tion, the scores become more and more concentrated

around very low values. For ResNet50, the same effect

happens until σ = 5, though in weaker form, but for

σ = 10, the scores are more spread out again across all

confidence values. This means in particular, that the

ResNet50 will often produce a high confidence values

even for very highly blurred images, while for the Mo-

bileNet25 this is almost never the case.

8.2 Sensor Noise

To analyze the effect of sensor noise, we create 100,000

perturbed test images by adding independent Gaus-

sian noise with variance σ in all color channels, for

σ ∈ {5, 10, 15, 20, 30, 50, 100}:

X̃t[h,w, c] = clip2550

(
Xt[h,w, c] + σ rnd()

)
(4)

for t = 1, . . . , 100000, where rnd() generates samples

from a standard Gaussian distribution and clip2550 (·)
denotes the operation of clipping a value to the interval

[0, 255]. h and w range over the horizontal and verti-

cal coordinates, respectively, and c over the three color

channels.

The characteristics of the resulting confidence score

distributions are summarized in Table 6. Similar to the

out-of-focus case, for each tested ConvNet, there is an

obvious trend that stronger distortions are generally

easier to detect. In fact, the weakest tested noise level,

σ = 5, was undetectable from the score distributions for

all networks. Also similar to the out-of-focus case, there

are substantial differences in how strongly the different

ConvNets react to the image distortions. The Squeeze-

Net is most susceptible, followed by the MobileNet25

and the ResNet50. VGG19 is less affected, with even

σ = 10 leading to almost no change in score distri-

bution and being undetected by the batch-based test.

NASNetAlarge is least affected by noise, with σ = 20

being the smallest noise level that is detectable at all,

and the score distribution hardly changes even up to

σ = 50.

Figure 12 shows the NASNetAlarge’s actual score

distribution. One can see that it remains rather stable

up to σ = 50, and even at σ = 100 a substantial amount

of probability mass is still present at high confidence

values.

8.3 Pixel Defects

We analyze the effect of cold and hot dead pixel defects

by creating 100,000 perturbed test images with salt-

and-pepper noise. We distort a random subset of p per-

cent of the pixels, setting half of them to pure black and

half of them to pure white, for p ∈ {1%, 5%, 10%, 20%,

40%, 60%, 80%, 100%}. Formally, the operation is

X̃t[h,w, c] =


0 if (h,w) ∈ Jdead,
255 if (h,w) ∈ Jhot,
Xt[h,w, c] otherwise.

(5)

for t = 1, . . . , 100000, where Jdead and Jhot are disjoint

random subsets of size b 12pNc each, where N is the

number of pixels in the image.
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Table 5: Distribution characteristics for a loss of focus in image acquisition. For each network (in columns) and blur

strength, σ, (in rows), AUC denotes the area under the ROC curve between the confidences scores of the distorted

and the undistorted images. TV denotes the estimated total variation distance between their distributions. bs
denotes the batch size required for KS(conf) with FPR = 0.01 to correctly report all tested batches as out-of-

specs.

loss of MobileNet25 SqueezeNet ResNet50 VGG19 NASNetAlarge
focus AUC TV bs AUC TV bs AUC TV bs AUC TV bs AUC TV bs

σ = 1 0.56 0.09 3000 0.69 0.27 300 0.66 0.22 300 0.70 0.26 300 0.55 0.08 3000
σ = 2 0.74 0.36 100 0.86 0.55 30 0.80 0.44 50 0.86 0.56 30 0.66 0.24 300
σ = 3 0.85 0.53 30 0.92 0.67 30 0.87 0.57 30 0.91 0.66 30 0.75 0.39 100
σ = 4 0.88 0.60 30 0.95 0.76 30 0.91 0.64 30 0.93 0.71 30 0.80 0.48 50
σ = 5 0.91 0.67 30 0.97 0.80 10 0.92 0.68 30 0.95 0.76 10 0.84 0.55 30
σ = 6 0.94 0.73 10 0.97 0.82 10 0.93 0.69 30 0.96 0.80 30 0.87 0.60 30
σ = 8 0.96 0.80 10 0.98 0.85 10 0.91 0.65 30 0.97 0.83 10 0.92 0.68 30
σ = 10 0.97 0.83 10 0.99 0.88 10 0.88 0.60 30 0.97 0.84 10 0.94 0.73 30

Fig. 11: Illustration of the different reaction of MobileNet and NASNetAlarge to image blur in terms of the

distribution of their confidence scores (value on x-axis). See Section 8.1 for a discussion.

Table 6: Distribution characteristics for sensor noise in image acquisition. For each network (in columns) and

noise strength, σ, (in rows), AUC, TV and bs are reported as for Table 5. Missing entries in the bs column indicate

that the maximal tested batch size of 10 000 was not sufficient to reliably detect the manipulation.

noise MobileNet25 SqueezeNet ResNet50 VGG19 NASNetAlarge
strength AUC TV bs AUC TV bs AUC TV bs AUC TV bs AUC TV bs

σ = 5 0.52 0.03 — 0.52 0.03 — 0.52 0.03 — 0.52 0.03 — 0.50 0.02 —
σ = 10 0.56 0.08 3000 0.58 0.11 1000 0.54 0.06 5000 0.53 0.05 — 0.51 0.02 —
σ = 15 0.60 0.15 500 0.64 0.20 300 0.56 0.09 3000 0.56 0.08 3000 0.51 0.03 —
σ = 20 0.65 0.22 300 0.69 0.28 300 0.59 0.13 1000 0.59 0.13 1000 0.52 0.04 10000
σ = 30 0.73 0.34 100 0.73 0.35 100 0.66 0.23 300 0.67 0.24 300 0.54 0.06 3000
σ = 50 0.80 0.46 50 0.76 0.40 100 0.77 0.41 100 0.78 0.42 50 0.58 0.14 1000
σ = 100 0.85 0.56 30 0.81 0.57 30 0.81 0.49 50 0.82 0.48 50 0.73 0.38 100

Fig. 12: Illustration of the distribution of confidence scores (value on x-axis) for NASNetAlarge under different

amounts of image noise. A discussion is provided in Section 8.2.
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Table 7: Distribution characteristics for pixel defects in image acquisition. For each network (in columns) and

defect probability, p, (in rows), AUC, TV and bs are reported as for Table 5.

pixel MobileNet25 SqueezeNet ResNet50 VGG19 NASNetAlarge
defects AUC TV bs AUC TV bs AUC TV bs AUC TV bs AUC TV bs

p = 1% 0.58 0.12 1000 0.66 0.24 300 0.67 0.25 300 0.60 0.14 1000 0.54 0.06 5000
p = 5% 0.67 0.26 300 0.67 0.24 300 0.73 0.34 100 0.71 0.31 300 0.59 0.14 1000
p = 10% 0.75 0.37 100 0.75 0.38 100 0.75 0.38 100 0.76 0.39 100 0.62 0.20 300
p = 20% 0.83 0.50 30 0.74 0.41 50 0.78 0.43 50 0.72 0.32 100 0.67 0.29 300
p = 30% 0.85 0.53 30 0.64 0.38 100 0.74 0.40 50 0.68 0.24 300 0.72 0.37 100
p = 40% 0.85 0.55 30 0.60 0.43 100 0.67 0.39 50 0.68 0.24 300 0.78 0.47 50
p = 50% 0.85 0.57 30 0.61 0.47 50 0.62 0.41 50 0.73 0.32 100 0.84 0.57 30
p = 60% 0.85 0.60 30 0.62 0.51 50 0.60 0.43 50 0.81 0.47 30 0.88 0.63 30
p = 80% 0.87 0.69 30 0.64 0.62 30 0.64 0.40 50 0.91 0.73 10 0.55 0.16 1000
p = 100% 0.84 0.69 10 0.66 0.71 30 0.84 0.66 10 0.92 0.76 10 0.58 0.54 50

Fig. 13: Illustration of the distribution of confidence scores (value on x-axis) for the give ConvNets under different

amounts of pixel defects. A discussion is provided in Section 8.3.

Table 7 reports on the characteristics of the result-

ing confidence score distributions. For the MobileNet25

and, to a lesser degree, for the SqueezeNet, the ex-

pected pattern emerges that a large amount of pixel

defects strongly impacts the score distribution and the

corresponding out-of-specs situation can therefore be

detected rather easily. For the other ConvNets, how-

ever, we observe a different pattern. For each of them,

a small number of pixel defects, e.g. up to p = 10%,

leads to a divergence of the score distribution com-

pared to the undistorted case. This is visible in an in-

creasing TV and AUC values, and a decreasing required

batch size for KS(conf). Higher levels, however, influ-

ence the ConvNets in different way: for ResNet50, the

TV value remains almost constant between p = 10%

and p = 80%, while the AUC value declines again. This

indicates that probability mass is redistributed from

lower to higher confidence values, not in the other di-
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rection as one might have suspected. For example, at

p = 60%, the AUC value is only 0.60, meaning that a

threshold-based classifier would be hardly better than

random at detecting this situation of heavily distorted

images. For SqueezeNet, we observe the opposite effect:

the AUC value remains stable over a wide range of p-

values, while the TV value increases. For VGG19, there

is range between p = 30% and p = 40% distorted pix-

els, where the TV and AUC values are lower than even

at p = 5%. Even high levels of distortion then lead

to a big change in score distribution, though, and can

easily be detected. NASNetAlarge shows a similar pat-

tern, but shifted to even higher distortion levels. Until

p = 60%, the distribution gets more and more different

from the undistorted case. At p = 80%, however, both

the TV and the AUC values drop substantially, mak-

ing this specific amount of distortion extremely hard to

detect.

The observations from the numeric summaries are

confirmed by the actual score distributions, a subset of

which we depict in Figure 13. It shows drastically that

for all networks the score distributions fluctuate: while

for undistorted images high confidences scores domi-

nate, for higher amounts of distortion (p = 40%), the

scores are far lower for most networks. When the num-

ber of pixel defects is very high (p = 80%), the scores

generally increase again. For p = 100%, i.e. the images

consist of a random arrangement of black and white

pixels, for all ConvNets the score distribution is quite

peaked, but not necessarily at low values. For exam-

ple, for SqueezeNet and ResNet50, confidence values

around 0.5 are most common, while for MobileNet25

and VGG19, the values are lower. A special case is NAS-

NetAlarge, which changes its score distribution much

less than the other networks. It is most spread out

around p = 60% (not depicted), but then returns to

high values again for stronger distortions. For p = 80%

the distribution is comparable to the one for unper-

turbed images, and for p = 100% the predicted confi-

dence values are on average even higher than that.

8.4 Under- and Over-Exposure

To study the effect of exposure changes, for each fac-

tor c ∈ {1/2, 1/3, 1/4, 1/5, 1/10, 1/20, 1/50, 1/100} we

create 100,000 perturbed test images by scaling the in-

tensity values towards 0 (under-exposure),

X̃t[h,w, c] = c ·Xt[h,w, c] (6)

or towards 255 (over-exposure),

X̃t[h,w, c] = 255− c · (255−Xt[h,w, c]) (7)

for t = 1, . . . , 100000.

The characteristics of the resulting confidence score

distributions are reported in Table 8. For each ConvNet,

it shows a conventional picture: the larger the amount

of under- or over-exposure the more the resulting score

distribution differs from the original one. As in pre-

vious cases, the variability between ConvNets is large,

though. For SqueezeNet and VGG19, a factor of c = 1/5

has a substantial influence and can be detected rather

well. For NASNetAlarge, the score distribution for this

factor is still almost indistinguishable from the situation

of undistorted images. More extreme factors are then

also easily detectable, though. Overall, over-exposure

seems to have a bit more influence on the score distri-

bution than under-exposure.

Figure 14 gives further insight into specific property

of the score distributions, illustrated on the example of

VGG19. One can see that with stronger over- or under-

exposure up to c = 1/5, the confidence scores indeed

overall decrease. However, it is not a uniform change of

probability mass from high to low. Instead, the original

peak at high confidence scores is gradually decreased

while a new peak of low confidence scores emerges. At

c = 1/50, only the peak at low values remains.

The bimodal shape of the distribution implies that

even though the average confidence is low, predictions

with high confidence are still quite likely to occur, at

least when the network operations of images with an

intermediate amount of under- or over-exposure.

8.5 Geometry and Color Preprocessing

To simulate incorrect camera installations or geome-

try preprocessing, we benchmark KS(conf) with hori-

zontally and vertically flipped images, as well as im-

ages that were rotated by 90, 180 or 270 degrees. To

simulate incorrect color preprocessing, we use images

in which the R and B channel have been swapped. For

each transformation, we create 100,000 perturbed test

images.

Table 9 summarizes the characteristics of the score

distribution. One can see that all of the network out-

puts are unaffected by horizontal flips of the training

set. Presumably, the networks either learned a hori-

zontal symmetry of the visual world, or this behavior

was enforced by a data augmentation step during train-

ing. Vertical flips and rotations do have an impact on

the score distribution that can be detected reliably us-

ing batches of 100 to 300 samples, while single-sample

threshold classifiers would not be able to achieve high

TPR or low FPR at the same time. Surprisingly, a swap

of color channels does not strongly influence the score
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Table 8: Distribution characteristics for under-exposure (upper table) or over-exposure (lower table) in image

acquisition. For each network (in columns) and exposure factor, c, (in rows), AUC, TV and bs are reported as for

Table 5.

(a) Under-exposure

exposure MobileNet25 SqueezeNet ResNet50 VGG19 NASNetAlarge
factor AUC TV bs AUC TV bs AUC TV bs AUC TV bs AUC TV bs

c = 1/2 0.53 0.04 10000 0.61 0.15 500 0.55 0.07 3000 0.58 0.10 1000 0.50 0.02 —
c = 1/3 0.56 0.09 3000 0.67 0.23 300 0.60 0.14 500 0.63 0.16 300 0.51 0.02 —
c = 1/4 0.61 0.15 500 0.72 0.32 100 0.65 0.20 300 0.67 0.23 300 0.51 0.03 —
c = 1/5 0.65 0.21 300 0.77 0.39 100 0.69 0.25 300 0.72 0.30 100 0.52 0.04 10000
c = 1/10 0.81 0.46 50 0.89 0.60 30 0.83 0.47 50 0.87 0.57 30 0.57 0.10 3000
c = 1/20 0.91 0.66 30 0.93 0.70 30 0.94 0.73 30 0.97 0.81 10 0.67 0.25 300
c = 1/50 0.89 0.71 30 0.91 0.76 10 0.99 0.91 10 0.99 0.94 10 0.90 0.62 30
c = 1/100 0.91 0.84 10 0.89 0.84 10 1.00 0.97 5 1.00 0.97 5 0.99 0.91 10

(b) Over-exposure

exposure MobileNet25 SqueezeNet ResNet50 VGG19 NASNetAlarge
factor AUC TV bs AUC TV bs AUC TV bs AUC TV bs AUC TV bs

c = 1/2 0.54 0.05 5000 0.71 0.30 100 0.59 0.13 1000 0.65 0.20 300 0.50 0.02 —
c = 1/3 0.60 0.15 500 0.76 0.38 100 0.68 0.25 300 0.74 0.35 100 0.51 0.03 —
c = 1/4 0.65 0.23 300 0.77 0.42 50 0.74 0.35 100 0.80 0.45 50 0.52 0.04 10000
c = 1/5 0.68 0.28 100 0.79 0.44 50 0.79 0.42 50 0.84 0.52 30 0.54 0.05 3000
c = 1/10 0.77 0.41 50 0.87 0.57 30 0.90 0.61 30 0.93 0.70 30 0.62 0.18 300
c = 1/20 0.91 0.66 30 0.96 0.79 30 0.95 0.76 30 0.98 0.85 10 0.75 0.39 100
c = 1/50 1.00 0.97 5 1.00 0.98 5 0.98 0.87 10 1.00 0.96 5 0.93 0.70 30
c = 1/100 1.00 0.98 1 1.00 0.98 1 1.00 0.97 5 1.00 0.98 5 0.99 0.93 10

under-exposure

over-exposure

Fig. 14: Illustration of the distribution of confidence scores (value on x-axis) for the VGG19 ConvNet under

different amounts of under- or over-exposure. A discussion is provided in Section 8.4.

Table 9: Distribution characteristics for problems with geometry or color processing in image acquisition.

MobileNet25 SqueezeNet ResNet50 VGG19 NASNetAlarge
transformation AUC TV bs AUC TV bs AUC TV bs AUC TV bs AUC TV bs
horizontal flip 0.50 0.02 — 0.51 0.02 — 0.51 0.02 — 0.52 0.03 — 0.50 0.02 —
vertical flip 0.68 0.27 300 0.70 0.30 100 0.70 0.30 100 0.73 0.34 100 0.62 0.21 300
90◦ 0.69 0.29 300 0.70 0.29 300 0.71 0.30 100 0.74 0.35 100 0.62 0.20 300
180◦ 0.68 0.27 300 0.71 0.30 100 0.70 0.30 300 0.73 0.34 100 0.62 0.20 300
270◦ 0.69 0.29 100 0.70 0.30 100 0.71 0.30 100 0.74 0.35 100 0.62 0.20 300
RGB↔BGR 0.58 0.12 1000 0.60 0.14 500 0.62 0.18 300 0.62 0.17 300 0.54 0.07 3000
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distribution. The corresponding out-of-specs situation

can be detected well by a batch-based test, but with

values of 300 to 3000 the necessary batch size is rather

high. Tests that act on a single-sample cannot be ex-

pected to work much better than random chance for

this situation.

8.6 Discussion of Results

In summary over all experiments of this section, the

main consistent aspect is that all tested ConvNets be-

have quite differently. A priori it is hard to predict how

the outputs of a ConvNet will be affected by specific

image distortions.

The two networks that target efficiency and a small

memory footprint, MobileNet25 and SqueezeNet, were

generally most affected by image distortions. On the

one hand, this means that their predictions might be-

come unreliable over time if they operate continuously

using images from a camera system whose image quality

might deteriorate over time. On the other hand, these

network at least allow the reliable identification of such

out-of-specs conditions in most situations.

The NASNetAlarge was consistently the least af-

fected by the simulated changes to the camera setup.

This, however, does not automatically mean that its

predicted class labels are more accurate, only that their

confidence scores are less useful for predicting out-of-

specs situations. This distinction is particularly appar-

ent in the case of pixel defects, where the network con-

sistently outputs very high confidence scores even to

images that consist to a large part, or even completely,

of a random arrangement of black and white pixels. Of

course, the predicted labels in this situation are not

actually the correct object classes, but in fact all im-

ages get assigned the same ILSVRC class label window

screen.

9 Shortcomings and Possible Improvements

While our analysis shows that KS(conf) has many de-

sirable properties and excellent practical performance,

it also has some shortcomings that we discuss in this

section.

One fundamental limitation is the need to work on

batches. Mathematically, KS(conf) is defined also when

applied to individual images, i.e. batches of size 1. How-

ever, it is not very powerful in this setting. From Equa-

tion (2) for m = 1 and the thresholds in Table 10, one

can see that it acts as a symmetric test with two thresh-

olds in that case. An image is reported as outlier with

FPR at most α, if its confidence score lies in the top

α
2 -quantile or in the bottom α

2 -quantile of scores ob-

served at calibration time. Given our prior knowledge

that confidence scores often do decrease rather than

increase, it would be interesting to explore if an asym-

metric version of KS(conf) can be derived that preserves

the test’s asymptotic power but requires smaller batch

sizes in general.

The other extremal situation, when KS(conf) is used

with very a large batch size, is also noteworthy. Because

the Kolmogorov-Smirnov test has perfect asymptotic

efficiency, it will—given a large enough batch—identify

any difference in distribution, no matter how small it

may be. This can be considered a shortcoming, because

it means that in order to avoid misdetections due to fi-

nite sampling, the validation set also has to grow. This

situation can easily be avoided by keeping the batch size

at a reasonable level, or a variant of KS(conf) can be

derived based on the two-sample instead of one-sample

variant of the Kolmogorov-Smirnov test. However, the

effect shows that a test routine of arbitrarily high qual-

ity might not be practical after all. On the other hand,

it might also not be desirable, as a human user will only

be interested in being warned about relevant difference

in the data distribution, not an arbitrary small one.

Another aspect that needs further study is the adap-

tation of KS(conf) to the situation where images within

a batch are not independent, such as image sequences

or videos. The classical Kolmogorov-Smirnov test is not

directly applicable in this case, because the null distri-

bution of the KS statistics for dependent data cannot

easily be determined. Consequently, a more empirical

version of the test, in particular with a more involved

calibration phase, might be required. We plan to ad-

dress this in future work.

Finally, a fundamental limitation of KS(conf) is that

as a statistical test it makes the assumption of a data-

generating distribution at prediction time. In some sit-

uations this assumption can be violated, e.g. when the

input data can be manipulated adversarially. Specifi-

cally, KS(conf) might fail to identify that a network

operates out-of-specs if the adversary has the power to

manipulate every image in the batch by an image- and

classifier-dependent procedure. This problem is not spe-

cific to KS(conf), though. It is clear that any test based

on confidence scores can be made to fail when an ad-

versary has the ability to tune the manipulations such

that the confidence scores are preserved.

10 Conclusion

In this work, we discussed the problem of detecting

the situation that an image classifier runs outside of

its specifications, i.e. when the distribution of data it
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has to classify differs from the distribution of data it

was trained for. We put forward the hypothesis that it

suffices to test if the classifier predicts out-of-specs, i.e.

if the distribution of predicted confidence scores differs

from the original one, provided a suitably strong detec-

tion method is used. We introduced such a procedure,

named KS(conf), based an application of the classical

statistical Kolmogorov-Smirnov test to the distribution

of the confidence values of the predicted labels.

By extensive experiments we showed that single-

sample tests, as they had been proposed in the lit-

erature, are fundamentally limited in their ability to

identify the out-of-specs situation. Batch-based tests

are more powerful, as they can leverage the additional

information provided by a set of confidence values.

For small batch sizes we found parametric tests, e.g.

a mean test, to be competitive. However, in order to

reliably identify any change in the score distribution,

larger batches are required, and KS(conf) achieves the

best detection performance of the tested method in

this regime. Specifically, we found a batch size of 1000

sufficient to achieve 100% true positive rate for all test

scenarios with a false positive rate no larger than 1%.

As a study of independent interest, we showed that

different ConvNets react very differently to low-level

changes of the input data, as they might be caused,

for example, by changes to the image acquisition setup.

On the one hand, we expect this to help practitioners in

their choice of network architecture. On the other hand,

we see it as a call for caution that experimental studies

in this field must be thorough and broad in order to

avoid the risk of overfitting to individual datasets or

network architectures.

In conclusion, we hope that our work leads to more
research on how to make automatic decision systems

more trustworthy. To support this effort, our code and

data are publicly available via the authors’ homepage.
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17. Häkkinen, M.: Why alarms fail: A cognitive explanatory
model. Ph.D. thesis, University of Jyväskylä (2010)
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Appendix

Table 10: Tabulated thresholds θα,m for Kolmogorov-Smirnov test

α m = 1 3 5 10 30 50 100

0.00001 0.99999500 0.98289490 0.91293335 0.71704102 0.43685913 0.34207153 0.24398804

0.00005 0.99997500 0.97076416 0.87988281 0.67468262 0.40795898 0.31909180 0.22741699

0.0001 0.99995000 0.96316528 0.86199951 0.65478516 0.39477539 0.30862427 0.21987915

0.0005 0.99975000 0.93701172 0.80963135 0.60430908 0.36193848 0.28265381 0.20126343

0.001 0.99950000 0.92065430 0.78137207 0.58044434 0.34674072 0.27069092 0.19268799

0.005 0.99750000 0.86425781 0.70544434 0.51873779 0.30816650 0.24038696 0.17105103

0.01 0.99500000 0.82897949 0.66857910 0.48889160 0.28985596 0.22604370 0.16079712

0.05 0.97500000 0.70751953 0.56323242 0.40924072 0.24169922 0.18841553 0.13403320

0.1 0.95000000 0.63598633 0.50952148 0.36865234 0.21752930 0.16961670 0.12066650

0.5 0.75000000 0.43457031 0.34179688 0.24682617 0.14587402 0.11389160 0.08117676

α m = 300 500 1000 3000 5000 10000

0.00001 0.14180756 0.11002350 0.07791138 0.04504013 0.03490067 0.02468681

0.00005 0.13212585 0.10250854 0.07258606 0.04196167 0.03251648 0.02300072

0.0001 0.12773132 0.09909821 0.07017136 0.04056549 0.03143311 0.02223587

0.0005 0.11688232 0.09067535 0.06420898 0.03712082 0.02876282 0.02034760

0.001 0.11187744 0.08679199 0.06146240 0.03553391 0.02753448 0.01947784

0.005 0.09930420 0.07704163 0.05455780 0.03153992 0.02444458 0.01729202

0.01 0.09335327 0.07243347 0.05129242 0.02965927 0.02298355 0.01625824

0.05 0.07783508 0.06039429 0.04277802 0.02474213 0.01917267 0.01356506

0.1 0.07009888 0.05439758 0.03852844 0.02228546 0.01727295 0.01222229

0.5 0.04724121 0.03668213 0.02600098 0.01505280 0.01167297 0.00825882
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