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Training data from multiple sources
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How much can be learned even if some data is corrupted or manipulated?
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Schedule

Overview

Reminder: Statistical Learning (Theory)

Robust Learning From Untrusted Sources

Robust Fair Learning

Slides available at: http://cvml.ist.ac.at
5 /37

http://cvml.ist.ac.at


Reminder: Supervised Learning
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Setting:
▶ Inputs: x ∈ X , e.g. strings, images, vectors, . . .

▶ Outputs: y ∈ Y. For simplicity, we use Y = {±1} (binary classification)

▶ Probability distribution: p(x,y) over X × Y, unknown to the learner

▶ Loss function: ℓ : Y × Y → R. For simplicty, we use 0/1-loss: ℓ(y, ȳ) = Jy ̸= ȳK

Abstract Goal:
▶ find a prediction function, f : X → Y, such that the expected loss

er(h) = E(x,y)∼p[ℓ(y, f (x))] = Pr(x,y)∼p{f (x) ̸= y}
on future data is small.
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Learning from data:
▶ training data: S = {(x1,y1), . . . , (xm,ym)}

i.i.d.∼ p
▶ hypothesis class: H = {h : X → Y}
▶ learning algorithm L : P(X × Y)→ H, P(·) = power set

▶ input: a training set, S ⊂ X × Y,
▶ output: a trained model L(S) ∈ H (= prediction function).

Central question in Statistical Learning Theory:

Is there a universal learning algorithm, such that: er(L(S)) |S|→∞→ min
h∈H

er(h) ?

Classic result: [Vapnik&Chervonenkis, 1971], [Blumer, Ehrenfeucht, Hassler, Warmuth, 1989]

If and only if VC(H) <∞, empirical risk minimization (ERM) does the job:

L(S)← argmin
h∈H

erS(h) for erS(h) :=
1
|S|

∑
(x,y)∈S

Jf (x) ̸= yK.

[V. N. Vapnik, A. Ya. Chervonenkis. "Theory of uniform convergence of frequencies of appearance of attributes to their probabilities and
problems of defining optimal solution by empiric data". Theory of Probability and its Applications, 1971]
[A. Blumer, A. Ehrenfeucht, D. Haussler, M. K. Warmuth. "Learnability and the Vapnik-Chervonenkis Dimension". Journal of the ACM, 1989]
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Learning from unreliable/malicious data:
▶ training set: S = {(x1,y1), . . . , (xm,ym)}
▶ but: data has issues: some data points might not really be samples from p

▶ formally: malicious adversary A [Valiant 1985]

▶ A can manipulate a fraction α of the dataset
▶ input: dataset S
▶ output: dataset S′ = A(S) with ⌈(1− α)m⌉ points are unchanged and ⌊αm⌋ are arbitrary
▶ A can depend on the learning algorithms, etc.

Question: Is ERM still be a universally good learning strategy?

Classic Result: no! [Kerns&Li, 1993]

No learning algorithm can guarantee an error less than α
1−α on future data!

[L. G. Valiant. "Learning disjunctons of conjunctions". IJCAI 1985]
[M. Kearns, M. Li. "Learning in the presence of malicious errors". SIAM Journal on Computing, 1993]
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Learning from Multiple Sources
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Training data from multiple sources
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If all sources are i.i.d. samples from the correct data distribution
−→ naive strategy "merge all datasets and train a classifier" works perfectly

11 /37

www.flaticon.com


Training data from multiple sources

Pe
rs
on

sl
ee

pi
ng

at
de

sk
Ic
on

m
ad

e
by

Fr
ee

pi
k

fr
om

ww
w.

fl
at

ic
on

.c
om

If some sources are not reliable, naive strategy can fail miserably!
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Robust Learning
from Unreliable or
Malicious Sources

Nikola
Konstantinov

Elias
Frantar

Dan
Alistarh

Disclaimer: "These results have been modified from their original form. They have been edited to fit the screen and the allotted time slot."

[N. Konstantinov, E. Frantar, D. Alistarh, CHL. "On the Sample Complexity of Adversarial Multi-Source PAC Learning", ICML 2020]
[N. Konstantinov, CHL. "Robust Learning from Untrusted Sources", ICML 2019]
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Learning from Multiple Sources

▶ multiple training sets: S1,S2, . . . ,SN
▶ each Si = {(xi1, yi1), . . . , (xim, yim)}

i.i.d.∼ p

▶ multi-source learning algorithm: L : (X × Y)N×m → H
▶ input: training sets, S1,S2, . . . ,SN
▶ output: one hypothesis L(S1, . . . ,SN) ∈ H (= a trained model).

▶ adversary A
▶ input: data sets S1, . . . ,SN

▶ output: data sets S′
1, . . . ,S′

N,
of which ⌈(1− α)N⌉ are identical to before and ⌊αN⌋ are arbitrary

▶ the adversary might know the training algorithm

Is there a universal learning algorithm, i.e. er(L(S′
1, . . . ,S′

N))
m→∞→ min

h∈H
er(h) ?
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Related Work

Robust learning from a single dataset
▶ no universal algorithm: minimum guaranteable error is α

1−α [Kearns and Li, 1993]

▶ identical to our situation when each dataset consists of a single point, m = 1
−→ only N →∞ will probably not suffice to learn arbitrarily well

Collaborative learning (multiple parties together learn individual models)
▶ universal learning algorithm exists [Blum et al., 2017], [Qiao, 2018]

Density estimation from untrusted batches
▶ possible, but not applicable to supervised learning [Qiao and Valiant, 2018],[Jain and Orlitsky, 2020]

Byzantine-robust distributed optimization
▶ specific solutions for gradient-based optimization [Yin et al., 2018], [Alistarh et al., 2018]

▶ results focus on convergence analysis
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Our Result

Theorem [N. Konstantinov, E. Frantar, D. Alistarh, CHL. ICML 2020]

There exists a learning algorithm, L, such that with high probability:

er(L(S′
1, . . . ,S′

N) ) ≤ min
h∈H

er(h) + Õ
( 1√

(1− α)Nm
+ α

1√
m

)
︸ ︷︷ ︸

→ 0 for m = |S| → ∞

,

with S′
1, . . . ,S′

N = A(S1, . . . ,SN) for any adversary A with α < 1
2 .

(Õ-notation hides constant and logarithmic factors)
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Big Picture

Question: why is learning easier from multiple sources than from a single one?

Answer: it’s not. But the task for the adversary is harder!
▶ single source: no restrictions how to manipulate the data
▶ multi-source: manipulation must adhere to the source structure

Algorithm idea: exploit law of large numbers
1. majority of datasets are unperturbed
2. for m→∞ these start to look more and more similar
3. we can identify (at least) the unperturbed datasets
4. we perform ERM on the union of only those

17 /37



Robust multi-source learning algorithm:

▶ Input: datasets S′
1, . . . ,S′

N
▶ Input: suitable distance measure d between datasets
▶ Input: suitable threshold value θ

▶ Step 1) identify which sources to trust
▶ compute all pairwise distance dij between datasets S′

1, . . . ,S′
N

▶ for any i: if dij < θ for at least ⌊N2 ⌋ values of j ̸= i, then T ← T ∪ {i}

▶ Step 2) merge data from all sources S′
i with i ∈ T into a new dataset S̃

▶ Step 3) minimize training error on S̃

Open choices:
▶ distance measure d (discussed later), threshold θ (see paper)

18 /37



All datasets clean

→ all datasets included → same as (optimal) naive algorithm
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Some datasets manipulated

→ manipulated datasets excluded
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Some datasets manipulated → manipulated datasets excluded
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Consistent manipulations

→ manipulated datasets excluded
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Consistent manipulations → manipulated datasets excluded
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Some datasets manipulated to look like originals

→ all datasets included.
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Some datasets manipulated to look like originals → all datasets included.
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What properties does the distance measure d need?

1) ’clean’ datasets should get grouped together:

S, Ŝ ∼ p ⇒ d(S, Ŝ) m→∞−→ 0

2) if manipulated datasets are grouped with the clean ones, they should not hurt the
learning step

d(S, Ŝ) is small ⇒ L(Ŝ) ≈ L(S)

Observation:
▶ many candidate distances do not fulfill both conditions simultaneously:

▶ geometric: average Euclidean distance, Chamfer distance, Haussdorf distance, . . .
▶ probabilistic: Wasserstein distance, total variation, KL-divergence, . . .

▶ discrepancy distance does fulfill the conditions!
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Discrepancy Distance [Mansour et al. 2009]

For a set of classifiers H and datasets S, Ŝ, define

disc(S, Ŝ) = max
h∈H

∣∣erS(h)− erŜ(h)∣∣ .
▶ maximal amount any classifier, h ∈ H, can disagree between S, Ŝ

▶ discrepancy can be estimated by training a classifier itself:
▶ S± ← S with all ±1 labels flipped to their opposites
▶ S̃ ← S± ∪ Ŝ
▶ disc(S, Ŝ) ← 1− 2minh∈H erS̃(h) (minimal training error of any h ∈ H on S̃)

24 /37



Two datasets, S, Ŝ
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Flip signs of S

25 /37



Merge both datasets
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Classifier with small training error → large discrepancy
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Two datasets, S, Ŝ
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Flip signs of S
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Merge both datasets
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No classifier with small training error → small discrepancy
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Observation: discrepancy distance has both property we need

1) Datasets from the same distribution (eventually) gets grouped together
▶ for VC(H) <∞, if S and Ŝ are sampled from the same distribution, then

disc(S, Ŝ)→ 0 for |S|, |Ŝ| → ∞

2) Datasets that are grouped together cannot hurt the learning much
Consider:
▶ training set Strn

i.i.d.∼ p
▶ arbitrary set Ŝ, potentially manipulated but with disc(Strn, Ŝ) ≤ θ

▶ test set Stst
i.i.d.∼ p

Then, for every h ∈ H: erStst(h) ≤ erŜ(h) + disc(Strn, Ŝ)︸ ︷︷ ︸
≤θ

+disc(Strn,Stst)︸ ︷︷ ︸
small by prop. 1)

27 /37



Robust Fair Learning
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Fairness-Aware Learning
from Unreliable or
Malicious Data

Nikola
Konstantinov

Jen
Iofinova

Disclaimer: "These results have been modified from their original form. They have been edited to fit the screen and the allotted time slot."

[N. Konstantinov, CHL. "Fairness-Aware PAC Learning from Corrupted Data", https://arxiv.org/abs/2102.06004]
[E. Iofinova∗ , N. Konstantinov∗ , CHL. "Robust Learning from Untrusted Sources", https://arxiv.org/abs/2106.11732]
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Algorithmic Fairness

How to ensure that a classifier does not discriminate against certain groups?
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Setting:

▶ Inputs: x ∈ X , e.g. strings, images, vectors, . . .

▶ Protected attribute: a ∈ A, e.g. gender, age, race, . . .

▶ Outputs: y ∈ Y (for simplicity: Y = {0,1})

▶ Probability distribution: p(x,a,y) over X ×A× Y

▶ Loss function: ℓ : Y × Y → R (for simplicty: 0/1-loss)

Abstract Goal:
▶ find a prediction function, f : X → Y low expected loss

er(h) = E(x,y)∼p
(
Jf (x) ̸= yK

)
= Pr(x,y)∼p{f (x) ̸= y}

that in addition fulfills some condition of (group) fairness.
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Group Fairness:

▶ demographic parity: "all groups have the same success rate"

∀a,b ∈ A p(f (X) = 1|A = a) = p(f (X) = 1|A = b)

▶ equality of opportunity: "all groups have the true positive rate"

∀a,b ∈ A p(f (X) = 1|A = a,Y = 1) = p(f (X) = 1|A = b,Y = 1)

and many others. [Barocas et al., 2021]

Several fairness-aware learning methods exist to enforce these criteria.

[S. Barocas, M. Hardt, A. Narayanan. "Fairness and Machine Learning. Limitations and Opportunities", fairmlbook.org, 2021]

32 / 37
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Fair Learning from unreliable/malicious data:
▶ original training set: S = {(x1,a1,y1), . . . , (xm,am,ym)}
▶ adversary A can manipulate a fraction α of the dataset
▶ actual training set: A(S)

Question: Can a fairness-aware learner overcome the manipulation?

Theorem [Konstantinov&CHL, 2021]

There is even for finite-sized hypothesis classes, H, for which:
▶ No learning algorithm can guarantee optimal fairness.

▶ This effect is independent of whether accuracy is also affected or not.

▶ The smaller the minority group, the stronger the bias.
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Fairness-Aware Learning from Multiple Unreliable Sources

▶ multiple training sets: S1,S2, . . . ,SN ⊂ X ×A× Y
▶ adversary A can manipulate K = ⌊αN⌋ of the datasets for α < 1

2
▶ actual training sets: A(S1, . . . ,SN)

Is there a fairness-aware learning algorithm that overcomes such manipulations?

Theorem [E. Iofinva et al., 2021]

There exists a learning algorithm, L, such that for h∗ = L(A(S1, . . . ,SN)) with high
probability

er(h∗) ≤ min
h∈H

er(h) + Õ( 1√
m

), Γ(h∗) ≤ min
h∈H

Γ(h) + Õ( 1√
m

)

where Γ is a quantitative measure of demographic parity fairness.
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m

), Γ(h∗) ≤ min
h∈H

Γ(h) + Õ( 1√
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FLEA (Fair LEarning against Adversaries):

▶ Input: datasets S′
1, . . . ,S′

N
▶ Input: β ≤ 1

2 upper bound on fraction of malignant sources
▶ Define: distance measure d(S, Ŝ) = disc(S, Ŝ) + disp(S, Ŝ) + disb(S, Ŝ)

▶ disc(S, Ŝ): discrepancy as before
▶ disp(S, Ŝ): maximal fairness difference of any classifier between S and Ŝ
▶ disb(S, Ŝ): difference in protected group proportions

▶ Step 1) identify which sources to trust
▶ compute all pairwise distance dij between datasets S′

1, . . . ,S′
N

▶ for any i = 1, . . . ,N: qi ← β-quantile(di1, . . . ,diN)
▶ T ← {i : qi ≤ β-quantile(q1, . . . ,qN)}

▶ Step 2) merge data from all sources S′
i with i ∈ T into a new dataset S̃

▶ Step 3) train fairness-aware learning algorithm on S̃
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Experimental Results
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▶ bars are different data manipulations,
designed to hurt accuracy or fairness

▶ simply training on all data often suboptimal
▶ other baselines often fail to overcome problems
▶ FLEA reliably recovers fairness and accuracy

More results and ablation studies in [E. Iofinva et al., 2021]
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Summary

Bad news:
▶ Learning is not robust to bad data.
▶ This can affect accuracy as well as fairness.

Good news:
▶ Modern data set are often not monolithic but

collected from multiple sources.
▶ Multi-source learning can be made robust to

bad data sources.
▶ This holds for accuracy as well as fairness.

Thank you!

Thanks to:

Nikola Konstantinov Jen Iofinova

Elias Frantar Dan Alistarh

Funding sources:
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