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Abstract. Modern neural networks can easily fit their training set per-
fectly. Surprisingly, despite being “overfit” in this way, they tend to
generalize well to future data, thereby defying the classic bias–variance
trade-off of machine learning theory. Of the many possible explanations,
a prevalent one is that training by stochastic gradient descent (SGD) im-
poses an implicit bias that leads it to learn simple functions, and these
simple functions generalize well. However, the specifics of this implicit
bias are not well understood.
In this work, we explore the smoothness conjecture which states that
SGD is implicitly biased towards learning functions that are smooth. We
propose several measures to formalize the intuitive notion of smoothness,
and we conduct experiments to determine whether SGD indeed implicitly
optimizes for these measures. Our findings rule out the possibility that
smoothness measures based on first-order derivatives are being implicitly
enforced. They are supportive, though, of the smoothness conjecture for
measures based on second-order derivatives.

1 Introduction

Classical machine learning wisdom suggests that the expressive power of a model
class (its capacity) should be carefully balanced with the amount of available
training data: if the capacity is too low, learned models will underfit and not
manage to fit the training set, let alone the test set. If the capacity is too high,
learned models do fit the training set, but they overfit to spurious patterns and
fail to represent the underlying trend, again failing to generalize well to the test
set. Thus, the learned models generalize best when the capacity is in a sweet-
spot somewhere between underfitting and overfitting. This observation is also
known as bias–variance trade-off.

Several researchers have observed that neural networks seem to defy the bias–
variance trade-off: increasing model capacity often improves generalization per-
formance, even if the network is already apparently “overfit”. This phenomenon
had first been reported more than 20 years ago, e.g. [15,5], but it has only begun
receiving wider attention in recent years. This started with the work of [22], who
showed that plotting the test loss as a function of model capacity (represented by
the hidden layer size) does not yield the U-shaped curve predicted by the bias–
variance trade-off, but starts to decrease again for high model class capacities.
The authors then conjecture that the surprising generalization performance of
“overfit” neural networks might be due to implicit regularization in the training
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Fig. 1: A non-smooth function (orange) and smooth function (blue) interpolating
a one-dimensional dataset.

process: while the training objective only penalizes the prediction quality, the
optimization process nevertheless prefers solutions that have “small complexity”
and therefore generalize well.

It is still an open question, though, what exactly the implicitly regularized
complexity measure is. In this work, we explore the conjecture (put forward, e.g.,
in [19]) that it is “smoothness” which is implicitly regularized: stochastic gradient
descent tends to produce functions that are not needlessly “rough” or “bumpy”.
For an illustration, see Figure 1. While this smoothness conjecture is intuitively
appealing, it is not clear so far how the intuitive concept of “smoothness” would
be correctly formalized mathematically. This is especially a problem because
in high dimensions, as common in machine learning, there are many possible
notions of smoothness for a function.

Our goal in this work is to make progress towards a formal analysis of the
smoothness conjecture. Specifically, our main steps are the following:

– We define four measures that express “smoothness” of a trained neural net-
work; two rely on first-order information, two on second-order information.

– We introduce two experimental settings that allow us to assess compati-
ble the smoothness conjecture for each of these measures is with empirical
observations.

– Based on our experimental results, we argue that first-order smoothness
measures can be excluded as candidates for SGD’s implicit regularization,
whereas second-order methods are promising candidates.

2 Related work

To the best of our knowledge, the first modern paper that observed the un-
expected generalization behavior of neural networks is [22], where the authors
focus on the fact that the test loss keeps decreasing with the number of hid-
den units. This was later followed by more refined analyses (e.g. [2,4,27]), which
observed a “double descent” behavior: for low-capacity model classes, the stan-
dard reasoning of over- and underfitting holds. For model classes of very high
capacity, though, where the training error can be reduced to zero, i.e. the data
is interpolated, higher model class capacity corresponds to further reductions of
the test loss. Later work [21] confirmed the findings in extensive experiments
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and observed that a double descent occurs not only as a function of model size
but also the number of training epochs.

In [28] it was shown that modern deep convolutional neural networks are able
to fit datasets even with random labels, and it is thereby easy to find models of
small training error that do not generalize well. Consequently, the explanation for
the unexpectedly good generalization behavior cannot be that all interpolating
models generalize equally well. Instead, it must be the specific solutions found
by standard network training (using stochastic gradient descent) that have these
favorable properties.

A popular form of explanation introduced already by [22] is that the train-
ing procedure is implicitly biased towards solutions with low complexity. Sub-
sequently, most works concentrated on the question which property of trained
neural networks it could be that would make them generalize well. Suggestions
include the sharpness of the reached loss function minimum [13], distance from
initialization [20], Fisher–Rao norm [18], as well as various measures based
on parameter norms [3,23]). However, an extensive empirical comparison in [10]
showed that many of the proposed measures are not positively correlated with
generalization quality. Therefore, the question of how to enforce generalization
for high-complexity model classes remains so far unsolved.

Some of the smoothness measures that we discuss later have been studied
previously in other contexts. We postpone the discussion of this related work to
Section 3.4, after we have presented the measures in technical form.

In this work, we do not try to solve the question of which complexity mea-
sure should best be minimized for neural networks to generalize well, but the
question which such measure SGD actually implicitly regularizes, if any. Our
approach is inspired by [19], who observe that under certain conditions, training
shallow ReLU networks in the one-dimensional setting using gradient descent
yields “simple” functions that are close to a piecewise-linear interpolation of
the training data. The author do not explore analogs for real networks with
high-dimensional inputs, though. Another work that is related to our analysis is
the recent preprint [14], where also the smoothness of trained neural networks is
studied. The authors find that overparametrized networks interpolate almost lin-
early between the samples, which is consistent with our findings. The work does
not answer the question if smoothness is actively minimized by SGD, though.

3 Does SGD implicitly optimize for smoothness?

We study the implicit regularization properties of stochastic gradient descent
training for neural networks in a standard setup of supervised learning. We adopt
a regression setting with input set Rd. and output set R. Assuming a fixed but
unknown data distribution P, the goal is to learn a function f : Rd → R with
low expected loss,

L(f) = E(x,y)∼P(f(x)− y)2. (1)

While the data distribution is unknown, we do have access to a training set
D = {(x1, y1), . . . , (xn, yn)} consisting of independent and identically distributed
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(i.i.d.) samples from P. This allows us to define the training loss

L(f) =
1

n

n∑︂
i=1

(f(xi)− yi)
2. (2)

For a fixed model class, F , e.g. the set of ReLU networks of a fixed architecture,
we want to select (learn) a function f ∈ F which minimizes the training loss. We
are primarily interested in models that perfectly fit or interpolate the training
data, meaning the learned function satisfies L(f) = 0. For numerical reasons,
we only require L(f) < ε with a small ε (e.g. 10−5) in practice. Typically, if the
model class is rich enough to contain any model that fulfills this condition, then
it contains many of them. The informal smoothness conjecture is:

When the model class is a set of neural networks that is rich enough to
interpolate the training data and we use stochastic gradient descent for
training, then the resulting trained model is not an arbitrary minimizer
of the training loss, but among the smoothest possible ones.

In this work, we aim towards a better understanding of the validity of this
conjecture. First, we formalize several smoothness measures, which makes it
possible to treat the above conjecture as a mathematical rather than just an
informal statement. Then, we provide experimental evidence that support the
smoothness conjecture for some smoothness measures while refuting it for others.

3.1 Measuring the smoothness of a function

In machine learning, the notion of smoothness of a function is often used intu-
itively (e.g. [4,11,14]) and it is rarely defined formally. In this section we formu-
late four measures that assign scalar smoothness values to functions f : Rd → R.
To be precise, the measures we define quantify roughness or the absence of
smoothness, as we will use the convention that small values (close to 0) indicate
smooth functions, whereas large values indicate functions with little smooth-
ness. This convention is, unfortunately, necessary to be compatible with most of
the prior literature. The non-negativity reflects the qualitative use of the term
smoothness as a single-sided bounded measure: there is a limit on how smooth
a functions can be (e.g. attained by constant functions), but there is no obvious
limit to how non-smooth it could be.

The measures we discuss can be classified into two categories: first-order and
second-order smoothness measures. First-order measures are based on properties
of the first-order derivatives (gradients) or differences between function values of
f . Second-order measures are based on second-order derivatives, or differences
between gradients of f .

3.2 First-order smoothness measures

Inspired by the common procedure for linear models, a simple way to formalize
smoothness is to identify it with steepness: if a function is very steep (has a
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large gradient magnitude), then it is not very smooth. For non-linear functions,
which we are interested in, the gradient varies for different input arguments. To
obtain a scalar measure, we take the expected value of the Euclidean norm of
the function’s gradient with respect to the underlying data distribution.

Definition 1 (Gradient norm). Let PX be a probability distribution over Rd

and let f : Rd → R be a function that is differentiable almost everywhere with
respect to PX . We define the gradient norm of f with respect to PX as

GN(f) = E x∼PX
∥∇xf(x)∥. (3)

GN is non-negative and it is 0 for those functions whose gradient is zero almost
everywhere. This, in particular, includes constant functions, but also piece-wise
constant functions as long as the set where f changes values has measure zero
according to PX .

Because it is defined as an expected value over the data distribution, we can
approximate GN(f) by random sampling: let x1, . . . , xN be N data samples that
were not used for training f , then we set

ˆ︃GN(f) =
1

N

N∑︂
i=1

∥∇xf(xi)∥. (4)

For our experiments we use N = 1000 and we use automatic differentiation to
compute the gradient.

An alternative approach for characterizing smoothness that avoids the con-
dition of differentiability is to study changes of the function values along one-
dimensional line segments. For this, we define

Definition 2. Let f : Rd → Rk be a (potentially vector-valued) function and let
a, b ∈ Rd. We define a line segment of f from a to b to be

f[a,b](t) = f((1− t)a+ tb). (5)

Studying the curve induced by the function values on any such line segment,
we obtain an intuitive measure of smoothness. If the curve is straight and short,
the underlying function is smoother than if the curve is wrinkled and long.
Mathematically, we define the function path length as the expected value of the
total variation over all line segments of f with end points distributed according
to the data distribution:

Definition 3 (Function path length). Let PX be a probability distribution
over Rd and let f : Rd → R be a function. We define the function path length
of f with respect to PX as

FPL(f) = E a,b∼PX
TV(f[a,b]) (6)

where the total variation of a function g : [0, 1] → Rk is defined as

TV(g) = sup
P∈P

|P |∑︂
i=1

∥g(ti)− g(ti−1)∥ (7)
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with P denoting the set of all partitions of the interval [0, 1]:

P =
{︂
P = (t0, t1, . . . , t|P |)

⃓⃓
0 = t0 < t1 · · · < t|P | = 1

}︂
. (8)

FPL is non-negative by construction and minimized (with value 0) by all
constant functions.

As GN before, the fact that FPL is defined in terms of an expectation op-
eration over the data distribution makes it possible to derive a sampling-based
approximation. Let (ai, bi)i=1,...,N be N pairs of data points that were not used
during the training of f . Then we set

ˆ︃FPL(f) = 1

N

N∑︂
i=1

ˆ︃TV(f[ai,bi]) (9)

where ˆ︃TV approximates TV using a regular subdivision of the input interval:

ˆ︃TV(f[a,b]) =

n−1∑︂
i=1

|f(ti)− f(ti−1)| (10)

with ti =
i

n−1a+
(︁
1− i

n−1

)︁
b for i ∈ {0, . . . , n− 1}. For our experiments, we use

N = 1000 and n = 100.
While first-order smoothness measures are intuitive and efficient, they also

have some shortcomings. In particular, neither the gradient norm nor the func-
tion path length can distinguish between some functions which we would not
consider equally smooth. For example, take f(x) = x on [0, 1] and g(x) = 0
on [0, 1

2 ] and g(x) = 2x − 1 on [ 12 , 1] under a uniform data distribution. Both
functions have identical function path length and gradient norm, even though
intuitively one would consider f smoother than g. This problem can be overcome
by looking at measures that take second-order information (i.e. curvature) into
account.

3.3 Second-order smoothness measures

A canonical choice for a second-order smoothness measure would be to compute
properties (e.g. the Frobenius norm or operator norm) of the Hessian matrix.
Unfortunately, this is not tractable in practice, because of the high computational
effort of computing the Hessian matrix many times, as well as the memory
requirements, which are quadratic in the number of input dimensions.

Instead, the first measure we propose relies on an analog of the construction
used for the function path length, now applied to the function’s gradient instead
of its values.

Definition 4 (Gradient path length). Let PX be a probability distribution
over Rd and let f : Rd → R be a differentiable function. We define the gradient
path length as

GPL(f) = E a,b∼PX
TV((∇xf)[a,b]) (11)
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GPL is non-negative by construction. It vanishes on constant functions, but
also on linear (more precisely: affine) ones. To approximate GPL in practice,
we use the same construction as for FPL, where the occurring gradients are
computed using automatic differentiation.

A special situation emerges for two-layer ReLU networks, i.e. functions of
the form

f(x) = ⟨w(2), a⟩+ b(2) with ai = ReLU
[︁
⟨w(1)

i , x⟩+ b
(1)
i

]︁
for i = 1, . . . , h, (12)

where h is the number of hidden units in the network and w
(1)
1 , . . . , w

(1)
h and w(2)

are weight vectors of suitable dimensions and b
(1)
1 , . . . , b

(1)
h and b(2) are scalar

bias terms. For these, we can compute a measure of second-order smoothness
explicitly from the parameter values.

Definition 5 (Weights product). Let fθ : Rd → R be a two-layer ReLU net-

work with parameters θ = (W (1), b(1), w(2), b(2)), where W (1) = (w
(1)
1 , . . . , w

(1)
h )

with w
(1)
i ∈ Rd and b(1) = (b

(1)
1 , . . . , b

(1)
h ) with b

(1)
i ∈ R for i = 1, . . . , h, as well

as w(2) ∈ Rh and b(2) ∈ R. We define the weights product measure as

WP(fθ) =

h∑︂
i=1

|w(2)
i | ·

⃦⃦
w

(1)
i

⃦⃦
(13)

where w
(2)
i indicates the i-th entry of the vector w(2) for any i = 1, . . . , h.

WP is non-negative by construction, and takes the value 0 on networks where
for each neuron in the hidden layer either all incoming weights or the outgoing
weight are zero, with arbitrary values of the bias terms. From Equation (12) one
sees that all constant functions can be expressed this way.

A small computation establishes that for one-dimensional inputs, WP is equal
to the total variation of the derivative, under the assumption that the positions at

which the hidden units switch between deactivation and activation (−b
(1)
i /w

(1)
i )

are unique. In higher dimensions, each summand in (13) is still the norm of the
difference of the gradients on the two sides of the ReLU activation function.
Thus WP is a second-order measure, based on the changes of the gradient.

In contrast to the previous smoothness measures, WP is only defined for
two-layer ReLU networks and does not take the underlying data distribution into
account. Its advantage, though, is that it can easily be computed exactly, without
having to rely on sampling-based approximations as for the other measures.

3.4 Smoothness measures in related work

The measure we call gradient norm, as well as minor variants, were explored in
multiple prior works, e.g. [6,24,25,26]. Generally, the findings are that a small
average norm of the Jacobian, i.e. the gradient in the scalar setting, can lead to
improved generalization. In [17], a measure of “rugosity” (roughness) is proposed
based on the learned function’s Hessian matrix. The authors also discuss a Monte
Carlo approximation of this quantity, which resembles our notion of gradient path
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length, with the main difference being that it uses local perturbations instead of a
line segment. Even closer is the smoothness measure in [14] which also measures
how the gradient of a function changes when interpolating between two samples.

The weight product measure is an analog of the path-regularizer of [23] for
two-layer ReLU networks. In that work, the measure is proposed for training-
time regularization, not as a post-hoc smoothness measure. To our knowledge,
the function path length measure has not been used in the context of neural
networks, but a similar constructions was suggested, e.g., for audio signals [9].

4 Experiments

We report on our experiments that shed light on the validity of the smoothness
conjecture in general, and with respect to the four proposed smoothness mea-
sures in particular. Note that the naive approach of simply checking the numeric
values of the smoothness measures is not possible, because we do not know what
reference value to compare them to. Ideally, this would be the smallest achiev-
able smoothness value for any network of the studied class on the provided data.
Unfortunately, we cannot easily compute these on high-dimensional data, only
derive some lower bound (see Table 2).

Instead, we use two proxy setups that we consider contributions of poten-
tially independent interest, as they would also be applicable to other measures
besides smoothness. First, we study how monotonically the measures behave
when networks are trained with increasing amounts of data. If the smoothness
conjecture is fulfilled, one would expect perfect monotonicity, see the discussion
in Section 4.2. Second, we analyze whether substantially smoother models exist
than the one produced by SGD that nevertheless interpolate the data. Under
the smoothness conjecture, this should not be the case, see Section 4.3.

Before reporting on the results of the experiments, though, we introduce the
experimental setup.

4.1 Experimental setup

The surprising generalization abilities have been observed for networks of all
sizes. We restrict our own analysis to small networks, because the more efficient
experiments allows us to try more different settings and perform multiple reruns
to gain statistical power. Specifically, we use fully connected ReLU networks
with one hidden layer of size h = 256. We train the networks using mini-batch
stochastic gradient descent with a batch size of 64, and, unless specified other-
wise, a learning rate of 0.01. For network initialization, the network’s bias terms
are initially set to 0. The weights in each of the two layers are initialized by

drawing uniformly from the interval [−ℓ, ℓ] with ℓ =
√︂

6α
nin+nout

. nin is the num-

ber of input units of the layer, nout is the number of output units, and α is an
initialization scale. For α = 1, this initializer would reduce to the widely used
Glorot uniform initializer [7]. We use α = 0.01 instead, as it has been observed
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in [19] that a smaller initialization scale generally leads to smoother learned
functions, and this is also consistent with our own findings.

Many existing works use the number of training epochs as stopping criterion.
This is not ideal for our setting, as we observed that training models of differ-
ent complexity, e.g. with different regularization terms, for the same number of
epochs leads to large differences in the achieved training losses and how close to
convergence the models actually are. Instead, we use a threshold of 10−5 on the
training loss as the stopping criterion. This choice ensures that the models fit
the training set almost perfectly and have converged to a comparable level.

All experiments were performed using the TensorFlow framework [1], assisted
by the Sacred package [8] for enhanced reproducibility. Our code will be publicly
available.

As a data source, we use the MNIST dataset of handwritten digits [16] in the
following way. For any pair of digits (a, b) with 0 ≤ a < b ≤ 9, we construct a
training set consisting of 5,000 images of digit a with target value −1 and 5,000
images of digit b with target value 1. This results in

(︁
10
2

)︁
= 45 regression prob-

lems, which we call the MNIST-binary problem set. By solving multiple small
regression problems instead of a single large one, we hope to reduce variance and
gain more confidence that the observed trends are not just due to randomness.
As data for computing the smoothness measures, we use subsets of the MNIST
test set with the corresponding digits.

4.2 Monotonicity

As a first test of the hypothesis that smoothness is implicitly enforced during
neural network training, we use the following observation. Imagine two training
sets, D and D′, where D′ is identical to D, except that some more data points
have been added to it. Denote by f and f ′ the smoothest possible functions in
a hypothesis set that interpolate the data in D and D′, respectively. Then f ′

cannot be smoother than f , because adding training samples means adding con-
straints to the interpolation problem, and the minimizer over a more constrained
set can only achieve a higher or equal objective value.

Our experiments verify empirically if this phenomenon indeed occurs for dif-
ferent model classes and the smoothness measures of Section 3.1. We first select
a dataset D = {(x1, y1), . . . , (xN , yN )} that all studied model classes are able
to interpolate. Then we construct an increasing sequence of datasets D1, . . . , Dn

with Di ⊊ Di+1 for i = 1, . . . , n− 1, and train models on each of these datasets,
obtaining functions f1, . . . , fn. For any smoothness measure S (with the conven-
tion that a lower value of S means a smoother function), we expect to obtain

S(f1) ≤ S(f2) ≤ · · · ≤ S(fn) (14)

if the smoothness conjecture holds for S. As a quantitative measure of how close
we are to all inequalities holding, we use the Kendall rank correlation coefficient,
τ ∈ [−1, 1], which reflects the number of inversions in the sequence, see [12]. A
value of τ = 1 means perfect accordance with (14).
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Table 1: Monotonicity score (Kendall’s τ) for the 45 MNIST-binary datasets.
Standard deviation is not listed for WP and GPL because these measures reach
the maximum value of τ for every dataset.

Smoothness measure GN FPL GPL WP

Kendall’s τ 0.16± 0.32 0.07± 0.46 1.0 1.0

For each of the 45 MNIST-binary tasks, we use training set sizes N = {64,
128, 256, 512, 1024, 2048, 4096, 8192}. To lower the variance, we repeat the exper-
iment three times for each dataset. Therefore, we obtain a total of 3 ∗ 45 values
of τ .

Table 1 summarizes the results as mean and standard deviation over the ob-
tained τ values. We see that for the first-order smoothness measures, GN and
FPL, the change in function smoothness is highly fluctuating and only weakly
correlated with growing dataset size. In contrast, the rank correlation is consis-
tently at its maximum value for the second-order measures, GPL and WP.

4.3 Optimality

In this section, we take a second look at the question of whether smoothness
is implicitly optimized by SGD training and if yes, which notion of smoothness
exactly that is. For this, we take an exclusion approach: we can be sure that a
complexity measure S is not being regularized implicitly during training, if we
are able to find another model that performs equally well on the training set but
is substantially smoother according to this measure than that found by SGD.

To search for such smoother models, we rely on explicit regularization. Dur-
ing network training, we replace the original loss function L with a regularized
version Lreg, in which we penalize high values of S:

Lreg(f) = L(f) + λS(f) (15)

where λ > 0 is a regularization coefficient.
When S is expensive to compute, network training is slowed down consider-

ably, as the measure and its gradient have to be evaluated in every training step.
We therefore use stochastic variants of the smoothness measures that always use
the current training batch as data points. Note that to evaluate the trained
model’s smoothness, we still use the full variants on test data. Furthermore, we
use a learning rate of 0.1 for the two path length measures instead of the default
value of 0.01. This is merely for practical reasons as it ensures training converges
in a reasonable time; we did not observe any negative side effects of this change.

Figure 2 shows the results of all experiments as box-whisker plots for the
45 MNIST-binary datasets. The first row in each plot (λ = 0) corresponds to
training the unregularized objective, i.e. plain SGD training. The other rows
reflect training with different amounts of regularization strength. Setups in which
the explicit regularization was too strong to reach the interpolation regime (i.e.
training error remained above 10−5) are not reported and not included in the
analysis.
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Fig. 2: Effect of explicit smoothness regularization for training on MNIST data
for different smoothness measures (subfigures) and regularization strengths (y-
axis). Lower values indicate smoother models.

Table 2 contains a numeric summary of these results. The columns Unreg-
ularized mean and Regularized mean show the mean value of the respective
smoothness measure across the 45 MNIST-binary tasks (the full score distri-
bution was already provided in Figure 2). The regularized mean is computed
only from the models with the largest reported regularization coefficient. Lower
bound, lS , is a bound on the smallest value that the corresponding measure, S,
can take on an interpolating model from the studied model class. For GN, GPL
and WP, only the trivial bound 0 is readily available. For FPL, we know that
data pairs of identical output value contribute 0 to Equation (9), while data
pairs of opposite output values contribute at least 2, so a lower bound on FPL
for balanced data is 1. The normalized ratio is computed as

rnorm =
1

45

45∑︂
i=1

S(freg
i )− lS

S(funreg
i )− lS

, (16)

where freg
i and funreg

i are the results of training models on the i-th task with
and without regularization, respectively.

The plots and table show a clear trend: for the first-order smoothness mea-
sures, adding explicit regularization to the training objective results in models
that have equally small training loss yet much higher smoothness (GN and FPL
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Table 2: Numeric summary of explicit regularization experiment results. For
each measure, we report the results for the highest regularization coefficient for
which we were still able to train the models to achieve 10−5 training loss. For
an explanation of the rows, see the main text.

Smoothness measure GN FPL GPL WP

Unregularized mean µunreg 0.93 1.17 2.62 12.84
Regularized mean µreg 0.29 1.05 2.35 11.57
Lower bound lS 0 1 0 0
Normalized ratio rnorm 0.31 ± 0.13 0.33 ± 0.27 0.89 ± 0.06 0.90 ± 0.03

are reduced by approximately 70%). Consequently, we can reject the conjecture
that SGD implicitly optimizes for these measures. Note that this finding is not
incompatible with results in the literature that enforcing a small norm of the gra-
dient can positively impact generalization [24,25,26], as that is just a sufficient
criterion, not a necessary one.

For the second-order smoothness measures the results show the opposite
effect. By including explicit regularization, we were not able to substantially
increase the models’ smoothness (GPL and WP are reduced by approximately
10%). Formally, our result cannot be taken as proof that no substantially smoother
models exist. After all, we might just not have been able to find them using the
explicit regularization procedure. Nevertheless, the results do support the con-
jecture that SGD does have a regularizing effect on neural network training,
and they concretize the formulation of the smoothness conjecture: the enforced
smoothness is likely of second-order type.

5 Conclusion

In this work, we empirically studied the conjecture that training neural networks
by stochastic gradient descent results in models that do not only have a small
training loss, but that at the same time are very smooth, even when the training
objective does not explicitly enforce the latter property. If correct, the conjecture
would be a major milestone towards a better understanding of the generalization
properties of neural networks.

After introducing four different smoothness measures, two of first-order and
two of second-order type, we reported on experiments showing that there is no
support for the smoothness conjecture with respect to the first-order smooth-
ness measures. However, our findings are quite well aligned with SGD enforcing
second-order smoothness, thereby adding credibility to this instantiation of the
conjecture.

For future work, it would be interesting to see if our results also transfer to
deeper networks and larger datasets, as well as other network architectures, e.g.
convolutional or recurrent networks. One could also now use theoretical tools to
determine which second-order smoothness measure exactly is being minimized
and by what mechanism.
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