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A (Single) Learning Task

Setting:
• input set: X , e.g., text documents
• output set: Y e.g., labels Y = {"spam", "not spam"}
• data distribution: D over X × Y (fixed, but unknown)

Goal:
• find a good predictor/hypothesis/model: f : X → Y e.g. deep network

What do we mean by "good"?
• loss function: ℓ : Y × Y → [0, 1] e.g. ℓ(y, ȳ) = Jy 6= ȳK
• aim for model with small risk

R(f) = E
(x,y)∼D

ℓ( y, f(x) )
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A (Single) Learning Task

How to find a model, f : X → Y, with small risk, R(f) = E
(x,y)

ℓ( y, f(x) ) ?

• training set: S = {(x1, y1) . . . , (xm, ym)} i.i.d.∼ D,

• model class: F ⊂ {f : X → Y}

• learning algorithm ("learner"): A : P(X × Y)→ F

– e.g., minimize the empirical risk R̂(f) = 1
m

∑
(x,y)∈S

ℓ( y, f(x) )

Grand challenge:
• computable guarantees on true risk, R(f), e.g. based on empirical risk, R̂(f)
→ generalization bound
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A (Single) Learning Task

Theorem (Theorem 7.7 in (Shalev-Shwartz, Ben-David. 2014))
Let F be a countable model class and let E : F → {0, 1}∗ be a prefix-free encoding of the
elements in F . Then, for any data distribution, D, any sample size, m, and any confidence
value, δ > 0, it holds with probability at least 1− δ over the sampling of S ∼ Dm that:

∀f ∈ F : R(f) ≤ R̂(f) +

√∣∣E(f)
∣∣ + log(2/δ)

2m
,

for
∣∣E(f)

∣∣ = log 2 · length(E(f)), where length(·) denotes the length of a string.

How to "encode"? For example, model with parameter vector θ ∈ RD:
• store entries (θ1, . . . , θD) as 32bit floats: length(E(f)) = 32D,
• if θ is sparse with s non-zeros: store positions+values: length(E(f)) = (dlog2 De+ 32)s,
• if many entries of θ repeat: create a codebook, and store ids instead of values,
• many other: Huffman coding, arithmetic coding, run-level coding, . . .
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2m
,

for
∣∣E(f)

∣∣ = log 2 · length(E(f)), where length(·) denotes the length of a string.

• principled learning algorithm: minimize the right hand size

A : S 7→ argmin
f∈F

[
R̂(f) +

√∣∣E(f)
∣∣

2m

]

• numeric values of (??) might or might not be informative (non-vacuous)
5 / 28



A (Single) Learning Task

Theorem (Theorem 7.7 in (Shalev-Shwartz, Ben-David. 2014))
Let F be a countable model class and let E : F → {0, 1}∗ be a prefix-free encoding of the
elements in F . Then, for any data distribution, D, any sample size, m, it holds with high
probability that:

∀f ∈ F : R(f) ≲ R̂(f) +

√∣∣E(f)
∣∣

2m
, (dropping log-terms),

for
∣∣E(f)

∣∣ = log 2 · length(E(f)), where length(·) denotes the length of a string.

• r.h.s. suggest a principled learning algorithm: minimize the right hand size
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A (Single) Learning Task

Alternative analysis yields "fast-rate" bounds (for m ≥ 8):

Theorem (Corollary of Theorem 5 in (Maurer, 2024))
Under the same assumption as above, it holds with high probability that

∀f ∈ F : kl
(
R̂(f) ‖R(f)

)
≲

∣∣E(f)
∣∣

m
,

with kl(q‖p) = q log q
p + (1− q) log 1−q

1−p .

Less interpretable left hand side, but:
• recovers the classical

√
1/2m-rate using: 2(q − p)2 ≤ kl(q‖p) (Pinsker’s ineq)

• yields tighter guarantees on R(f) if R̂(f) is small. In particular (because p ≤ kl(0‖p)):

∀f ∈ F with R̂(f) = 0: R(f) ≲
∣∣E(f)

∣∣
m

.

No closed form expression to invert kl, but numerically easy.
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From Single-Task
to Multi-Task Learning
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Single-Task Learning
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Learning multiple tasks jointly,
• e.g. spam filters, recommender systems, next-word prediction:

– many users, each has little annotated data, each has different preferences
• e.g. medical image analysis: different cancer types, different hospitals
• e.g. self-driving cars: different image analysis tasks

Sharing information between tasks might improve all models.
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Multi-Task Learning (MTL)
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Multi-Task Learning

Learning multiple tasks jointly:
• multiple data distributions D1, . . . ,Dn

• multiple training sets S1, . . . , Sn of sizes m1, . . . , mn

• for simplicity: same input/output sets, same model class, same loss function

Define analog quantities to single task learning:
• each task, i, has an expected risk and an empirical risk

Ri(f) = E
(x,y)∈Di

ℓ( y, f(x) ), R̂i(f) = 1
mi

∑
(x,y)∈Si

ℓ( y, f(x) ).

• Goal: learn one model per task, f1, . . . , fn, with small multi-task risk

RMT(f1, . . . , fn) = 1
n

n∑
i=1
Ri(fi), R̂MT(f1, . . . , fn) = 1

n

n∑
i=1
R̂i(fi).

What guarantees can we provide on RMT? What are principled learning algorithms?
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From Single-Task to Multi-Task Learning

Naive solution: control each task separately and combine the bounds

• for each task: Ri(fi) ≤ R̂i(fi) + C(fi, mi)
• combine:

RMT(f1, . . . , fn) = R̂MT(f1, . . . , fn) + 1
n

∑
i

C(fi, mi)

no benefit from observing more tasks, regardless if tasks are related or not

Classic and ongoing research: exploiting that information can be shared between tasks
• architectures (what to share and how)
• task relatedness (which tasks should share or not)
• optimization (algorithms, convergence)
• trustworthiness (privacy, fairness, federated learning)
• applications (NLP, Computer Vision, Robotics)
• theory, e.g. generalization guarantees
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Non-Vacuous Generalization
Bounds in Deep Multi-Task

Learning
Hossein Zakerinia Dorsa Ghobadi

(ISTA) (Sharif U)

[Hossein Zakerinia, Dorsa Ghobadi, Christoph H. Lampert. "From Low Intrinsic Dimensionality to Non-Vacuous
Generalization Bounds in Deep Multi-Task Learning". arXiv arXiv:2501.19067 (under review)]
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Non-Vacuous Bounds for Multi-Task Learning with Deep Networks
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Observation: a multitask learning sees all data at once, it can exploit shared structure, e.g.
• learn one shared feature space and individual "classification heads" inside that space
• learn one prototype model, from which individual models are just minor modifications
• learn a small number of models, for each tasks select a suitable one

Common pattern: some parts are "shared", some parts of "individual"
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Multi-Task Generalization Bound with Explicit Sharing

Theorem (Reminder: Single-Task Generalization Bound)
Let F be a countable model class and let E : F → {0, 1}∗ be a prefix-free
encoding of the elements in F . Then, [. . . ] it holds with high probability:

∀f ∈ F : R(f) ≲ R̂(f) +

√∣∣E(f)
∣∣

2m
,

where
∣∣E(f)

∣∣ = log 2 · length(E(f)).

How to derive a similar result for multi-task learning with information sharing?

14 / 28



Multi-Task Generalization Bound with Explicit Sharing

Theorem (Zakerinia, Ghobadi, Lampert. arXiv:2501.19067)
Let G be a set of global parameters, and let E : G → {0, 1}∗ be an encoder of its elements.
For any G ∈ G, let EG be an encoder of potentially multiple models. For any m ∈ N, it holds
with high probability over the sampling of the training sets Si ∼ Dm

i that for all G ∈ G and
all f1, . . . , fn ∈ F :

RMT(f1, . . . , fn) ≲ R̂MT(f1, . . . , fn) +

√
|E(G)|+ |EG(f1, . . . , fn)|

2mn

• Numerator, |E(G)|+ |EG(f1, ..., fn)|, exploits shared/task-specific encoding:
1. identify shared information, G (for "global"), and encode it only once, E(G)
→ could later also be used for future tasks ("meta-learning")

2. encode task-specific parts, relying on G as side information, EG(f1, . . . , fn)
→ joint encoding can exploit further redundancy, e.g. arithmetic coding

• Denominator, mn, reflects all available data
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Multi-Task Generalization Bound with Explicit Sharing

RMT(f1, . . . , fn) ≲ R̂MT(f1, . . . , fn) +

√
|E(G)|+ |EG(f1, . . . , fn)|

2mn

Multi-task encoder setup allows for a lot of flexibility, e.g.

• G = {∅}, |E(∅)| = 0, |E∅(f1, . . . , fn)| =
∑n

i=1 |E(fi)| → recover independent learning

• G is a feature extractor, EG encodes models with those features

• G is a prototype model, EG encodes differences to prototype

• G is a set of base models, EG encodes which tasks uses which base model

• G is a subspace of the parameter space, EG encodes coordinates in subspace

• G is a codebook of values, EG stores codebook id instead of parameter values
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Application: Non-Vacuous Generalization Bounds for MTL with Deep Network

Goal: learn n deep networks with parameter vectors θ1, . . . , θn ∈ RD

Learnable Random Subspace Representation based on [Lotfi et al . 2022], [Li et al . 2018], [Baxter 2000]

• k-dimensional subspace of RD, parametrized by expansion matrix Q ∈ RD×k

• task-specific: coordinates in subspace θi = Qαi for αi ∈ Rk for i = 1, . . . , n

• shared: learning Q itself via Q = [P1v1, P2v2, · · · , Pkvk] ∈ RD×k

– v1, . . . , vk ∈ Rl are learnable vectors
– P1, . . . , Pk ∈ RD×l are fixed matrices (i.i.d. unit Gaussian entries)

• learnable parameters: nk + kl total, i.e. k + kl
n per task (instead of D).

Observation:
• in practice, low training error possible even for small value of k, l

• few parameters, compressed with a learnable codebook → non-vacuous MTL bounds
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Application: Non-Vacuous Generalization Bounds for MTL with Deep Network

Table: Necessary representation dimensions to achieve a pre-specified target accuracy for different
datasets and model architectures. STL = single task learning, MTL = multitask learning.

Dataset MNIST SP MNIST PL Folktables Products split-CIFAR10 split-CIFAR100
Model ConvNet ConvNet MLP MLP ConvNet ViT ConvNet ViT
n / m 30 / 2000 30 / 2000 60 / 900 60 / 2000 100 / 453 30 / 1248 100 / 450 30 / 1250

model dim 21840 21840 11810 13730 121182 5526346 128832 5543716

necessary dim (STL) 400 300 50 50 200 200 1500 550

necessary dim (MTL) 31.6 166.6 10 10 12 26.7 36 100

Table: Generalization guarantees (upper bound on 0/1-test error) for STL and MTL

Dataset MNIST SP MNIST PL Folktables Products split-CIFAR10 split-CIFAR100
Model ConvNet ConvNet MLP MLP ConvNet ViT ConvNet ViT

STL 0.61 0.58 0.57 0.33 0.87 0.66 0.99 0.91

MTL (standard) 0.23 0.40 0.39 0.22 0.53 0.32 0.87 0.67
MTL (fast-rate) 0.20 0.35 0.39 0.20 0.53 0.28 0.83 0.66
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Fast-Rate Bounds for Multi-Task Learning
with Different Sample Sizes

Hossein Zakerinia
(ISTA)

[Hossein Zakerinia, Christoph H. Lampert. "Fast-Rate Bounds for Multi-Task and Meta-Learning with Different Sample
Sizes". arXiv:2505.15496 (NeurIPS 2025)]
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Unbalanced Multi-Task Learning

Remember, how we introduced the multi-task learning setting:
• multiple data distributions D1, . . . ,Dn

• multiple training sets S1, . . . , Sn of sizes m1, . . . , mn

• for simplicity: same input/output sets, same model class, same loss function

For the previous result, we had assumed m1 = m2 = · · · = mn (balanced MTL).

But: arbitrary m1, . . . , mn (unbalanced MTL) is much more relevant in practice.
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Theorem (Balanced MTL)
For any m ∈ N, it holds with high probability over the training sets, Si ∼ Dm

i , that

∀f1, . . . , fn ∈ F : RMT(f1, . . . , fn) ≲ R̂MT(f1, . . . , fn) +

√
|E(f1, . . . , fn)|

2mn
.

Deriving an unbalanced analog is straight-forward:

Theorem (Unbalanced MTL)
For any m1, . . . , mn ∈ N, it holds with high probability over the training sets, Si ∼ Dmi

i , that

∀f1, . . . , fn ∈ F : RMT(f1, . . . , fn) ≲ R̂MT(f1, . . . , fn) +

√
|E(f1, . . . , fn)|

2m̄n
,

where m̄ = ( 1
n

∑
i

1
mi

)−1 is the harmonic mean of the training set sizes, mi = |Si|.

Harmonic mean makes sense here, e.g.,
• if m1 = · · · = mn = m, then m̄ = m, so we recover balanced MTL result,
• if mj →∞ for all j 6= i, then m̄→ nmi, so

√
|E|
m̄n →

1
n

√
|E|
mi

, like in single-task learning.
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Fast-Rate Bounds for Unbalanced MTL

Theorem (Fast-Rate Bound – Balanced MTL)
For any m ∈ N, it holds with high probability over the training sets, Si ∼ Dm

i , that

∀f1, . . . , fn ∈ F : kl
(
R̂MT(f1, . . . , fn) ‖RMT(f1, . . . , fn)

)
≲

∣∣E(f1, . . . , fn)
∣∣

mn
.

What’s an unbalanced analog?

Theorem (Fast-Rate Bound – Unbalanced MTL)
For any m1, . . . , mn ∈ N, it holds with high probability over the training sets, Si ∼ Dmi

i , that

∀f1, . . . , fn ∈ F : kl
(
R̂MT(f1, . . . , fn) ‖RMT(f1, . . . , fn)

)
≲

∣∣E(f1, . . . , fn)
∣∣

mn
,

where m = mini mi is the smallest training set size.

← that can’t be right?!?

• if m1 = · · · = mn = m, then m = m, so we recover balanced MTL result,
• if mj →∞ for all j 6= i, then m = mi, so no gain at all from other tasks.
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Fast-Rate Bounds for Unbalanced MTL – Why the bad rate?

Proof sketch for balanced case, m1 = · · · = mn = m:
1) For any (f1, . . . , fn): control kl-term by moment-generating function:

Pr
{

kl(R̂MT|RMT) ≥ t
}

= Pr
{

emn kl(R̂MT|RMT) ≥ emnt
}

≲ E[emn kl(R̂MT|RMT)]
emnt

.

2) derive that E[emn kl(R̂MT|RMT)] ≤ 2
√

mn using

Theorem (Maurer, 2004)
For any µ ∈ (0, 1), let Zi,j

i.i.d.∼ Bernoulli(µ) for i ∈ {1, . . . , n} and j ∈ {1, . . . , m}. Set

µ̂ = 1
n

n∑
i=1

1
m

m∑
j=1

Zi,j as the average of their averages. Then it holds that

E
[
emn kl(µ̂|µ)] ≤ √2mn.

3) result follows by weighted union bound using Kraft-McMillan’s inequality for prefix codes.

Unbalanced case: step 2) fails!
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Generalization Bounds for Unbalanced MTL – Why the bad rate?

Lemma
For any µ ∈ (0, 1), let Zi,j

i.i.d.∼ Bernoulli(µ) for i ∈ {1, . . . , n} and j ∈ {1, . . . , mi}. Set

µ̂ = 1
n

n∑
i=1

1
mi

mi∑
j=1

Zi,j as the average of their averages and write Mµ(λ) = E
[
enλ kl(µ̂|µ)].

Then, if λ > m = mini mi, it holds that
sup

0<µ<1
Mµ(λ) = +∞.

In particular, no upper bound on Mµ(λ) exists that depends only on n and the mi.

Two suggested fixed:
• re-weight the kl-terms
• re-weight the sample contributions
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Fast-Rate Bounds for Unbalanced Multi-Task Learning – Task-Centric

Theorem (Fast-Rate Bound for Task-Centric MTL [Zakerinia, Lampert. arXiv 2505.15496])
In the setting above with task sizes m1, . . . , mn, set M =

∑
i mi. Then, it holds with high

probability over the training sets Si ∼ Dmi
i that

∀f1, . . . , fn ∈ F :
n∑

i=1

mi

M
kl(R̂i(fi) ‖Ri(fi)) ≲

|E(f1, . . . , fn)|
M

Observation: we can recover (up to log-terms)
• standard-rate bound with 1

m̄n (Pinsker’s ineq., Cauchy-Schwartz ineq.)
• the balanced fast-rate bound with 1

mn , if actually m1 = · · · = mn = m (Jensen’s).

Observation: if we multiply both sides by M , r.h.s. is a constant.
• if any mi increases, its kl(R̂i(fi) ‖Ri(fi)) decreases at least proportionally
→ same rate as for single-tasks, but better constants possible by information sharing
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Fast-Rate Bounds for Unbalanced Multi-Task Learning – Sample-Centric

For datasets Si = {(xi,1, yi,1), . . . , (xi,mi , yi,mi)}, let M :=
∑

i mi. Define the sample-centric
expected and empirical risks as

RMT-S(f1, . . . , fn) =
n∑

i=1

mi

M
Ri(fi) =

n∑
i=1

mi

M
E

(x,y)∼Di

ℓ( y, f(x) ),

R̂MT-S(f1, . . . , fn) =
n∑

i=1

mi

M
R̂i(fi) = 1

M

n∑
i=1

mi∑
j=1

ℓ( yi,j , fi(xi,j ).

Theorem (Fast-Rate Bound for Sample-Centric MTL [Zakerinia, Lampert. arXiv 2505.15496])
In the setting above with task sizes m1, . . . , mn, set M =

∑
i mi. Then, it holds with high

probability over the training sets Si ∼ Dmi
i that

∀f1, . . . , fn ∈ F : kl
(
R̂MT-S(f1, . . . , fn) ‖RMT-S(f1, . . . , fn)

)
≲ |E(f1, . . . , fn)|

M

Observation:
• for m1 = · · · = mn, identical to previous setting, same guarantees
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Experimental Results

Task-centric

Dataset CIFAR10 CIFAR100

Standard rate 0.31 0.59
Fast-rate with mmin 0.35 0.62

Fast-rate (unbalanced) 0.27 0.59

Sample-centric

Dataset CIFAR10 CIFAR100

Standard rate 0.30 0.59
Fast-rate 0.26 0.59

Table: Generalization bounds for low-rank
parametrized deep networks on split-CIFAR.
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Figure: Generalization bounds of task-centric risk
for linear classifiers on MDPR dataset
(n = 953 tasks; 102 ≤ mi ≤ 22530).
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Summary: Generalization Guaranteed for Multi-Task Learning
We presented compression-based generalization bounds for multi-task learning (really, in the
background are PAC-Bayesian bounds)
• first non-vacuous guarantees for MTL with deep networks,
• first fast-rate bounds for unbalanced MTL.

Open Questions
Practice:
• How to model information sharing between tasks to simultaneously achieve high

accuracy and strong generalization guarantees?
Theory:
• What’s the best possible bound on kl(R̂MT‖RMT) in the unbalanced setting?

Thank you! We’re hiring: chl@ist.ac.at

28 / 28


