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Topics in Our Research Group

Machine Learning Theory

▶ Transfer Learning

▶ Lifelong Learning/ Meta-learning

▶ Robust Learning

▶ Theory of Deep Learning

Models/Algorithms

▶ Zero-shot Learning

▶ Continual Learning

▶ Weakly-supervised Learning

▶ Trustworthy/Robust Learning

Learning for Computer Vision

▶ Scene Understanding

▶ Interpretability

▶ Abstract Reasoning

▶ Semantic Representations
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Schedule

Lecture 1: Intro to Machine Learning

Lecture 1: Robust Machine Learning

Lecture 1: Fair Machine Learning

Lecture 2: Certi�ed Robustness via Lipschitz Networks

Lecture 2: Robust and Fair Learning from Multiple Sources

Lecture 3: Behind the Scenes of (Machine Learning) Research

3 / 48



Certi�ed Robustness via Lipschitz Networks
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Reminder: neural networks are prone to adversarial examples.

▶ adding a tiny amount of adversarially constructed noise can change the model output
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How to prevent adversarial examples

Add adversarial examples to the training set

Problem: does not work, new adversarial images emerge

Optimize robusti�ed training error

Problem: optimization can't solve exactly, approximations leave vulnarabilities open

Pre�lter input before applying the model, e.g. Gaussian smoothing

Problem: either loss of accuracy or prone to adversarial examples itself

Robust ensemble of randomized models

Problem: amount of randomization unclear, high computational cost to get guarantees

Alternative: use model architecture that guarantees no adversarial examples exist
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How to prevent adversarial examples

Alternative: use model architecture that guarantees no adversarial examples exist

Setting: multi-class classi�cation

▶ inputs X ⊂ Rd, outputs Y = {1, . . . ,K}
▶ model g : X → RK , from which we make predictions f(x) = argmaxy∈Y g(x)y

De�nition (Lipschitz constant)

A function g : Rd → Rk is called L-Lipschitz continuous, if

∥g(x)− g(x′)∥Rk ≤ L∥x− x′∥Rd

Note: for di�erentiable g, we can take L =
∥∥Jg(x)∥∥2 (operator norm of the Jacobian matrix).

Image: By Taschee - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=59500064
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How to prevent adversarial examples

Alternative: use model architecture that guarantees no adversarial examples exist

Setting: multi-class classi�cation

▶ inputs X ⊂ Rd, outputs Y = {1, . . . ,K}
▶ model g : X → RK , from which we make predictions f(x) = argmaxy∈Y g(x)y

De�nition (Margin)

For an example (x, y), the margin of a model g is de�ned as

Mg(x, y) =

g(x)y −max
z ̸=y

g(x)z if argmax
z∈Y

g(x)z = y,

0 otherwise.

0.5

0.3

Mf=0.2
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How to prevent adversarial examples

Alternative: use model architecture that guarantees no adversarial examples exist

Setting: multi-class classi�cation

▶ inputs X ⊂ Rd, outputs Y = {1, . . . ,K}
▶ model g : X → RK , from which we make predictions f(x) = argmaxy∈Y g(x)y

De�nition (Certi�ed Robust Accuracy)

A model g with decision function f(x) = argmaxy g(x)y is said to classify an
example (x, y) ϵ-certi�ed robustly if

f(x+ δ) = y for all δ with ∥δ∥ ≤ ϵ.

The ϵ-certi�ed robust accuracy on a dataset S is the fraction of points in S
that are ϵ-certi�ed robustly classi�ed.
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How to prevent adversarial examples

Alternative: use model architecture that guarantees no adversarial examples exist

Setting: multi-class classi�cation

▶ inputs X ⊂ Rd, outputs Y = {1, . . . ,K}
▶ model g : X → RK , from which we make predictions f(x) = argmaxy∈Y g(x)y

Lemma

Let g be a model that is L-Lipschitz continuous.

Then g classi�es an example (x, y) ϵ-certi�ed
robustly, if Mg(x, y) >

√
2Lϵ.

Lipschitz networks
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How to prevent adversarial examples

How to make a network with prescribed Lipschitz constant (e.g. L = 1)?

Reminder: neural networks consist of layers

f(x) = f (L)(f (L−1)(. . . f (2)(f (1)(x) ) ) ) with f (l)(x) = σ(Wlx+ bl) for l = 1, . . . , L

Lipschitz networks

Observation: Lip(f) ≤
L∏
l=1

Lip(fl)

Reminder: Lip(fl) ≤
∥∥Jfl(x)∥∥2 ≤ |σ′|∥Wl∥2

Conclusion: it su�ces to choose

▶ σ with |σ′| ≤ 1, e.g. σ(t) = max{0, t}
▶ Wl with ∥Wl∥2 ≤ 1 input

output

f1

f2

f3

f4

f5

f6

But: how to ensure the norm constraint when Wl is learned from data?
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Almost-Orthogonal Layers

for E�cient General-Purpose

Lipschitz Networks
Bernd Prach

[B. Prach, CHL. "Almost-orthogonal Layers for E�cient General-Purpose Lipschitz Networks", ECCV 2022; https://arxiv.org/abs/2208.03160]
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f(x) = f (L)(f (L−1)(. . . f (2)(f (1)(x) ) ) ) with f (l)(x) = σ(Wlx+ bl) for l = 1, . . . , L

Self-normalizing Layers

Main idea: new layer parametrization Wl = PlDl

▶ Pl ∈ Rnl×nl−1 arbitrary parameter matrix

▶ Dl = diag(d1, . . . , dnl−1
) with di =

(∑
j

∣∣∣P⊤
l Pl

∣∣∣
ij

)−1/2

Observation:

▶ for any Pl, it holds that
∥∥Wl

∥∥
2
≤ 1

→ each f (l) is 1-Lipschitz continuous
→ the network itself is 1-Lipschitz continuous

▶ if Pl is orthogonal, Dl = Id and inequality is tight.
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Setting: multi-class classi�cation
▶ inputs X ⊂ Rd, outputs Y = {1, . . . ,K}
▶ model g : X → RK , from which we make predictions f(x) = argmaxy∈Y g(x)y
▶ training set S = {(x1, y1), . . . , (xn, yn)}

Margin-enforcing loss function

Main idea: use a loss function that enforces a large margin

▶ write y⃗ = δz=y(z) "one-hot" representation of y

ℓ(y, g(x)) = crossentropy
(
y⃗, softmax

(
g(x)− uy⃗

))
,

with o�set parameter u ≥ 0

Observation:

▶ y-component of g(x) is shifted down by u before computing usual crossentropy-loss.
→ to achieve small loss, learning must make g(x)y bigger by u than otherwise
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Observation: learned parameter matrices P are close to orthogonal

Zoom 1

Zoom 2

AOL - Center crop AOL - Zoom 1 AOL - Zoom 2
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0.8

 -1e-07

 0

 1e-07

 2e-07

visualization of P⊤P

Reasoning:

▶ to achieve low error in training, output values must have large dynamic range

▶ the normalization step restricts the dynamic range of the layers

▶ for orthogonal matrices P , the bound is tight and dynamic range is maximal

Almost-Orthogonal Layers (AOL)
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Experimental results: image classi�cation on CIFAR-10 dataset. Proposed AOL and methods
from the literature.

Method Standard Certi�ed Robust Accuracy
Accuracy ϵ = 36

255 ϵ = 72
255 ϵ = 108

255 ϵ = 1

Standard CNN 83.4% 0% 0% 0% 0%

BCOP Large [Li et al., 2019] 72.2% 58.3% - - -
GloRo 6C2F [Leino et al., 2021] 77.0% 58.4% - - -
Cayley Large [Trockman and Kolter, 2021] 75.3% 59.2% - - -
SOC-20 [Singla and Feizi, 2021] 76.4% 61.9% - - -
SOC-25 [Yu et al., 2022] - 60.2% 43.7% 28.6% -
ECO-25 [Yu et al., 2022] 75.7% 66.1% 55.6% 45.3% -
SOC-15 [Singla et al., 2022] 76.4% 63.0% 48.5% 35.5% -

AOL-Small 69.8% 62.0% 54.4% 47.1% 21.8%
AOL-Medium 71.1% 63.8% 56.1% 48.6% 23.2%
AOL-Large 71.6% 64.0% 56.4% 49.0% 23.7%
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Summary

▶ Most neural networks are vulnerable to adversarial examples.

▶ Most empirical methods to prevent them do not work very well.

▶ Lipschitz-networks trained with margin loss can guarantee robustness
(though usually at a certain loss of non-robust accuracy).

▶ AOL [Prach and Lampert, 2022] is easy to use, �exible and works well.
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Learning from Multiple Sources
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Learning from Multiple Sources

Modern machine learning systems are often trained on data collected from many di�erent sources.

19 / 48



Learning from Multiple Sources

Modern machine learning systems are often trained on data collected from many di�erent sources.

tens of di�erent online resources (Wikipedia, Twitter, Reddit, . . . )
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Learning from Multiple Sources

Modern machine learning systems are often trained on data collected from many di�erent sources.

hundreds of di�erent hospitals or medical labs
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Learning from Multiple Sources

Modern machine learning systems are often trained on data collected from many di�erent sources.

millions or billions of user devices
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Learning from Multiple Sources

Ideally, all sources are i.i.d. samples from the correct data distribution

▶ best strategy: merge all datasets and train on resulting dataset
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Learning from Multiple Sources

What, if some sources are not reliable?

▶ a fraction of the data might be biased, noisy or manipulated
▶ classic result [Kearns and Li, 1993]: if we merge all data no algorithm can ensure optimal learning!

Is there a better way than merging all data?
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Robust Learning from Unreliable

or Manipulated Sources
Nikola

Konstantinov
Elias

Frantar
Dan

Alistarh

[N. Konstantinov, E. Frantar, D. Alistarh, CHL. "On the Sample Complexity of Adversarial Multi-Source PAC Learning", ICML 2020]
[N. Konstantinov, CHL. "Robust Learning from Untrusted Sources", ICML 2019]
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Robust Multi-Source Learning

Learning from Multiple Sources

▶ multiple training sets S1, S2, . . . , SN

▶ each Si = {(xi
1, y

i
1), . . . , (x

i
n, y

i
n)}

i.i.d.∼ p

▶ set of possible models F
▶ multi-source learning algorithm L : (X × Y)N×n → F

▶ input: training sets, S1, S2, . . . , SN

▶ output: one hypothesis L(S1, . . . , SN ) ∈ F (= a trained model).

▶ adversary A
▶ input: data sets S1, . . . , SN

▶ output: data sets S′
1, . . . , S

′
N ,

of which ⌈(1− α)N⌉ are identical to before and ⌊αN⌋ are arbitrary

▶ the adversary knows the training algorithm

Is there a universal learning algorithm that learns an optimal model in the limit n→∞?
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▶ multi-source learning algorithm L : (X × Y)N×n → F
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Robust Multi-Source Learning: Our Result

Answer: yes!

Theorem [N. Konstantinov, E. Frantar, D. Alistarh, CHL. ICML 2020]

There exists a learning algorithm, L, such that

er(L(S′
1, . . . , S

′
N ) ) ≤ min

f∈F
er(f) + Õ

( 1√
(1− α)Nn

+ α
1√
n

)
︸ ︷︷ ︸

→ 0 for n = |S| → ∞

,

with S′
1, . . . , S

′
N = A(S1, . . . , SN ) for any adversary A with α < 1

2 .

(Õ-notation hides constant and logarithmic factors)
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Robust Multi-Source Learning: Big Picture

Question: why is learning easier from multiple sources than from a single source?

Answer: it's not. But the task for the adversary is harder!

▶ single source: no restrictions how to manipulate the data

▶ multi-source: manipulation has to adhere to the source structure

Algorithm idea: exploit law of large numbers

▶ majority of datasets are unperturbed

▶ for n→∞ these start to look more and more similar

▶ we can identify (at least) the unperturbed datasets
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Robust Multi-Source Learning: Algorithm

Robust multi-source learning algorithm:

▶ Step 1) identify which sources to trust

▶ compute all pairwise distance dij between datasets S′
1, . . . , S

′
N

(with a suitable distance measure d)

▶ for any i: if dij < θ for at least ⌊N2 ⌋ values of j ̸= i, then T ← T ∪ {i}
(with a suitable threshold θ)

▶ Step 2) create a new dataset S̃ by merging data from all sources Si with i ∈ T

▶ Step 3) minimize training error on S̃

Open choices:

▶ distance measure d (discussed later)

▶ threshold θ (not discussed, see paper)

29 / 48



Robust Multi-Source Learning: Algorithm

Example: All datasets clean

→ all datasets included → same as (optimal) naive algorithm
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Robust Multi-Source Learning: Algorithm

Example: All datasets clean → all datasets included → same as (optimal) naive algorithm
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Robust Multi-Source Learning: Algorithm

Example: Some datasets manipulated

→ manipulated datasets excluded.
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Robust Multi-Source Learning: Algorithm

Example: Some datasets manipulated → manipulated datasets excluded.
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Robust Multi-Source Learning: Algorithm

Example: Some datasets manipulated in a consistent way

→ manipulated datasets
excluded.
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Robust Multi-Source Learning: Algorithm

Example: Some datasets manipulated in a consistent way → manipulated datasets
excluded. 32 / 48



Robust Multi-Source Learning: Algorithm

Example: Some datasets manipulated to look like originals

→ all datasets included.
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Robust Multi-Source Learning: Algorithm

Example: Some datasets manipulated to look like originals → all datasets included.
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Robust Multi-Source Learning: Algorithm

Analysis: what properties does the distance measure d need?

1) S and S′ are sampled from the same distribution ⇒ d(S, S′) should be small
(at least, if enough samples are available)

→ 'clean' datasets will eventually get grouped together.

2) d(S, S′) is small ⇒ L(S′) ≈ L(S)

→ if manipulated datasets are groups with the clean ones, they don't hurt the learning.

Observation:

▶ many candidate distances do not ful�ll both conditions simultaneously:
▶ geometric: average Euclidean distance, Chamfer distance, Haussdorf distance, . . .
▶ probabilistic: Wasserstein distance, total variation, Kullback-Leibler divergence, . . .

▶ discrepancy distance does ful�ll the conditions!
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Robust Multi-Source Learning: Discrepancy Distance

Discrepancy Distance [Mansour et al. 2009]

For a set of classi�ers H and datasets Si, Sj , de�ne

disc(Si, Sj) = max
f∈H

∣∣erSi(f)− erSj (f)
∣∣ .

▶ maximal amount any classi�er, f ∈ F , can disagree between Si, Sj

▶ for binary classi�cation, discrepancy can be computed by training a classi�er itself:
▶ S±

j ← Sj with all ±1 labels �ipped to their opposites

▶ S̃ ← Si ∪ S±
j

▶ disc(Si, Sj) ← 1− 2min
f∈F

êrS̃(f) (minimal training error of any model on S̃)
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Robust Multi-Source Learning: Discrepancy Distance

Two (dissimilar) datasets, S1, S2
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Robust Multi-Source Learning: Discrepancy Distance

Flip signs of S2
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Robust Multi-Source Learning: Discrepancy Distance

Merge both datasets
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Robust Multi-Source Learning: Discrepancy Distance

Classi�er with small training error → large discrepancy
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Discrepancy illustration

Two (similar) datasets, S1, S2
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Discrepancy illustration

Flip signs of S2
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Discrepancy illustration

Merge both datasets
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Discrepancy illustration

No classi�er with small training error → small discrepancy
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Discrepancy illustration

No classi�er with small training error → small discrepancy
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Robust Multi-Source Learning: Algorithm

Observation: discrepancy distance has both property we need:

1) Datasets from the same distribution (eventually) gets grouped together
▶ if Si and Sj are sampled from the same distribution, then

disc(Si, Sj)→ 0 for |Si|, |Sj | → ∞

2) Datasets that are grouped together do not hurt the learning (much)

Assume:
▶ training set Strn

i.i.d.∼ p
▶ arbitrary set S′, potentially manipulated but with disc(Strn, S

′) ≤ θ

▶ test set Stst

i.i.d.∼ p

Then, for every f ∈ F : êrStst(f) ≤ êrS′(f) + disc(Strn, S
′)︸ ︷︷ ︸

≤θ

+disc(Strn, Stst)︸ ︷︷ ︸
small by prop. 1)
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Robust Multi-Source Learning: Final Result

Theorem [N. Konstantinov, E. Frantar, D. Alistarh, CHL. ICML 2020]

Let S1, . . . , SN are training sets of size m, out of which at most N − k can be
arbitrarily manipulated (so k datasets are not manipulated). Denote α = N−k

N .
Let f∗ be the result of the robust multi-source learning algorithm. Then

er(f∗) ≤ min
f∈F

er(f) + Õ
( 1√

km
+ α

1√
m

)
︸ ︷︷ ︸

→ 0 for m → ∞

,

(Õ-notation hides constant and logarithmic factors)

Discussion:
▶ km is the number of "clean" samples → 1√

km
is the "normal" speed of learning

▶ α 1√
m

is a slow-down due to α-manipulation

▶ lower bounds exists that show that O(α 1√
m
) slowdown is unavoidable
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Fairness-Aware Learning from

Unreliable or Manipulated Data

Jen
Io�nova

Nikola
Konstantinov

[N. Konstantinov, CHL. "Fairness-Aware PAC Learning from Corrupted Data", JMLR 2022; https://arxiv.org/abs/2102.06004]
[E. Io�nova∗, N. Konstantinov∗, CHL. "Robust Learning from Untrusted Sources", TMLR 2022; https://arxiv.org/abs/2106.11732]

40 / 48

https://arxiv.org/abs/2102.06004
https://arxiv.org/abs/2106.11732


Algorithmic Fairness

How to ensure that a classi�er does not discriminate against certain groups?
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Reminder:

▶ Inputs: x ∈ X , e.g. strings, images, vectors, . . .

▶ Protected attribute: a ∈ A, e.g. gender, age, race, . . .

▶ Outputs: y ∈ Y (for simplicity: Y = {0, 1})

▶ Probability distribution: p(x, a, y) over X ×A× Y

▶ Loss function: ℓ : Y × Y → R (for simplicty: 0/1-loss)

Abstract Goal:

▶ �nd a prediction function, f : X → Y with low expected loss

er(h) = E(x,y)∼p

(
Jf(x) ̸= yK

)
= Pr(x,y)∼p{f(x) ̸= y}

that in addition ful�lls some condition of (group) fairness.
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Group Fairness:

▶ demographic parity (independence): "all groups have the same success rate"

∀a, b ∈ A p(f(X) = 1|A = a) = p(f(X) = 1|A = b)

▶ equality of opportunity: "all groups have the true positive rate"

∀a, b ∈ A p(f(X) = 1|A = a, Y = 1) = p(f(X) = 1|A = b, Y = 1)

and many others.

Several fairness-aware learning methods exist to enforce these criteria.

[S. Barocas, M. Hardt, A. Narayanan. "Fairness and Machine Learning. Limitations and Opportunities", fairmlbook.org, 2019]
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Fair Learning from one unreliable/manipulated dataset:
▶ original training set: S = {(x1, a1, y1), . . . , (xm, am, ym)}
▶ adversary A can manipulate a fraction α of the dataset
▶ actual training set: S′ = A(S)

Question: Can a fairness-aware learner overcome the manipulation?

Answer: No!

Theorem [Konstantinov and Lampert, 2022]

There exists a learning situation and (even �nite) hypothesis space for which

▶ No learning algorithm can guarantee optimal fairness.

▶ This e�ect is independent of whether accuracy is also a�ected or not.

▶ The smaller the minority group, the stronger the bias.

[N. Konstantinov, CHL. "Fairness-Aware PAC Learning from Corrupted Data", JMLR 2022; https://arxiv.org/abs/2102.06004]
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▶ No learning algorithm can guarantee optimal fairness.

▶ This e�ect is independent of whether accuracy is also a�ected or not.

▶ The smaller the minority group, the stronger the bias.

[N. Konstantinov, CHL. "Fairness-Aware PAC Learning from Corrupted Data", JMLR 2022; https://arxiv.org/abs/2102.06004]
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Fair Learning from multiple sources:

▶ multiple training sets: S1, S2, . . . , SN ⊂ X ×A× Y
▶ adversary A can manipulate K = ⌊αN⌋ of the datasets for α < 1

2
▶ actual training sets: S′

1, . . . , S
′
N = A(S1, . . . , SN )

Is there a fairness-aware learning algorithm that overcomes such manipulations?

Answer: Yes!

Theorem [Io�nova et al., 2022]

There exists a learning algorithm, L, such that for f∗ = L(A(S1, . . . , SN )) with high
probability

er(f∗) ≤ min
f∈F

er(f) + Õ( 1√
m
), Γ(f∗) ≤ min

f∈F
Γ(f) + Õ( 1√

m
)

where Γ is a quantitative measure of demographic parity fairness.

[E. Io�nova, N. Konstantinov, CHL, "FLEA: Provably Robust Fair Multisource Learning", TMLR 2022; https://arxiv.org/abs/2106.11732]
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FLEA (Fair LEarning against Adversaries):

▶ Input: datasets S′
1, . . . , S

′
N

▶ Input: β ≤ 1
2 upper bound on fraction of malignant sources

▶ De�ne: distance measure d(S, Ŝ) = disc(S, Ŝ) + disp(S, Ŝ) + disb(S, Ŝ)

▶ disc(S, Ŝ): discrepancy as before
▶ disp(S, Ŝ): maximal fairness di�erence of any classi�er between S and Ŝ
▶ disb(S, Ŝ): di�erence in protected group proportions

▶ Step 1) identify which sources to trust

▶ compute all pairwise distance dij between datasets S′
1, . . . , S

′
N

▶ for any i = 1, . . . , N : qi ← β-quantile(di1, . . . , diN )

▶ T ← {i : qi ≤ β-quantile(q1, . . . , qN )}

▶ Step 2) merge data from all sources S′
i with i ∈ T into a new dataset S̃

▶ Step 3) train fairness-aware learning algorithm on S̃
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Experimental Results
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▶ bars are di�erent data manipulations,
designed to hurt accuracy or fairness

▶ simply training on all data often suboptimal

▶ other baselines often fail to overcome problems

▶ FLEA reliably recovers fairness and accuracy

[E. Io�nova, N. Konstantinov, CHL, "FLEA: Provably Robust Fair Multisource Learning", TMLR 2022; https://arxiv.org/abs/2106.11732]
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Summary

▶ Learning from multiple unreliable sources now commonplace

▶ Can be studied formally: learning with an adversary of a certain power

▶ Group structure allow robust and fair learning, even against a strong adversary
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